⑴ 台式電腦CpUE55002.80GHz是代表什麼
奔騰E5500是2011年的775介面入門級雙核CPU
放現在是很古老落伍的CPU了。2手的值5-10元
奔騰E5500是型號
2.8G是主頻
775之後才是1代LGA1156介面的I3/I5/I7,現在都發展到11代了,所以你這個是12代以前的產品
⑵ 請達人給解釋下前端匯流排、主頻、外頻、倍頻、超頻,謝謝
1、前端匯流排是處理器與主板北橋晶元或內存控制集線器之間的數據通道,其頻率高低直接影響CPU訪問內存的速度。匯流排是將信息以一個或多個源部件傳送到一個或多個目的部件的一組傳輸線。通俗的說,就是多個部件間的公共連線,用於在各個部件之間傳輸信息。人們常常以MHz表示的速度來描述匯流排頻率.
2、CPU的主頻,即CPU內核工作的時鍾頻率(CPU Clock Speed)。通常所說的某某CPU是多少兆赫的,而這個多少兆赫就是「CPU的主頻」。
3、CPU的外頻,通常為系統匯流排的工作頻率(系統時鍾頻率),CPU與周邊設備傳輸數據的頻率,具體是指CPU到晶元組之間的匯流排速度。外頻是CPU與主板之間同步運行的速度,而且目前的絕大部分電腦系統中外頻,也是內存與主板之間的同步運行的速度,在這種方式下,可以理解為CPU的外頻直接與內存相連通,實現兩者間的同步運行狀態。
4、CPU的倍頻,全稱是倍頻系數。CPU的核心工作頻率與外頻之間存在著一個比值關系,這個比值就是倍頻系數,簡稱倍頻。理論上倍頻是從1.5一直到無限的,但需要注意的是,倍頻是以0.5為一個間隔單位。外頻與倍頻相乘就是主頻,所以其中任何一項提高都可以使CPU的主頻上升。
5、電腦的超頻就是通過人為的方式將CPU、顯卡等硬體的工作頻率提高,讓它們在高於其額定的頻率狀態下穩定工作。以Intel P4C 2.4GHz的CPU為例,它的額定工作頻率是2.4GHz,如果將工作頻率提高到2.6GHz,系統仍然可以穩定運行,那這次超頻就成功了。
CPU超頻的主要目的是為了提高CPU的工作頻率,也就是CPU的主頻。而CPU的主頻又是外頻和倍頻的乘積。例如一塊CPU的外頻為100MHz,倍頻為8.5,可以計算得到它的主頻=外頻×倍頻=100MHz×8.5 = 850MHz
⑶ 台式電腦主要看什麼配置
電腦配置主要看:
一、CPU
計算機的性能在很大程度上由CPU的性能決定,而CPU的性能主要體現在其運行程序的速度上。影響運行速度的性能指標包括CPU的工作頻率、Cache容量、指令系統和邏輯結構等參數。
1、主頻
主頻也叫時鍾頻率,單位是兆赫(MHz)或千兆赫(GHz),用來表示CPU的運算、處理數據的速度。通常,主頻越高,CPU處理數據的速度就越快。
CPU的主頻=外頻×倍頻系數。主頻和實際的運算速度存在一定的關系,但並不是一個簡單的線性關系。所以,CPU的主頻與CPU實際的運算能力是沒有直接關系的,主頻表示在CPU內數字脈沖信號震盪的速度。
2、外頻
外頻是CPU的基準頻率,單位是MHz。CPU的外頻決定著整塊主板的運行速度。通俗地說,在台式機中,所說的超頻,都是超CPU的外頻(當然一般情況下,CPU的倍頻都是被鎖住的)相信這點是很好理解的。
但對於伺服器CPU來講,超頻是絕對不允許的。前面說到CPU決定著主板的運行速度,兩者是同步運行的,如果把伺服器CPU超頻了,改變了外頻,會產生非同步運行,這樣會造成整個伺服器系統的不穩定。
3、匯流排頻率
前端匯流排(FSB)是將CPU連接到北橋晶元的匯流排。前端匯流排(FSB)頻率(即匯流排頻率)是直接影響CPU與內存直接數據交換速度。
有一條公式可以計算,即數據帶寬=(匯流排頻率×數據位寬)/8,數據傳輸最大帶寬取決於所有同時傳輸的數據的寬度和傳輸頻率。
4、倍頻系數
倍頻系數是指CPU主頻與外頻之間的相對比例關系。在相同的外頻下,倍頻越高CPU的頻率也越高。
但實際上,在相同外頻的前提下,高倍頻的CPU本身意義並不大。這是因為CPU與系統之間數據傳輸速度是有限的,一味追求高主頻而得到高倍頻的CPU就會出現明顯的「瓶頸」效應-CPU從系統中得到數據的極限速度不能夠滿足CPU運算的速度。
一般除了工程樣版的Intel的CPU都是鎖了倍頻的,少量的如Intel酷睿2核心的奔騰雙核E6500K和一些至尊版的CPU不鎖倍頻,而AMD之前都沒有鎖。
⑷ 前端匯流排和PIC匯流排是什麼意思
CPU 的一些參數,這個不重要,重要的是CPU 是幾核,主頻是幾G等等
前端匯流排——Front Side Bus(FSB),是將CPU連接到北橋晶元的匯流排。選購主板和CPU時,要注意兩者搭配問題,一般來說,前端匯流排是由CPU決定的,如果主板不支持CPU所需要的前端匯流排,系統就無法工作。也就是說,需要主板和CPU都支持某個前端匯流排,系統才能工作,只不過一個CPU默認的前端匯流排是唯一的,因此看一個系統的前端匯流排主要看CPU就可以。前端匯流排是處理器與主板北橋晶元或內存控制集線器之間的數據通道,其頻率高低直接影響CPU訪問內存的速度。
PCI是Peripheral Component Interconnect(外設部件互連標准)的縮寫,它是目前個人電腦中使用最為廣泛的介面,幾乎所有的主板產品上都帶有這種插槽。PCI插槽也是主板帶有最多數量的插槽類型,在目前流行的台式機主板上,ATX結構的主板一般帶有5~6個PCI插槽,而小一點的MATX主板也都帶有2~3個PCI插槽,可見其應用的廣泛性。
⑸ 前端匯流排與內存頻率之間的關系是怎樣的
對於Intel公司的CPU,它並不是直接與內存交換數據。而是通過前端匯流排和北橋晶元交換數據,再由北橋去控制內存。顯然,前端匯流排頻率和內存頻率的選擇有一個匹配關系,如內存頻率(該頻率為等效傳輸頻率並非內存工作頻率,與題無關,不再分析)低於匹配值,前端匯流排就不能及時得到數據,內存頻率成為速度瓶頸;反之如前端匯流排頻率低於匹配值,內存就空閑了,前端匯流排頻率就成了瓶頸。如果內存讀寫時沒有延時,理論上組成雙通道內存的內存頻率為前端匯流排頻率一半就能匹配。如前端匯流排頻率為800MHz,內存頻率400MHz就可以,但實際上內存工作時有一定的延時,內存頻率要選高一些,可以是前端匯流排頻率的3/2到5/4,可以用533MHz或677MHz。選677更穩定,也許就是所謂兼容性好吧。
Intel公司的筆記本CPU在迅馳3時前端匯流排頻率偏低,是交換數據的瓶頸,升級到迅馳4的CPU後匯流排頻率升到800MHz,顯然提高了速度(雖然內存頻率仍為677MHz)和性能。但此時從匹配關系看,瓶頸可能還是前端匯流排頻率,決非內存。相當一段時間,筆記本電腦內存沒有必要使用800 MHz內存(好象也買不到)。台式機的CPU其前端匯流排頻率為1066 MHz,所配內存多數還是677 MHz,很少有人去配DDR2 800的。(大家都知道,1G內存從677升到800 MHz,遠不如將1G升到2x1G的677 MHz效果好),CPU使用1333 MHz時才非要配800 MHz內存。.mK/U1b]W:V
⑹ 台式電腦主板的前端匯流排在哪看 緊急
一般如技嘉的板子上都會標識有「FSB1XXX"的字樣,告訴你主板的前端匯流排。基本上所有的主板前端匯流排都可以在網上查得到,只要你知道主板的型號即可。
⑺ 前端匯流排.主頻.外頻.cpu之間是什麼關系
二級緩存:CPU緩存(Cache Memory)位於CPU與內存之間的臨時存儲器,它的容量比內存小但交換速度快。在緩存中的數據是內存中的一小部分,但這一小部分是短時間內CPU即將訪問的,當CPU調用大量數據時,就可避開內存直接從緩存中調用,從而加快讀取速度。由此可見,在CPU中加入緩存是一種高效的解決方案,這樣整個內存儲器(緩存+內存)就變成了既有緩存的高速度,又有內存的大容量的存儲系統了。緩存對CPU的性能影響很大,主要是因為CPU的數據交換順序和CPU與緩存間的帶寬引起的。
緩存的工作原理是當CPU要讀取一個數據時,首先從緩存中查找,如果找到就立即讀取並送給CPU處理;如果沒有找到,就用相對慢的速度從內存中讀取並送給CPU處理,同時把這個數據所在的數據塊調入緩存中,可以使得以後對整塊數據的讀取都從緩存中進行,不必再調用內存。
正是這樣的讀取機制使CPU讀取緩存的命中率非常高(大多數CPU可達90%左右),也就是說CPU下一次要讀取的數據90%都在緩存中,只有大約10%需要從內存讀取。這大大節省了CPU直接讀取內存的時間,也使CPU讀取數據時基本無需等待。總的來說,CPU讀取數據的順序是先緩存後內存。
最早先的CPU緩存是個整體的,而且容量很低,英特爾公司從Pentium時代開始把緩存進行了分類。當時集成在CPU內核中的緩存已不足以滿足CPU的需求,而製造工藝上的限制又不能大幅度提高緩存的容量。因此出現了集成在與CPU同一塊電路板上或主板上的緩存,此時就把 CPU內核集成的緩存稱為一級緩存,而外部的稱為二級緩存。一級緩存中還分數據緩存(Data Cache,D-Cache)和指令緩存(Instruction Cache,I-Cache)。二者分別用來存放數據和執行這些數據的指令,而且兩者可以同時被CPU訪問,減少了爭用Cache所造成的沖突,提高了處理器效能。英特爾公司在推出Pentium 4處理器時,用新增的一種一級追蹤緩存替代指令緩存,容量為12KμOps,表示能存儲12K條微指令。
隨著CPU製造工藝的發展,二級緩存也能輕易的集成在CPU內核中,容量也在逐年提升。現在再用集成在CPU內部與否來定義一、二級緩存,已不確切。而且隨著二級緩存被集成入CPU內核中,以往二級緩存與CPU大差距分頻的情況也被改變,此時其以相同於主頻的速度工作,可以為CPU提供更高的傳輸速度。
二級緩存是CPU性能表現的關鍵之一,在CPU核心不變化的情況下,增加二級緩存容量能使性能大幅度提高。而同一核心的CPU高低端之分往往也是在二級緩存上有差異,由此可見二級緩存對於CPU的重要性。
CPU在緩存中找到有用的數據被稱為命中,當緩存中沒有CPU所需的數據時(這時稱為未命中),CPU才訪問內存。從理論上講,在一顆擁有二級緩存的CPU中,讀取一級緩存的命中率為80%。也就是說CPU一級緩存中找到的有用數據占數據總量的80%,剩下的20%從二級緩存中讀取。由於不能准確預測將要執行的數據,讀取二級緩存的命中率也在80%左右(從二級緩存讀到有用的數據占總數據的16%)。那麼還有的數據就不得不從內存調用,但這已經是一個相當小的比例了。目前的較高端的CPU中,還會帶有三級緩存,它是為讀取二級緩存後未命中的數據設計的—種緩存,在擁有三級緩存的CPU中,只有約5%的數據需要從內存中調用,這進一步提高了CPU的效率。
為了保證CPU訪問時有較高的命中率,緩存中的內容應該按一定的演算法替換。一種較常用的演算法是「最近最少使用演算法」(LRU演算法),它是將最近一段時間內最少被訪問過的行淘汰出局。因此需要為每行設置一個計數器,LRU演算法是把命中行的計數器清零,其他各行計數器加1。當需要替換時淘汰行計數器計數值最大的數據行出局。這是一種高效、科學的演算法,其計數器清零過程可以把一些頻繁調用後再不需要的數據淘汰出緩存,提高緩存的利用率。
CPU產品中,一級緩存的容量基本在4KB到64KB之間,二級緩存的容量則分為128KB、256KB、512KB、1MB、2MB等。一級緩存容量各產品之間相差不大,而二級緩存容量則是提高CPU性能的關鍵。二級緩存容量的提升是由CPU製造工藝所決定的,容量增大必然導致CPU內部晶體管數的增加,要在有限的CPU面積上集成更大的緩存,對製造工藝的要求也就越高
前端匯流排:匯流排是將信息以一個或多個源部件傳送到一個或多個目的部件的一組傳輸線。通俗的說,就是多個部件間的公共連線,用於在各個部件之間傳輸信息。人們常常以MHz表示的速度來描述匯流排頻率。匯流排的種類很多,前端匯流排的英文名字是Front Side Bus,通常用FSB表示,是將CPU連接到北橋晶元的匯流排。計算機的前端匯流排頻率是由CPU和北橋晶元共同決定的。
北橋晶元負責聯系內存、顯卡等數據吞吐量最大的部件,並和南橋晶元連接。CPU就是通過前端匯流排(FSB)連接到北橋晶元,進而通過北橋晶元和內存、顯卡交換數據。前端匯流排是CPU和外界交換數據的最主要通道,因此前端匯流排的數據傳輸能力對計算機整體性能作用很大,如果沒足夠快的前端匯流排,再強的CPU也不能明顯提高計算機整體速度。數據傳輸最大帶寬取決於所有同時傳輸的數據的寬度和傳輸頻率,即數據帶寬=(匯流排頻率×數據位寬)÷8。目前PC機上所能達到的前端匯流排頻率有266MHz、333MHz、400MHz、533MHz、800MHz幾種,前端匯流排頻率越大,代表著CPU與北橋晶元之間的數據傳輸能力越大,更能充分發揮出CPU的功能。現在的CPU技術發展很快,運算速度提高很快,而足夠大的前端匯流排可以保障有足夠的數據供給給CPU,較低的前端匯流排將無法供給足夠的數據給CPU,這樣就限制了CPU性能得發揮,成為系統瓶頸。
外頻與前端匯流排頻率的區別:前端匯流排的速度指的是CPU和北橋晶元間匯流排的速度,更實質性的表示了CPU和外界數據傳輸的速度。而外頻的概念是建立在數字脈沖信號震盪速度基礎之上的,也就是說,100MHz外頻特指數字脈沖信號在每秒鍾震盪一萬萬次,它更多的影響了PCI及其他匯流排的頻率。之所以前端匯流排與外頻這兩個概念容易混淆,主要的原因是在以前的很長一段時間里(主要是在Pentium 4出現之前和剛出現Pentium 4時),前端匯流排頻率與外頻是相同的,因此往往直接稱前端匯流排為外頻,最終造成這樣的誤會。隨著計算機技術的發展,人們發現前端匯流排頻率需要高於外頻,因此採用了QDR(Quad Date Rate)技術,或者其他類似的技術實現這個目的。這些技術的原理類似於AGP的2X或者4X,它們使得前端匯流排的頻率成為外頻的2倍、4倍甚至更高,從此之後前端匯流排和外頻的區別才開始被人們重視起來
CPU的製造工藝和流程
CPU 發展至今已經有二十多年的歷史,其中製造 CPU 的工藝技術也經過了長足的發展,以前的製造工藝比較粗糙,而且對於讀者了解最新的技術也沒有多大幫助,所以我們舍之不談,用今天比較新的製造工藝來向大家闡述。
許多對電腦知識略知一二的朋友大多會知道 CPU 裡面最重要的東西就是晶體管了,提高 CPU 的速度,最重要的一點說白了就是如何在相同的CPU面積裡面放進去更加多的晶體管。由於 CPU 實在太小,太精密,裡面組成了數目相當多的晶體管,所以人手是絕對不可能完成的(笑),只能夠通過光刻工藝來進行加工的。這就是為什麼一塊 CPU 裡面為什麼可以數量如此之多的晶體管。晶體管其實就是一個雙位的開關:即開和關。如果您回憶起基本計算的時代,那就是一台計算機需要進行工作的全部。兩種選擇,開和關,對於機器來說即0和1。那麼如何製作一個CPU 呢? 以下我們用英特爾為例子告訴大家。
首先:取出一張利用激光器剛剛從類似干香腸一樣的硅柱上切割下來的矽片,它的直徑約為 20cm。除了 CPU 之外,英特爾還可以在每一矽片上製作數百個微處理器。每一個微處理器都不足一平方厘米。
接著就是矽片鍍膜了。相信學過化學的朋友都知道硅(Si)這個絕佳的半導體材料,它可以電腦裡面最最重要的元素啊!在矽片表面增加一層由我們的老朋友二氧化硅(SiO2)構成的絕緣層。這是通過 CPU 能夠導電的基礎。其次就輪到光刻膠了,在矽片上面增加了二氧化硅之後,隨後在其上鍍上一種稱為「光刻膠」的材料。這種材料在經過紫外線照射後會變軟、變粘。然後就是光刻掩膜,在我們考慮製造工藝前很久,就早有一非常聰明的美國人在腦子裡面設計出了 CPU,並且想盡方法使其按他們的設計意圖工作。CPU 電路設計的照相掩膜貼放在光刻膠的上方。照相字後自然要曝光「沖曬」了,我們將於是將掩膜和矽片曝光於紫外線。這就象是放大機中的一張底片。該掩膜允許光線照射到矽片上的某區域而不能照射到另一區域,這就形成了該設計的潛在映像。
一切都辦妥了之後,就要到相當重要的刻蝕工藝出場了。我們採用一種溶液將光線照射後完全變軟變粘的光刻膠「塊」除去,這就露出了其下的二氧化硅。本工藝的最後部分是除去曝露的二氧化硅以及殘余的光刻膠。對每層電路都要重復該光刻掩膜和刻蝕工藝,這得由所生產的 CPU 的復雜程度來確定。盡管所有這些聽起來象來自「星球大戰」的高科技,但刻蝕實際上是一種非常古老的工藝。幾個世紀以前,該工藝最初是被藝術家們用來在紙上、紡織品上甚至在樹木上創作精彩繪畫的。在微處理器的生產過程中,該照相刻蝕工藝可以依照電路圖形刻蝕成導電細條,其厚度比人的一根頭發絲還細許多倍。
接下來就是摻雜工藝。現在我們從矽片上已曝露的區域開始,首先倒入一化學離子混合液中。這一工藝改變摻雜區的導電方式,使得每個晶體管可以通、斷、或攜帶數據。將此工藝一次又一次地重復,以製成該 CPU 的許多層。不同層可通過開啟窗口聯接起來。電子以高達 400MHz 或更高的速度在不同的層面間流上流下,窗口是通過使用掩膜重復掩膜、刻蝕步驟開啟的。窗口開啟後就可以填充他們了。窗口中填充的是種最普通的金屬-鋁。終於接近尾聲了,我們把完工的晶體管接入自動測試設備中,這個設備每秒可作一萬次檢測,以確保它能正常工作。在通過所有的測試後必須將其封入一個陶瓷的或塑料的封殼中,這樣它就可以很容易地裝在一塊電路板上了。
目前,單單 Intel 具有 14 家晶元製造廠。盡管微處理器的基本原料是沙子(提煉硅),但工廠內空氣中的一粒灰塵就可能毀掉成千上萬的晶元。因此生產 CPU 的環境需非常干凈。事實上,工廠中生產晶元的超凈化室比醫院內的手術室還要潔凈1萬倍。「一級」的超凈化室最為潔凈,每平方英尺只有一粒灰塵。為達到如此一個無菌的環境而採用的技術多令人難以置信。在每一個超凈化室里,空氣每分鍾要徹底更換一次。空氣從天花板壓入,從地板吸出。凈化室內部的氣壓稍高於外部氣壓。這樣,如果凈化室中出現裂縫,那麼內部的潔凈空氣也會通過裂縫溜走-防止受污染的空氣流入。 但這只是事情一半。在晶元製造廠里,Intel 有上千名員工。他們都穿著特殊的稱為「兔裝」的工作服。兔裝是由一種特殊的非棉絨、抗靜電纖維製成的,它可以防止灰塵、臟物和其它污染損壞生產中的計算機晶元。這兔裝有適合每一個人的各種尺寸以及一系列顏色,甚至於白色。員工可以將兔裝穿在在普通衣服的外面,但必須經過含有 54 個單獨步驟的嚴格著裝程序。而且每一次進入和離開超凈化室都必須重復這個程序。因此,進入凈化室之後就會停留一陣。在製造車間里,英特爾的技術專家們切割矽片,並准備印刻電路模板等一系列復雜程序。這個步驟將矽片變成了一個半導體,它可以象晶體管一樣有打開和關閉兩種狀態。這些打開和關閉的狀態對應於數字電碼。把成千上萬個晶體管集成在英特爾的微處理器上,能表示成千上萬個電碼,這樣您的電腦就能處理一些非常復雜的軟體公式了。
回答者:神龍★王子 - 大魔法師 九級 8-15 10:28
####以下內容由張碳抄襲或編輯####
二級緩存:又叫L2 CACHE,它是處理器內部的一些緩沖存儲器,其作用跟內存一樣 由於L1級高速緩存容量的限制,為了再次提高CPU的運算速度,在CPU外部放置一高速存儲器,即二級緩存。工作主頻比較靈活,可與CPU同頻,也可不同。CPU在讀取數據時,先在L1中尋找,再從L2尋找,然後是內存,在後是外存儲器。所以L2對系統的影響也不容忽視。 (抄襲自網路:http://ke..com/view/27650.htm)
前端匯流排:前端匯流排是處理器與主板北橋晶元或內存控制集線器之間的數據通道,其頻率高低直接影響CPU訪問內存的速度;BIOS可看作是一個記憶電腦相關設定的軟體,可以通過它調整相關設定。BIOS存儲於板卡上一塊晶元中,這塊晶元的名字叫COMS RAM。但就像ATA與IDE一樣,大多人都將它們混為一談。
CPU就是通過前端匯流排(FSB)連接到北橋晶元,進而通過北橋晶元和內存、顯卡交換數據。前端匯流排是CPU和外界交換數據的最主要通道,因此前端匯流排的數據傳輸能力對計算機整體性能作用很大,如果沒足夠快的前端匯流排,再強的CPU也不能明顯提高計算機整體速度。數據傳輸最大帶寬取決於所有同時傳輸的數據的寬度和傳輸頻率,即數據帶寬=(匯流排頻率×數據位寬)÷8。目前PC機上所能達到的前端匯流排頻率有266MHz、333MHz、400MHz、533MHz、800MHz幾種,前端匯流排頻率越大,代表著CPU與北橋晶元之間的數據傳輸能力越大,更能充分發揮出CPU的功能。現在的CPU技術發展很快,運算速度提高很快,而足夠大的前端匯流排可以保障有足夠的數據供給給CPU,較低的前端匯流排將無法供給足夠的數據給CPU,這樣就限制了CPU性能得發揮,成為系統瓶頸。
(抄襲自http://ke..com/view/1083.htm)
核心製造工藝:一般理解為用什麼核心(例如intel 的Dothan AMD的Opteron) 和90毫米製作工藝
參考資料:抄襲網友
回答者:張碳 - 舉人 四級 8-15 10:33
緩存是指可以進行高速數據交換的存儲器,它先於內存與CPU交換數據,因此速度很快。L1 Cache(一級緩存)是CPU第一層高速緩存。內置的L1高速緩存的容量和結構對CPU的性能影響較大,不過高速緩沖存儲器均由靜態RAM組成,結構較復雜,在CPU管芯面積不能太大的情況下,L1級高速緩存的容量不可能做得太大。一般L1緩存的容量通常在32—256KB。L2 Cache(二級緩存)是CPU的第二層高速緩存,分內部和外部兩種晶元。內部的晶元二級緩存運行速度與主頻相同,而外部的二級緩存則只有主頻的一半。L2高速緩存容量也會影響CPU的性能,原則是越大越好,現在普通台式機CPU的L2緩存一般為128KB到2MB或者更高,筆記本、伺服器和工作站上用CPU的L2高速緩存最高可達1MB-3MB.
前端匯流排是處理器與主板北橋晶元或內存控制集線器之間的數據通道,其頻率高低直接影響CPU訪問內存的速度;BIOS可看作是一個記憶電腦相關設定的軟體,可以通過它調整相關設定。BIOS存儲於板卡上一塊晶元中,這塊晶元的名字叫COMS RAM。但就像ATA與IDE一樣,大多人都將它們混為一談。
因為主板直接影響到整個系統的性能、穩定、功能與擴展性,其重要性不言而喻。主板的選購看似簡單,其實要注意的東西很多。選購時當留意產品的晶元組、做工用料、功能介面甚至使用簡便性,這就要求對主板具備透徹的認識,才能選擇到滿意的產品。關於主板與南北橋等參數的詳細介紹,請留意天極網上的相關文章,限於篇幅不再贅述。
核心(Die)又稱為內核,是CPU最重要的組成部分。CPU中心那塊隆起的晶元就是核心,是由單晶硅以一定的生產工藝製造出來的,CPU所有的計算、接受/存儲命令、處理數據都由核心執行。各種CPU核心都具有固定的邏輯結構,一級緩存、二級緩存、執行單元、指令級單元和匯流排介面等邏輯單元都會有科學的布局。
為了便於CPU設計、生產、銷售的管理,CPU製造商會對各種CPU核心給出相應的代號,這也就是所謂的CPU核心類型。
不同的CPU(不同系列或同一系列)都會有不同的核心類型(例如Pentium 4的Northwood,Willamette以及K6-2的CXT和K6-2+的ST-50等等),甚至同一種核心都會有不同版本的類型(例如Northwood核心就分為B0和C1等版本),核心版本的變更是為了修正上一版存在的一些錯誤,並提升一定的性能,而這些變化普通消費者是很少去注意的。每一種核心類型都有其相應的製造工藝(例如0.25um、0.18um、0.13um以及0.09um等)、核心面積(這是決定CPU成本的關鍵因素,成本與核心面積基本上成正比)、核心電壓、電流大小、晶體管數量、各級緩存的大小、主頻范圍、流水線架構和支持的指令集(這兩點是決定CPU實際性能和工作效率的關鍵因素)、功耗和發熱量的大小、封裝方式(例如S.E.P、PGA、FC-PGA、FC-PGA2等等)、介面類型(例如Socket 370,Socket A,Socket 478,Socket T,Slot 1、Socket 940等等)、前端匯流排頻率(FSB)等等。因此,核心類型在某種程度上決定了CPU的工作性能。
一般說來,新的核心類型往往比老的核心類型具有更好的性能(例如同頻的Northwood核心Pentium 4 1.8A GHz就要比Willamette核心的Pentium 4 1.8GHz性能要高),但這也不是絕對的,這種情況一般發生在新核心類型剛推出時,由於技術不完善或新的架構和製造工藝不成熟等原因,可能會導致新的核心類型的性能反而還不如老的核心類型的性能。例如,早期Willamette核心Socket 423介面的Pentium 4的實際性能不如Socket 370介面的Tualatin核心的Pentium III和賽揚,現在的低頻Prescott核心Pentium 4的實際性能不如同頻的Northwood核心Pentium 4等等,但隨著技術的進步以及CPU製造商對新核心的不斷改進和完善,新核心的中後期產品的性能必然會超越老核心產品。
CPU核心的發展方向是更低的電壓、更低的功耗、更先進的製造工藝、集成更多的晶體管、更小的核心面積(這會降低CPU的生產成本從而最終會降低CPU的銷售價格)、更先進的流水線架構和更多的指令集、更高的前端匯流排頻率、集成更多的功能(例如集成內存控制器等等)以及雙核心和多核心(也就是1個CPU內部有2個或更多個核心)等。CPU核心的進步對普通消費者而言,最有意義的就是能以更低的價格買到性能更強的CPU。
或許你只是想由此加深自己對硬體的認識,但學習電腦硬體與做其他事並無二致,都有一個循序漸進的過程。這里的回答只是做一個簡單的介紹,並不會讓你對硬體陡然理解透徹。如果想系統的學習硬體知識,建議常瀏覽天極網,多看看相關的文章。希望這樣的答復能對你有所幫助。
參考資料:http://bbs.hefei.cc/viewthread.php?tid=443435
⑻ 台式電腦組裝配置清單
台式電腦組裝配置:CPU、顯卡、主板、內存、硬碟、顯示器、機箱、光碟機、鍵盤、滑鼠和散熱系統。
取決情況:
1.CPU,這個主要取決於頻率和二級緩存,三級緩存,核心數量。頻率越高、二級緩存越大,三級緩存越大,核心越多,運行速度越快。速度越快的CPU只有三級緩存影響響應速度。
2.內存,內存的存取速度取決於介面、顆粒數量多少與儲存大小,一般來說,內存越大,處理數據能力越強。
3.主板,主要還是處理晶元,並且更好的主板還可以適配更強大的CPU。
4.硬碟,硬碟分為固態硬碟(SSD)、機械硬碟(HDD)、混合硬碟(SSHD),固態硬碟速度最快,混合硬碟次之,機械硬碟最差。
5.顯卡:要注意顯卡的流處理能力以及顯存大小和顯存位寬,越大越好。這項與運行超大程序軟體的響應速度有著直接聯系。
6.電源,這個只要功率足夠和穩定性好,穩定的電源是很重要的,對於電腦各個電子元件穩定的電壓以及電流都是電腦壽命的關鍵。
7.顯示器:顯示器與主板的介面也一樣有影響(如DVI,HDMI和VGA介面),只是人們一般沒有太在乎(請查閱顯示設備相關技術資料)。更好的顯示器有更高的刷新率與更大的屏幕、清晰度,這對電競來說非常重要,可以讓游戲更加流暢,對於剪輯人員也更有利。
區別
1、台式機佔地龐大,筆記本便於攜帶。
2、從內部結構上來講,台式機和筆記本的架構是一樣的。只不過由於筆記本受空間限制,很多設備是和主板整合的。
3、包括CPU和顯卡,都是焊在主板上的。因此筆記本電腦無法單獨更換CPU和顯卡。
4、由於電池續航能力限制、空間狹小造成的散熱困難等很多原因,筆記本裡面的硬體大多以低功耗版的形態出現。
5、同時,筆記本內部一定有符合機型設計的完備的散熱措施。這些措施一般都是單獨設計的,這和台式機不同。
6、另外筆記本電腦由於整合的原因,一般附帶更多的設備,比如藍牙、紅外基本是標准配置了,迅馳機型還有802.11a/b/g無線網卡,蘋果電腦還有802.11n設備。這些設備使得筆記本能應付更多的情況。
以上資料參考網路—電腦配置
以上資料參考網路—台式電腦