導航:首頁 > 異常信息 > 連接身心的神經網路被稱為

連接身心的神經網路被稱為

發布時間:2022-06-22 15:35:15

Ⅰ 人工神經網路,人工神經網路是什麼意思

一、 人工神經網路的概念
人工神經網路(Artificial Neural Network,ANN)簡稱神經網路(NN),是基於生物學中神經網路的基本原理,在理解和抽象了人腦結構和外界刺激響應機制後,以網路拓撲知識為理論基礎,模擬人腦的神經系統對復雜信息的處理機制的一種數學模型。該模型以並行分布的處理能力、高容錯性、智能化和自學習等能力為特徵,將信息的加工和存儲結合在一起,以其獨特的知識表示方式和智能化的自適應學習能力,引起各學科領域的關注。它實際上是一個有大量簡單元件相互連接而成的復雜網路,具有高度的非線性,能夠進行復雜的邏輯操作和非線性關系實現的系統。
神經網路是一種運算模型,由大量的節點(或稱神經元)之間相互聯接構成。每個節點代表一種特定的輸出函數,稱為激活函數(activation function)。每兩個節點間的連接都代表一個對於通過該連接信號的加權值,稱之為權重(weight),神經網路就是通過這種方式來模擬人類的記憶。網路的輸出則取決於網路的結構、網路的連接方式、權重和激活函數。而網路自身通常都是對自然界某種演算法或者函數的逼近,也可能是對一種邏輯策略的表達。神經網路的構築理念是受到生物的神經網路運作啟發而產生的。人工神經網路則是把對生物神經網路的認識與數學統計模型相結合,藉助數學統計工具來實現。另一方面在人工智慧學的人工感知領域,我們通過數學統計學的方法,使神經網路能夠具備類似於人的決定能力和簡單的判斷能力,這種方法是對傳統邏輯學演算的進一步延伸。
人工神經網路中,神經元處理單元可表示不同的對象,例如特徵、字母、概念,或者一些有意義的抽象模式。網路中處理單元的類型分為三類:輸入單元、輸出單元和隱單元。輸入單元接受外部世界的信號與數據;輸出單元實現系統處理結果的輸出;隱單元是處在輸入和輸出單元之間,不能由系統外部觀察的單元。神經元間的連接權值反映了單元間的連接強度,信息的表示和處理體現在網路處理單元的連接關系中。人工神經網路是一種非程序化、適應性、大腦風格的信息處理,其本質是通過網路的變換和動力學行為得到一種並行分布式的信息處理功能,並在不同程度和層次上模仿人腦神經系統的信息處理功能。
神經網路,是一種應用類似於大腦神經突觸連接結構進行信息處理的數學模型,它是在人類對自身大腦組織結合和思維機制的認識理解基礎之上模擬出來的,它是根植於神經科學、數學、思維科學、人工智慧、統計學、物理學、計算機科學以及工程科學的一門技術。
二、 人工神經網路的發展
神經網路的發展有悠久的歷史。其發展過程大致可以概括為如下4個階段。
1. 第一階段----啟蒙時期
(1)、M-P神經網路模型:20世紀40年代,人們就開始了對神經網路的研究。1943 年,美國心理學家麥克洛奇(Mcculloch)和數學家皮茲(Pitts)提出了M-P模型,此模型比較簡單,但是意義重大。在模型中,通過把神經元看作個功能邏輯器件來實現演算法,從此開創了神經網路模型的理論研究。
(2)、Hebb規則:1949 年,心理學家赫布(Hebb)出版了《The Organization of Behavior》(行為組織學),他在書中提出了突觸連接強度可變的假設。這個假設認為學習過程最終發生在神經元之間的突觸部位,突觸的連接強度隨之突觸前後神經元的活動而變化。這一假設發展成為後來神經網路中非常著名的Hebb規則。這一法則告訴人們,神經元之間突觸的聯系強度是可變的,這種可變性是學習和記憶的基礎。Hebb法則為構造有學習功能的神經網路模型奠定了基礎。
(3)、感知器模型:1957 年,羅森勃拉特(Rosenblatt)以M-P 模型為基礎,提出了感知器(Perceptron)模型。感知器模型具有現代神經網路的基本原則,並且它的結構非常符合神經生理學。這是一個具有連續可調權值矢量的MP神經網路模型,經過訓練可以達到對一定的輸入矢量模式進行分類和識別的目的,它雖然比較簡單,卻是第一個真正意義上的神經網路。Rosenblatt 證明了兩層感知器能夠對輸入進行分類,他還提出了帶隱層處理元件的三層感知器這一重要的研究方向。Rosenblatt 的神經網路模型包含了一些現代神經計算機的基本原理,從而形成神經網路方法和技術的重大突破。
(4)、ADALINE網路模型: 1959年,美國著名工程師威德羅(B.Widrow)和霍夫(M.Hoff)等人提出了自適應線性元件(Adaptive linear element,簡稱Adaline)和Widrow-Hoff學習規則(又稱最小均方差演算法或稱δ規則)的神經網路訓練方法,並將其應用於實際工程,成為第一個用於解決實際問題的人工神經網路,促進了神經網路的研究應用和發展。ADALINE網路模型是一種連續取值的自適應線性神經元網路模型,可以用於自適應系統。
2. 第二階段----低潮時期
人工智慧的創始人之一Minsky和Papert對以感知器為代表的網路系統的功能及局限性從數學上做了深入研究,於1969年發表了轟動一時《Perceptrons》一書,指出簡單的線性感知器的功能是有限的,它無法解決線性不可分的兩類樣本的分類問題,如簡單的線性感知器不可能實現「異或」的邏輯關系等。這一論斷給當時人工神經元網路的研究帶來沉重的打擊。開始了神經網路發展史上長達10年的低潮期。
(1)、自組織神經網路SOM模型:1972年,芬蘭的KohonenT.教授,提出了自組織神經網路SOM(Self-Organizing feature map)。後來的神經網路主要是根據KohonenT.的工作來實現的。SOM網路是一類無導師學習網路,主要用於模式識別﹑語音識別及分類問題。它採用一種「勝者為王」的競爭學習演算法,與先前提出的感知器有很大的不同,同時它的學習訓練方式是無指導訓練,是一種自組織網路。這種學習訓練方式往往是在不知道有哪些分類類型存在時,用作提取分類信息的一種訓練。
(2)、自適應共振理論ART:1976年,美國Grossberg教授提出了著名的自適應共振理論ART(Adaptive Resonance Theory),其學習過程具有自組織和自穩定的特徵。
3. 第三階段----復興時期
(1)、Hopfield模型:1982年,美國物理學家霍普菲爾德(Hopfield)提出了一種離散神經網路,即離散Hopfield網路,從而有力地推動了神經網路的研究。在網路中,它首次將李雅普諾夫(Lyapunov)函數引入其中,後來的研究學者也將Lyapunov函數稱為能量函數。證明了網路的穩定性。1984年,Hopfield 又提出了一種連續神經網路,將網路中神經元的激活函數由離散型改為連續型。1985 年,Hopfield和Tank利用Hopfield神經網路解決了著名的旅行推銷商問題(Travelling Salesman Problem)。Hopfield神經網路是一組非線性微分方程。Hopfield的模型不僅對人工神經網路信息存儲和提取功能進行了非線性數學概括,提出了動力方程和學習方程,還對網路演算法提供了重要公式和參數,使人工神經網路的構造和學習有了理論指導,在Hopfield模型的影響下,大量學者又激發起研究神經網路的熱情,積極投身於這一學術領域中。因為Hopfield 神經網路在眾多方面具有巨大潛力,所以人們對神經網路的研究十分地重視,更多的人開始了研究神經網路,極大地推動了神經網路的發展。
(2)、Boltzmann機模型:1983年,Kirkpatrick等人認識到模擬退火演算法可用於NP完全組合優化問題的求解,這種模擬高溫物體退火過程來找尋全局最優解的方法最早由Metropli等人1953年提出的。1984年,Hinton與年輕學者Sejnowski等合作提出了大規模並行網路學習機,並明確提出隱單元的概念,這種學習機後來被稱為Boltzmann機。
Hinton和Sejnowsky利用統計物理學的感念和方法,首次提出的多層網路的學習演算法,稱為Boltzmann 機模型。
(3)、BP神經網路模型:1986年,儒默哈特(D.E.Ru melhart)等人在多層神經網路模型的基礎上,提出了多層神經網路權值修正的反向傳播學習演算法----BP演算法(Error Back-Propagation),解決了多層前向神經網路的學習問題,證明了多層神經網路具有很強的學習能力,它可以完成許多學習任務,解決許多實際問題。
(4)、並行分布處理理論:1986年,由Rumelhart和McCkekkand主編的《Parallel Distributed Processing:Exploration in the Microstructures of Cognition》,該書中,他們建立了並行分布處理理論,主要致力於認知的微觀研究,同時對具有非線性連續轉移函數的多層前饋網路的誤差反向傳播演算法即BP演算法進行了詳盡的分析,解決了長期以來沒有權值調整有效演算法的難題。可以求解感知機所不能解決的問題,回答了《Perceptrons》一書中關於神經網路局限性的問題,從實踐上證實了人工神經網路有很強的運算能力。
(5)、細胞神經網路模型:1988年,Chua和Yang提出了細胞神經網路(CNN)模型,它是一個細胞自動機特性的大規模非線性計算機模擬系統。Kosko建立了雙向聯想存儲模型(BAM),它具有非監督學習能力。
(6)、Darwinism模型:Edelman提出的Darwinism模型在90年代初產生了很大的影響,他建立了一種神經網路系統理論。
(7)、1988年,Linsker對感知機網路提出了新的自組織理論,並在Shanon資訊理論的基礎上形成了最大互信息理論,從而點燃了基於NN的信息應用理論的光芒。
(8)、1988年,Broomhead和Lowe用徑向基函數(Radialbasis function, RBF)提出分層網路的設計方法,從而將NN的設計與數值分析和線性適應濾波相掛鉤。
(9)、1991年,Haken把協同引入神經網路,在他的理論框架中,他認為,認知過程是自發的,並斷言模式識別過程即是模式形成過程。
(10)、1994年,廖曉昕關於細胞神經網路的數學理論與基礎的提出,帶來了這個領域新的進展。通過拓廣神經網路的激活函數類,給出了更一般的時滯細胞神經網路(DCNN)、Hopfield神經網路(HNN)、雙向聯想記憶網路(BAM)模型。
(11)、90年代初,Vapnik等提出了支持向量機(Supportvector machines, SVM)和VC(Vapnik-Chervonenkis)維數的概念。
經過多年的發展,已有上百種的神經網路模型被提出。

Ⅱ 神經網路是什麼

神經網路是一種以人腦為模型的機器學習,簡單地說就是創造一個人工神經網路,通過一種演算法允許計算機通過合並新的數據來學習。
神經網路簡單說就是通過一種演算法允許計算機通過合並新的數據來學習!

Ⅲ 什麼是人體神經網路

神經系統
概述
神經系統nervous system是機體內起主導作用的系統。內、外環境的各種信息,由感受器接受後,通過周圍神經傳遞到腦和脊髓的各級中樞進行整合,再經周圍神經控制和調節機體各系統器官的活動,以維持機體與內、外界環境的相對平衡。

人體各器官、系統的功能都是直接或間接處於神經系統的調節控制之下,神經系統是整體內起主導作用的調節系統。人體是一個復雜的機體,各器官、系統的功能不是孤立的,它們之間互相聯系、互相制約;同時,人體生活在經常變化的環境中,環境的變化隨時影響著體內的各種功能。這就需要對體內各種功能不斷作出迅速而完善的調節,使機體適應內外環境的變化。實現這一調節功能的系統主要就是神經系統。

神經系的基本結構
神經系統是由神經細胞(神經元)和神經膠質所組成。

1.神經元。

神經元neuron是一種高度特化的細胞,是神經系統的基本結構和功能單位,它具有感受刺激和傳導興奮的功能。神經元由胞體和突起兩部分構成。胞體的中央有細胞核,核的周圍為細胞質,胞質內除有一般細胞所具有的細胞器如線粒體、內質網等外,還含有特有的神經原纖維及尼氏體。神經元的突起根據形狀和機能又分為樹突dendrite和軸突axon。樹突較短但分支較多,它接受沖動,並將沖動傳至細胞體,各類神經元樹突的數目多少不等,形態各異。每個神經元只發出一條軸突,長短不一,胞體發生出的沖動則沿軸突傳出。

根據突起的數目,可將神經元從形態上分為假單極神經元、雙極神經元和多極神經元三大類。

根據神經元的功能,可分為感覺神經元、運動神經元和聯絡神經元。感覺神經元又稱傳入神經元,一般位於外周的感覺神經節內,為假單極或雙極神經元,感覺神經元的周圍突接受內外界環境的各種刺激,經胞體和中樞突將沖動傳至中樞;運動神經元又名傳出神經元,一般位於腦、脊髓的運動核內或周圍的植物神經節內,為多極神經元,它將沖動從中樞傳至肌肉或腺體等效應器;聯絡神經元又稱中間神經元,是位於感覺和運動神經元之間的神經元,起聯絡、整合等作用,為多極神經元。

2.神經膠質。

神經膠質neuroglia數目較神經元,突起無樹突、軸突之分,胞體較小,胞漿中無神經原纖維和尼氏體,不具有傳導沖動的功能。神經膠質對神經元起著支持、絕緣、營養和保護等作用,並參與構成血腦屏障。

3.突觸。

神經元間聯系方式是互相接觸,而不是細胞質的互相溝通。該接觸部位的結構特化稱為突觸synapse,通常是一個神經元的軸突與另一個神經元的樹突或胞體借突觸發生機能上的聯系,神經沖動由一個神經元通過突觸傳遞到另一個神經元。

神經系統的構成
神經系統分為中樞神經系統和周圍神經系統兩大部分。中樞神經系統包括腦和脊髓。腦和脊髓位於人體的中軸位,它們的周圍有頭顱骨和脊椎骨包繞。這些骨頭質地很硬,在人年齡小時還富有彈性,因此可以使腦和脊髓得到很好的保護。腦分為端腦、間腦、小腦和腦干四部分。脊髓主要是傳導通路,能把外界的刺激及時傳送到腦,然後再把腦發出的命令及時傳送到周圍器官,起到了上通下達的橋梁作用。周圍神經系統包括腦神經、脊神經和植物神經。腦神經共有12對,主要支配頭面部器官的感覺和運動。人能看到周圍事物,聽見聲音,聞出香臭,嘗出滋味,以及有喜怒哀樂的表情等,都必須依靠這12對腦神經的功能。 脊神經共有31對,其中包括頸神經8對,胸神經12對,腰神經5對,骶神經5對,尾神經 1對。脊神經由脊髓發出,主要支配身體和四肢的感覺、運動和反射。植物神經也稱為內臟神經,主要分布於內臟、心血管和腺體。心跳、呼吸和消化活動都受它的調節。植物神經分為交感神經和副交感神經兩類,兩者之間相互桔抗又相互協調,組成一個配合默契的有機整體,使內臟活動能適應內外環境的需要。

神經系統

神經系統是人體內由神經組織構成的全部裝置。主要由神經元組成。神經系統由中樞神經系統和遍布全身各處的周圍神經系統兩部分組成。中樞神經系統包括腦和脊髓,分別位於顱腔和椎管內,是神經組織最集中、構造最復雜的部位。存在有控制各種生理機能的中樞。周圍神經系統包括各種神經和神經節。其中同腦相連的稱為腦神經,與脊髓相連的為脊神經,支配內臟器官的稱植物性神經。各類神經通過其末梢與其他器官系統相聯系。神經系統具有重要的功能,是人體內起主導作用的系統。一方面它控制與調節各器官、系統的活動,使人體成為一個統一的整體。另一方面通過神經系統的分析與綜合,使機體對環境變化的刺激作出相應的反應,達到機體與環境的統一。神經系統對生理機能調節的基本活動形式是反射。人的大腦的高度發展,使大腦皮質成為控制整個機體功能的最高級部位,並具有思維、意識等生理機能。神經系統發生於胚胎發育的早期,由外胚層發育而來。

小腦、大腦和神經系統

大腦的功能主要有:進行理論性的思考、判斷事物、說話、掌管本能以及掌管情感。神經的功能是傳遞腦部的指令到身體各部位,再由末梢神經和中樞神經將身體各部位所收集的情報回傳到大腦進行資料分析的。

小腦的功能是由舊小腦負責保持身體的平衡,例如站立、行走、運動。而新小腦是負責將大腦所傳達的粗略運動指令進行仔細調整後,通過神經細胞,以電腦的速度和准確性,傳到身體的每個部位。小腦皮質每1mm2聚集了50萬個神經細胞,之所以我們能夠使全身的肌肉協調地進行各種動作,例如揮桿自如,全部都是因為新小腦,即神經細胞的聚合體,以千分之一秒的速度來准確地處理了大腦發出的運動指令,如果這里出了問題,就無法巧妙用手握住物體,又或無法做到協調的動作了。

保護腦部的正常運作

大家對腦部和神經粗略地了解了一些主要功能,現在我們要學習如何去保護及保證腦部及神經系統能發揮正常的功能。因為當它們正常操作時,我們的高爾夫球和生活才能好好享受。首先要了解腦部會有機會出現一些疾病和原因,腦部常見的疾病有腦血管阻塞或破裂即是腦中風,但它並不是單一的疾病,而是腦梗塞、腦出血、蜘蛛膜下出血等會使腦血管產生障礙的各種疾病的總稱。而這些病的背景都是動脈硬化,再加上精神過度緊張、飲酒、身體過度疲勞而身體已到了最危險的時候,一觸即發而造成出血的結果。

而神經有可能出現的疾病就是神經痛,例如三叉神經痛、枕神經痛、肋間神經痛和坐骨神經痛等等,根據一些醫書的解釋是由於某些部位的神經受到壓迫,例如:肌肉的過份緊張收縮和骨的移位而令某些神經受到過大的壓力而痛,又或者由於頸椎、腰椎、脊椎變形、又或者由於腫痛等原因而導致神經痛,而引起這些病的根本原因通常是由於長期身體處於高度的精神緊張、飲食不健康、長期缺乏運動,而長期累積太多有害物質又排不出體外,加上工作的壓力就很容易令身體去到危險程度。

希望大家能夠提醒自己,用聰明的方法消除精神和身體的疲勞,同時要讓身體攝取各種營養素、維他命、氨基酸、礦物質等等,以及多做運動去消除精神上的壓力,令壞膽固醇無法在身體囤積,同時聽音樂或出去旅行,又或者種種花草、浸浸溫泉、做做運動按摩和多做伸展運動和多在清新空氣的地方做深呼吸,以達到最健康。

Ⅳ 神經網路是什麼

神經網路是一種模仿動物神經網路行為特徵,進行分布式並行信息處理的演算法數學模型。這種網路依靠系統的復雜程度,通過調整內部大量節點之間相互連接的關系,從而達到處理信息的目的。

生物神經網路主要是指人腦的神經網路,它是人工神經網路的技術原型。人腦是人類思維的物質基礎,思維的功能定位在大腦皮層,後者含有大約10^11個神經元,每個神經元又通過神經突觸與大約103個其它神經元相連,形成一個高度復雜高度靈活的動態網路。作為一門學科,生物神經網路主要研究人腦神經網路的結構、功能及其工作機制,意在探索人腦思維和智能活動的規律。

人工神經網路是生物神經網路在某種簡化意義下的技術復現,作為一門學科,它的主要任務是根據生物神經網路的原理和實際應用的需要建造實用的人工神經網路模型,設計相應的學習演算法,模擬人腦的某種智能活動,然後在技術上實現出來用以解決實際問題。因此,生物神經網路主要研究智能的機理;人工神經網路主要研究智能機理的實現,兩者相輔相成。

(4)連接身心的神經網路被稱為擴展閱讀:

神經網路的研究內容相當廣泛,反映了多學科交叉技術領域的特點。主要的研究工作集中在以下幾個方面:

1、生物原型

從生理學、心理學、解剖學、腦科學、病理學等方面研究神經細胞、神經網路、神經系統的生物原型結構及其功能機理。

2、建立模型

根據生物原型的研究,建立神經元、神經網路的理論模型。其中包括概念模型、知識模型、物理化學模型、數學模型等。

3、演算法

在理論模型研究的基礎上構作具體的神經網路模型,以實現計算機模擬或准備製作硬體,包括網路學習演算法的研究。這方面的工作也稱為技術模型研究。

神經網路用到的演算法就是向量乘法,並且廣泛採用符號函數及其各種逼近。並行、容錯、可以硬體實現以及自我學習特性,是神經網路的幾個基本優點,也是神經網路計算方法與傳統方法的區別所在。

Ⅳ 什麼叫神經網路

南搞小孩給出基本的概念: 一.一些基本常識和原理 [什麼叫神經網路?] 人的思維有邏輯性和直觀性兩種不同的基本方式。邏輯性的思維是指根據邏輯規則進行推理的過程;它先將信息化成概念,並用符號表示,然後,根據符號運算按串列模式進行邏輯推理;這一過程可以寫成串列的指令,讓計算機執行。然而,直觀性的思維是將分布式存儲的信息綜合起來,結果是忽然間產生想法或解決問題的辦法。這種思維方式的根本之點在於以下兩點:1.信息是通過神經元上的興奮模式分布儲在網路上;2.信息處理是通過神經元之間同時相互作用的動態過程來完成的。 人工神經網路就是模擬人思維的第二種方式。這是一個非線性動力學系統,其特色在於信息的分布式存儲和並行協同處理。雖然單個神經元的結構極其簡單,功能有限,但大量神經元構成的網路系統所能實現的行為卻是極其豐富多彩的。 [人工神經網路的工作原理] 人工神經網路首先要以一定的學習准則進行學習,然後才能工作。現以人工神經網路對手寫「A」、「B」兩個字母的識別為例進行說明,規定當「A」輸入網路時,應該輸出「1」,而當輸入為「B」時,輸出為「0」。 所以網路學習的准則應該是:如果網路作出錯誤的的判決,則通過網路的學習,應使得網路減少下次犯同樣錯誤的可能性。首先,給網路的各連接權值賦予(0,1)區間內的隨機值,將「A」所對應的圖象模式輸入給網路,網路將輸入模式加權求和、與門限比較、再進行非線性運算,得到網路的輸出。在此情況下,網路輸出為「1」和「0」的概率各為50%,也就是說是完全隨機的。這時如果輸出為「1」(結果正確),則使連接權值增大,以便使網路再次遇到「A」模式輸入時,仍然能作出正確的判斷。 如果輸出為「0」(即結果錯誤),則把網路連接權值朝著減小綜合輸入加權值的方向調整,其目的在於使網路下次再遇到「A」模式輸入時,減小犯同樣錯誤的可能性。如此操作調整,當給網路輪番輸入若干個手寫字母「A」、「B」後,經過網路按以上學習方法進行若干次學習後,網路判斷的正確率將大大提高。這說明網路對這兩個模式的學習已經獲得了成功,它已將這兩個模式分布地記憶在網路的各個連接權值上。當網路再次遇到其中任何一個模式時,能夠作出迅速、准確的判斷和識別。一般說來,網路中所含的神經元個數越多,則它能記憶、識別的模式也就越多。 南搞小孩一個小程序: 關於一個神經網路模擬程序的下載 人工神經網路實驗系統(BP網路) V1.0 Beta 作者:沈琦 http://emuch.net/html/200506/de24132.html 作者關於此程序的說明: 從輸出結果可以看到,前3條"學習"指令,使"輸出"神經元收斂到了值 0.515974。而後3條"學習"指令,其收斂到了值0.520051。再看看處理4和11的指令結果 P *Out1: 0.520051看到了嗎? "大腦"識別出了4和11是屬於第二類的!怎麼樣?很神奇吧?再打show指令看看吧!"神經網路"已經形成了!你可以自己任意的設"模式"讓這個"大腦"學習分辯哦!只要樣本數據量充分(可含有誤差的樣本),如果能夠在out數據上收斂地話,那它就能分辨地很准哦!有時不是絕對精確,因為它具有"模糊處理"的特性.看Process輸出的值接近哪個Learning的值就是"大腦"作出的"模糊性"判別! 南搞小孩神經網路研究社區: 人工神經網路論壇 http://www.youngfan.com/forum/index.php http://www.youngfan.com/nn/index.html(舊版,楓舞推薦) 國際神經網路學會(INNS)(英文) http://www.inns.org/ 歐洲神經網路學會(ENNS)(英文) http://www.snn.kun.nl/enns/ 亞太神經網路學會(APNNA)(英文) http://www.cse.cuhk.e.hk/~apnna 日本神經網路學會(JNNS)(日文) http://www.jnns.org 國際電氣工程師協會神經網路分會 http://www.ieee-nns.org/ 研學論壇神經網路 http://bbs.matwav.com/post/page?bid=8&sty=1&age=0 人工智慧研究者俱樂部 http://www.souwu.com/ 2nsoft人工神經網路中文站 http://211.156.161.210:8888/2nsoft/index.jsp =南搞小孩推薦部分書籍: 人工神經網路技術入門講稿(PDF) http://www.youngfan.com/nn/ann.pdf 神經網路FAQ(英文) http://www.youngfan.com/nn/FAQ/FAQ.html 數字神經網路系統(電子圖書) http://www.youngfan.com/nn/nnbook/director.htm 神經網路導論(英文) http://www.shef.ac.uk/psychology/gurney/notes/contents.html =南搞小孩還找到一份很有參考價值的講座 <前向網路的敏感性研究> http://www.youngfan.com/nn/mgx.ppt 是Powerpoint文件,比較大,如果網速不夠最好用滑鼠右鍵下載另存. 南搞小孩添言:很久之前,楓舞夢想智能機器人從自己手中誕生,SO在學專業的時候也有往這方面發展...考研的時候亦是朝著人工智慧的方向發展..但是很不幸的是楓舞考研失敗...SO 只好放棄這個美好的願望,為生活奔波.希望你能夠成為一個好的智能計算機工程師..楓舞已經努力的在給你提供條件資源哦~~

Ⅵ 有人可以介紹一下什麼是"神經網路"嗎

由於神經網路是多學科交叉的產物,各個相關的學科領域對神經網路
都有各自的看法,因此,關於神經網路的定義,在科學界存在許多不同的
見解。目前使用得最廣泛的是T.Koholen的定義,即"神經網路是由具有適
應性的簡單單元組成的廣泛並行互連的網路,它的組織能夠模擬生物神經
系統對真實世界物體所作出的交互反應。"

如果我們將人腦神經信息活動的特點與現行馮·諾依曼計算機的工作方
式進行比較,就可以看出人腦具有以下鮮明特徵:

1. 巨量並行性。
在馮·諾依曼機中,信息處理的方式是集中、串列的,即所有的程序指
令都必須調到CPU中後再一條一條地執行。而人在識別一幅圖像或作出一項
決策時,存在於腦中的多方面的知識和經驗會同時並發作用以迅速作出解答。
據研究,人腦中約有多達10^(10)~10^(11)數量級的神經元,每一個神經元
具有103數量級的連接,這就提供了巨大的存儲容量,在需要時能以很高的
反應速度作出判斷。

2. 信息處理和存儲單元結合在一起。
在馮·諾依曼機中,存儲內容和存儲地址是分開的,必須先找出存儲器的
地址,然後才能查出所存儲的內容。一旦存儲器發生了硬體故障,存儲器中
存儲的所有信息就都將受到毀壞。而人腦神經元既有信息處理能力又有存儲
功能,所以它在進行回憶時不僅不用先找存儲地址再調出所存內容,而且可
以由一部分內容恢復全部內容。當發生"硬體"故障(例如頭部受傷)時,並
不是所有存儲的信息都失效,而是僅有被損壞得最嚴重的那部分信息丟失。

3. 自組織自學習功能。
馮·諾依曼機沒有主動學習能力和自適應能力,它只能不折不扣地按照
人們已經編制好的程序步驟來進行相應的數值計算或邏輯計算。而人腦能夠
通過內部自組織、自學習的能力,不斷地適應外界環境,從而可以有效地處
理各種模擬的、模糊的或隨機的問題。

神經網路研究的主要發展過程大致可分為四個階段:

1. 第一階段是在五十年代中期之前。

西班牙解剖學家Cajal於十九世紀末創立了神經元學說,該學說認為神經
元的形狀呈兩極,其細胞體和樹突從其他神經元接受沖動,而軸索則將信號
向遠離細胞體的方向傳遞。在他之後發明的各種染色技術和微電極技術不斷
提供了有關神經元的主要特徵及其電學性質。

1943年,美國的心理學家W.S.McCulloch和數學家W.A.Pitts在論文《神經
活動中所蘊含思想的邏輯活動》中,提出了一個非常簡單的神經元模型,即
M-P模型。該模型將神經元當作一個功能邏輯器件來對待,從而開創了神經
網路模型的理論研究。

1949年,心理學家D.O. Hebb寫了一本題為《行為的組織》的書,在這本
書中他提出了神經元之間連接強度變化的規則,即後來所謂的Hebb學習法則。
Hebb寫道:"當神經細胞A的軸突足夠靠近細胞B並能使之興奮時,如果A重
復或持續地激發B,那麼這兩個細胞或其中一個細胞上必然有某種生長或代
謝過程上的變化,這種變化使A激活B的效率有所增加。"簡單地說,就是
如果兩個神經元都處於興奮狀態,那麼它們之間的突觸連接強度將會得到增
強。

五十年代初,生理學家Hodykin和數學家Huxley在研究神經細胞膜等效電
路時,將膜上離子的遷移變化分別等效為可變的Na+電阻和K+電阻,從而建
立了著名的Hodykin-Huxley方程。

這些先驅者的工作激發了許多學者從事這一領域的研究,從而為神經計
算的出現打下了基礎。

2. 第二階段從五十年代中期到六十年代末。

1958年,F.Rosenblatt等人研製出了歷史上第一個具有學習型神經網路
特點的模式識別裝置,即代號為Mark I的感知機(Perceptron),這一重
大事件是神經網路研究進入第二階段的標志。對於最簡單的沒有中間層的
感知機,Rosenblatt證明了一種學習演算法的收斂性,這種學習演算法通過迭代
地改變連接權來使網路執行預期的計算。

稍後於Rosenblatt,B.Widrow等人創造出了一種不同類型的會學習的神經
網路處理單元,即自適應線性元件Adaline,並且還為Adaline找出了一種有
力的學習規則,這個規則至今仍被廣泛應用。Widrow還建立了第一家神經計
算機硬體公司,並在六十年代中期實際生產商用神經計算機和神經計算機軟
件。

除Rosenblatt和Widrow外,在這個階段還有許多人在神經計算的結構和
實現思想方面作出了很大的貢獻。例如,K.Steinbuch研究了稱為學習矩陣
的一種二進制聯想網路結構及其硬體實現。N.Nilsson於1965年出版的
《機器學習》一書對這一時期的活動作了總結。

3. 第三階段從六十年代末到八十年代初。

第三階段開始的標志是1969年M.Minsky和S.Papert所著的《感知機》一書
的出版。該書對單層神經網路進行了深入分析,並且從數學上證明了這種網
絡功能有限,甚至不能解決象"異或"這樣的簡單邏輯運算問題。同時,他們
還發現有許多模式是不能用單層網路訓練的,而多層網路是否可行還很值得
懷疑。

由於M.Minsky在人工智慧領域中的巨大威望,他在論著中作出的悲觀結論
給當時神經網路沿感知機方向的研究潑了一盆冷水。在《感知機》一書出版
後,美國聯邦基金有15年之久沒有資助神經網路方面的研究工作,前蘇聯也
取消了幾項有前途的研究計劃。

但是,即使在這個低潮期里,仍有一些研究者繼續從事神經網路的研究工
作,如美國波士頓大學的S.Grossberg、芬蘭赫爾辛基技術大學的T.Kohonen
以及日本東京大學的甘利俊一等人。他們堅持不懈的工作為神經網路研究的
復興開辟了道路。

4. 第四階段從八十年代初至今。

1982年,美國加州理工學院的生物物理學家J.J.Hopfield採用全互連型
神經網路模型,利用所定義的計算能量函數,成功地求解了計算復雜度為
NP完全型的旅行商問題(Travelling Salesman Problem,簡稱TSP)。這
項突破性進展標志著神經網路方面的研究進入了第四階段,也是蓬勃發展
的階段。

Hopfield模型提出後,許多研究者力圖擴展該模型,使之更接近人腦的
功能特性。1983年,T.Sejnowski和G.Hinton提出了"隱單元"的概念,並且
研製出了Boltzmann機。日本的福島邦房在Rosenblatt的感知機的基礎上,
增加隱層單元,構造出了可以實現聯想學習的"認知機"。Kohonen應用3000
個閾器件構造神經網路實現了二維網路的聯想式學習功能。1986年,
D.Rumelhart和J.McClelland出版了具有轟動性的著作《並行分布處理-認知
微結構的探索》,該書的問世宣告神經網路的研究進入了高潮。

1987年,首屆國際神經網路大會在聖地亞哥召開,國際神經網路聯合會
(INNS)成立。隨後INNS創辦了刊物《Journal Neural Networks》,其他
專業雜志如《Neural Computation》,《IEEE Transactions on Neural
Networks》,《International Journal of Neural Systems》等也紛紛
問世。世界上許多著名大學相繼宣布成立神經計算研究所並制訂有關教育
計劃,許多國家也陸續成立了神經網路學會,並召開了多種地區性、國際性
會議,優秀論著、重大成果不斷涌現。

今天,在經過多年的准備與探索之後,神經網路的研究工作已進入了決
定性的階段。日本、美國及西歐各國均制訂了有關的研究規劃。

日本制訂了一個"人類前沿科學計劃"。這項計劃為期15-20年,僅
初期投資就超過了1萬億日元。在該計劃中,神經網路和腦功能的研究佔有
重要地位,因為所謂"人類前沿科學"首先指的就是有關人類大腦以及通過
借鑒人腦而研製新一代計算機的科學領域。

在美國,神經網路的研究得到了軍方的強有力的支持。美國國防部投資
4億美元,由國防部高級研究計劃局(DAPRA)制訂了一個8年研究計劃,
並成立了相應的組織和指導委員會。同時,海軍研究辦公室(ONR)、空軍
科研辦公室(AFOSR)等也紛紛投入巨額資金進行神經網路的研究。DARPA認
為神經網路"看來是解決機器智能的唯一希望",並認為"這是一項比原子彈
工程更重要的技術"。美國國家科學基金會(NSF)、國家航空航天局(NASA)
等政府機構對神經網路的發展也都非常重視,它們以不同的形式支持了眾多
的研究課題。

歐共體也制訂了相應的研究計劃。在其ESPRIT計劃中,就有一個項目是
"神經網路在歐洲工業中的應用",除了英、德兩國的原子能機構外,還有多
個歐洲大公司卷進這個研究項目,如英國航天航空公司、德國西門子公司等。
此外,西歐一些國家還有自己的研究計劃,如德國從1988年就開始進行一個
叫作"神經資訊理論"的研究計劃。

我國從1986年開始,先後召開了多次非正式的神經網路研討會。1990年
12月,由中國計算機學會、電子學會、人工智慧學會、自動化學會、通信學
會、物理學會、生物物理學會和心理學會等八個學會聯合在北京召開了"中
國神經網路首屆學術會議",從而開創了我國神經網路研究的新紀元。

Ⅶ 神經網路具體是什麼

神經網路由大量的神經元相互連接而成。每個神經元接受線性組合的輸入後,最開始只是簡單的線性加權,後來給每個神經元加上了非線性的激活函數,從而進行非線性變換後輸出。每兩個神經元之間的連接代表加權值,稱之為權重(weight)。不同的權重和激活函數,則會導致神經網路不同的輸出。 舉個手寫識別的例子,給定一個未知數字,讓神經網路識別是什麼數字。此時的神經網路的輸入由一組被輸入圖像的像素所激活的輸入神經元所定義。在通過非線性激活函數進行非線性變換後,神經元被激活然後被傳遞到其他神經元。重復這一過程,直到最後一個輸出神經元被激活。從而識別當前數字是什麼字。 神經網路的每個神經元如下

基本wx + b的形式,其中 x1、x2表示輸入向量 w1、w2為權重,幾個輸入則意味著有幾個權重,即每個輸入都被賦予一個權重 b為偏置bias g(z) 為激活函數 a 為輸出 如果只是上面這樣一說,估計以前沒接觸過的十有八九又必定迷糊了。事實上,上述簡單模型可以追溯到20世紀50/60年代的感知器,可以把感知器理解為一個根據不同因素、以及各個因素的重要性程度而做決策的模型。 舉個例子,這周末北京有一草莓音樂節,那去不去呢?決定你是否去有二個因素,這二個因素可以對應二個輸入,分別用x1、x2表示。此外,這二個因素對做決策的影響程度不一樣,各自的影響程度用權重w1、w2表示。一般來說,音樂節的演唱嘉賓會非常影響你去不去,唱得好的前提下 即便沒人陪同都可忍受,但如果唱得不好還不如你上台唱呢。所以,我們可以如下表示: x1:是否有喜歡的演唱嘉賓。x1 = 1 你喜歡這些嘉賓,x1 = 0 你不喜歡這些嘉賓。嘉賓因素的權重w1 = 7 x2:是否有人陪你同去。x2 = 1 有人陪你同去,x2 = 0 沒人陪你同去。是否有人陪同的權重w2 = 3。 這樣,咱們的決策模型便建立起來了:g(z) = g(w1x1 + w2x2 + b ),g表示激活函數,這里的b可以理解成 為更好達到目標而做調整的偏置項。 一開始為了簡單,人們把激活函數定義成一個線性函數,即對於結果做一個線性變化,比如一個簡單的線性激活函數是g(z) = z,輸出都是輸入的線性變換。後來實際應用中發現,線性激活函數太過局限,於是引入了非線性激活函數。

Ⅷ 人工神經網路的定義,詳細說明

人工神經網路(Artificial Neural Networks, ANN),一種模範動物神經網路行為特徵,進行分布式並行信息處理的演算法數學模型。這種網路依靠系統的復雜程度,通過調整內部大量節點之間相互連接的關系,從而達到處理信息的目的。人工神經網路具有自學習和自適應的能力,可以通過預先提供的一批相互對應的輸入-輸出數據,分析掌握兩者之間潛在的規律,最終根據這些規律,用新的輸入數據來推算輸出結果,這種學習分析的過程被稱為「訓練」。(引自《環球科學》2007年第一期《神經語言:老鼠胡須下的秘密》)

概念

由大量處理單元互聯組成的非線性、自適應信息處理系統。它是在現代神經科學研究成果的基礎上提出的,試圖通過模擬大腦神經網路處理、記憶信息的方式進行信息處理。
人工神經網路具有四個基本特徵:

(1)非線性 非線性關系是自然界的普遍特性。大腦的智慧就是一種非線性現象。人工神經元處於激活或抑制二種不同的狀態,這種行為在數學上表現為一種非線性關系。具有閾值的神經元構成的網路具有更好的性能,可以提高容錯性和存儲容量。

(2)非局限性 一個神經網路通常由多個神經元廣泛連接而成。一個系統的整體行為不僅取決於單個神經元的特徵,而且可能主要由單元之間的相互作用、相互連接所決定。通過單元之間的大量連接模擬大腦的非局限性。聯想記憶是非局限性的典型例子。

(3)非常定性 人工神經網路具有自適應、自組織、自學習能力。神經網路不但處理的信息可以有各種變化,而且在處理信息的同時,非線性動力系統本身也在不斷變化。經常採用迭代過程描寫動力系統的演化過程。

(4)非凸性 一個系統的演化方向,在一定條件下將取決於某個特定的狀態函數。例如能量函數,它的極值相應於系統比較穩定的狀態。非凸性是指這種函數有多個極值,故系統具有多個較穩定的平衡態,這將導致系統演化的多樣性。

人工神經網路中,神經元處理單元可表示不同的對象,例如特徵、字母、概念,或者一些有意義的抽象模式。網路中處理單元的類型分為三類:輸入單元、輸出單元和隱單元。輸入單元接受外部世界的信號與數據;輸出單元實現系統處理結果的輸出;隱單元是處在輸入和輸出單元之間,不能由系統外部觀察的單元。神經元間的連接權值反映了單元間的連接強度,信息的表示和處理體現在網路處理單元的連接關系中。人工神經網路是一種非程序化、適應性、大腦風格的信息處理,其本質是通過網路的變換和動力學行為得到一種並行分布式的信息處理功能,並在不同程度和層次上模仿人腦神經系統的信息處理功能。它是涉及神經科學、思維科學、人工智慧、計算機科學等多個領域的交叉學科。
人工神經網路是並行分布式系統,採用了與傳統人工智慧和信息處理技術完全不同的機理,克服了傳統的基於邏輯符號的人工智慧在處理直覺、非結構化信息方面的缺陷,具有自適應、自組織和實時學習的特點。

歷史沿革

1943年,心理學家W.S.McCulloch和數理邏輯學家W.Pitts建立了神經網路和數學模型,稱為MP模型。他們通過MP模型提出了神經元的形式化數學描述和網路結構方法,證明了單個神經元能執行邏輯功能,從而開創了人工神經網路研究的時代。1949年,心理學家提出了突觸聯系強度可變的設想。60年代,人工神經網路的到了進一步發展,更完善的神經網路模型被提出,其中包括感知器和自適應線性元件等。M.Minsky等仔細分析了以感知器為代表的神經網路系統的功能及局限後,於1969年出版了《Perceptron》一書,指出感知器不能解決高階謂詞問題。他們的論點極大地影響了神經網路的研究,加之當時串列計算機和人工智慧所取得的成就,掩蓋了發展新型計算機和人工智慧新途徑的必要性和迫切性,使人工神經網路的研究處於低潮。在此期間,一些人工神經網路的研究者仍然致力於這一研究,提出了適應諧振理論(ART網)、自組織映射、認知機網路,同時進行了神經網路數學理論的研究。以上研究為神經網路的研究和發展奠定了基礎。1982年,美國加州工學院物理學家J.J.Hopfield提出了Hopfield神經網格模型,引入了「計算能量」概念,給出了網路穩定性判斷。 1984年,他又提出了連續時間Hopfield神經網路模型,為神經計算機的研究做了開拓性的工作,開創了神經網路用於聯想記憶和優化計算的新途徑,有力地推動了神經網路的研究,1985年,又有學者提出了波耳茲曼模型,在學習中採用統計熱力學模擬退火技術,保證整個系統趨於全局穩定點。1986年進行認知微觀結構地研究,提出了並行分布處理的理論。人工神經網路的研究受到了各個發達國家的重視,美國國會通過決議將1990年1月5日開始的十年定為「腦的十年」,國際研究組織號召它的成員國將「腦的十年」變為全球行為。在日本的「真實世界計算(RWC)」項目中,人工智慧的研究成了一個重要的組成部分。

基本內容

人工神經網路模型主要考慮網路連接的拓撲結構、神經元的特徵、學習規則等。目前,已有近40種神經網路模型,其中有反傳網路、感知器、自組織映射、Hopfield網路、波耳茲曼機、適應諧振理論等。根據連接的拓撲結構,神經網路模型可以分為:

(1)前向網路 網路中各個神經元接受前一級的輸入,並輸出到下一級,網路中沒有反饋,可以用一個有向無環路圖表示。這種網路實現信號從輸入空間到輸出空間的變換,它的信息處理能力來自於簡單非線性函數的多次復合。網路結構簡單,易於實現。反傳網路是一種典型的前向網路。

(2)反饋網路 網路內神經元間有反饋,可以用一個無向的完備圖表示。這種神經網路的信息處理是狀態的變換,可以用動力學系統理論處理。系統的穩定性與聯想記憶功能有密切關系。Hopfield網路、波耳茲曼機均屬於這種類型。

學習是神經網路研究的一個重要內容,它的適應性是通過學習實現的。根據環境的變化,對權值進行調整,改善系統的行為。由Hebb提出的Hebb學習規則為神經網路的學習演算法奠定了基礎。Hebb規則認為學習過程最終發生在神經元之間的突觸部位,突觸的聯系強度隨著突觸前後神經元的活動而變化。在此基礎上,人們提出了各種學習規則和演算法,以適應不同網路模型的需要。有效的學習演算法,使得神經網路能夠通過連接權值的調整,構造客觀世界的內在表示,形成具有特色的信息處理方法,信息存儲和處理體現在網路的連接中。
根據學習環境不同,神經網路的學習方式可分為監督學習和非監督學習。在監督學習中,將訓練樣本的數據加到網路輸入端,同時將相應的期望輸出與網路輸出相比較,得到誤差信號,以此控制權值連接強度的調整,經多次訓練後收斂到一個確定的權值。當樣本情況發生變化時,經學習可以修改權值以適應新的環境。使用監督學習的神經網路模型有反傳網路、感知器等。非監督學習時,事先不給定標准樣本,直接將網路置於環境之中,學習階段與工作階段成為一體。此時,學習規律的變化服從連接權值的演變方程。非監督學習最簡單的例子是Hebb學習規則。競爭學習規則是一個更復雜的非監督學習的例子,它是根據已建立的聚類進行權值調整。自組織映射、適應諧振理論網路等都是與競爭學習有關的典型模型。
研究神經網路的非線性動力學性質,主要採用動力學系統理論、非線性規劃理論和統計理論,來分析神經網路的演化過程和吸引子的性質,探索神經網路的協同行為和集體計算功能,了解神經信息處理機制。為了探討神經網路在整體性和模糊性方面處理信息的可能,混沌理論的概念和方法將會發揮作用。混沌是一個相當難以精確定義的數學概念。一般而言,「混沌」是指由確定性方程描述的動力學系統中表現出的非確定性行為,或稱之為確定的隨機性。「確定性」是因為它由內在的原因而不是外來的雜訊或干擾所產生,而「隨機性」是指其不規則的、不能預測的行為,只可能用統計的方法描述。混沌動力學系統的主要特徵是其狀態對初始條件的靈敏依賴性,混沌反映其內在的隨機性。混沌理論是指描述具有混沌行為的非線性動力學系統的基本理論、概念、方法,它把動力學系統的復雜行為理解為其自身與其在同外界進行物質、能量和信息交換過程中內在的有結構的行為,而不是外來的和偶然的行為,混沌狀態是一種定態。混沌動力學系統的定態包括:靜止、平穩量、周期性、准同期性和混沌解。混沌軌線是整體上穩定與局部不穩定相結合的結果,稱之為奇異吸引子。一個奇異吸引子有如下一些特徵:(1)奇異吸引子是一個吸引子,但它既不是不動點,也不是周期解;(2)奇異吸引子是不可分割的,即不能分為兩個以及兩個以上的吸引子;(3)它對初始值十分敏感,不同的初始值會導致極不相同的行為。

發展趨勢

人工神經網路特有的非線性適應性信息處理能力,克服了傳統人工智慧方法對於直覺,如模式、語音識別、非結構化信息處理方面的缺陷,使之在神經專家系統、模式識別、智能控制、組合優化、預測等領域得到成功應用。人工神經網路與其它傳統方法相結合,將推動人工智慧和信息處理技術不斷發展。近年來,人工神經網路正向模擬人類認知的道路上更加深入發展,與模糊系統、遺傳演算法、進化機制等結合,形成計算智能,成為人工智慧的一個重要方向,將在實際應用中得到發展。將信息幾何應用於人工神經網路的研究,為人工神經網路的理論研究開辟了新的途徑。神經計算機的研究發展很快,已有產品進入市場。光電結合的神經計算機為人工神經網路的發展提供了良好條件。

Ⅸ 神經網路分類問題

神經網路是新技術領域中的一個時尚詞彙。很多人聽過這個詞,但很少人真正明白它是什麼。本文的目的是介紹所有關於神經網路的基本包括它的功能、一般結構、相關術語、類型及其應用。

「神經網路」這個詞實際是來自於生物學,而我們所指的神經網路正確的名稱應該是「人工神經網路(ANNs)」。在本文,我會同時使用這兩個互換的術語。

一個真正的神經網路是由數個至數十億個被稱為神經元的細胞(組成我們大腦的微小細胞)所組成,它們以不同方式連接而型成網路。人工神經網路就是嘗試模擬這種生物學上的體系結構及其操作。在這里有一個難題:我們對生物學上的神經網路知道的不多!因此,不同類型之間的神經網路體系結構有很大的不同,我們所知道的只是神經元基本的結構。

The neuron
--------------------------------------------------------------------------------

雖然已經確認在我們的大腦中有大約50至500種不同的神經元,但它們大部份都是基於基本神經元的特別細胞。基本神經元包含有synapses、soma、axon及dendrites。Synapses負責神經元之間的連接,它們不是直接物理上連接的,而是它們之間有一個很小的空隙允許電子訊號從一個神經元跳到另一個神經元。然後這些電子訊號會交給soma處理及以其內部電子訊號將處理結果傳遞給axon。而axon會將這些訊號分發給dendrites。最後,dendrites帶著這些訊號再交給其它的synapses,再繼續下一個循環。

如同生物學上的基本神經元,人工的神經網路也有基本的神經元。每個神經元有特定數量的輸入,也會為每個神經元設定權重(weight)。權重是對所輸入的資料的重要性的一個指標。然後,神經元會計算出權重合計值(net value),而權重合計值就是將所有輸入乘以它們的權重的合計。每個神經元都有它們各自的臨界值(threshold),而當權重合計值大於臨界值時,神經元會輸出1。相反,則輸出0。最後,輸出會被傳送給與該神經元連接的其它神經元繼續剩餘的計算。

Learning
--------------------------------------------------------------------------------

正如上述所寫,問題的核心是權重及臨界值是該如何設定的呢?世界上有很多不同的訓練方式,就如網路類型一樣多。但有些比較出名的包括back-propagation, delta rule及Kohonen訓練模式。

由於結構體系的不同,訓練的規則也不相同,但大部份的規則可以被分為二大類別 - 監管的及非監管的。監管方式的訓練規則需要「教師」告訴他們特定的輸入應該作出怎樣的輸出。然後訓練規則會調整所有需要的權重值(這是網路中是非常復雜的),而整個過程會重頭開始直至數據可以被網路正確的分析出來。監管方式的訓練模式包括有back-propagation及delta rule。非監管方式的規則無需教師,因為他們所產生的輸出會被進一步評估。

Architecture
--------------------------------------------------------------------------------

在神經網路中,遵守明確的規則一詞是最「模糊不清」的。因為有太多不同種類的網路,由簡單的布爾網路(Perceptrons),至復雜的自我調整網路(Kohonen),至熱動態性網路模型(Boltzmann machines)!而這些,都遵守一個網路體系結構的標准。

一個網路包括有多個神經元「層」,輸入層、隱蔽層及輸出層。輸入層負責接收輸入及分發到隱蔽層(因為用戶看不見這些層,所以見做隱蔽層)。這些隱蔽層負責所需的計算及輸出結果給輸出層,而用戶則可以看到最終結果。現在,為免混淆,不會在這里更深入的探討體系結構這一話題。對於不同神經網路的更多詳細資料可以看Generation5 essays

盡管我們討論過神經元、訓練及體系結構,但我們還不清楚神經網路實際做些什麼。

The Function of ANNs
--------------------------------------------------------------------------------

神經網路被設計為與圖案一起工作 - 它們可以被分為分類式或聯想式。分類式網路可以接受一組數,然後將其分類。例如ONR程序接受一個數字的影象而輸出這個數字。或者PPDA32程序接受一個坐標而將它分類成A類或B類(類別是由所提供的訓練決定的)。更多實際用途可以看Applications in the Military中的軍事雷達,該雷達可以分別出車輛或樹。

聯想模式接受一組數而輸出另一組。例如HIR程序接受一個『臟』圖像而輸出一個它所學過而最接近的一個圖像。聯想模式更可應用於復雜的應用程序,如簽名、面部、指紋識別等。

The Ups and Downs of Neural Networks
--------------------------------------------------------------------------------

神經網路在這個領域中有很多優點,使得它越來越流行。它在類型分類/識別方面非常出色。神經網路可以處理例外及不正常的輸入數據,這對於很多系統都很重要(例如雷達及聲波定位系統)。很多神經網路都是模仿生物神經網路的,即是他們仿照大腦的運作方式工作。神經網路也得助於神經系統科學的發展,使它可以像人類一樣准確地辨別物件而有電腦的速度!前途是光明的,但現在...

是的,神經網路也有些不好的地方。這通常都是因為缺乏足夠強大的硬體。神經網路的力量源自於以並行方式處理資訊,即是同時處理多項數據。因此,要一個串列的機器模擬並行處理是非常耗時的。

神經網路的另一個問題是對某一個問題構建網路所定義的條件不足 - 有太多因素需要考慮:訓練的演算法、體系結構、每層的神經元個數、有多少層、數據的表現等,還有其它更多因素。因此,隨著時間越來越重要,大部份公司不可能負擔重復的開發神經網路去有效地解決問題。

Conclusion
--------------------------------------------------------------------------------

希望您可以通過本文對神經網路有基本的認識。Generation5現在有很多關於神經網路的資料可以查閱,包括文章及程序。我們有Hopfield、perceptrons(2個)網路的例子,及一些back-propagation個案研究。

Glossary
--------------------------------------------------------------------------------
NN 神經網路,Neural Network
ANNs 人工神經網路,Artificial Neural Networks
neurons 神經元
synapses 神經鍵
self-organizing networks 自我調整網路
networks modelling thermodynamic properties 熱動態性網路模型

閱讀全文

與連接身心的神經網路被稱為相關的資料

熱點內容
網路共享中心沒有網卡 瀏覽:547
電腦無法檢測到網路代理 瀏覽:1403
筆記本電腦一天會用多少流量 瀏覽:693
蘋果電腦整機轉移新機 瀏覽:1398
突然無法連接工作網路 瀏覽:1155
聯通網路怎麼設置才好 瀏覽:1257
小區網路電腦怎麼連接路由器 瀏覽:1135
p1108列印機網路共享 瀏覽:1235
怎麼調節台式電腦護眼 瀏覽:788
深圳天虹蘋果電腦 瀏覽:1023
網路總是異常斷開 瀏覽:639
中級配置台式電腦 瀏覽:1089
中國網路安全的戰士 瀏覽:656
同志網站在哪裡 瀏覽:1448
版觀看完整完結免費手機在線 瀏覽:1481
怎樣切換默認數據網路設置 瀏覽:1141
肯德基無線網無法訪問網路 瀏覽:1327
光纖貓怎麼連接不上網路 瀏覽:1567
神武3手游網路連接 瀏覽:991
局網列印機網路共享 瀏覽:1020