A. 有哪些深度神經網路模型
卷積神經元(Convolutional cells)和前饋神經元非常相似,除了它們只跟前一神經細胞層的部分神經元有連接。因為它們不是和某些神經元隨機連接的,而是與特定范圍內的神經元相連接,通常用來保存空間信息。這讓它們對於那些擁有大量局部信息,比如圖像數據、語音數據(但多數情況下是圖像數據),會非常實用。
解卷積神經元恰好相反:它們是通過跟下一神經細胞層的連接來解碼空間信息。這兩種神經元都有很多副本,它們都是獨立訓練的;每個副本都有自己的權重,但連接方式卻完全相同。可以認為,這些副本是被放在了具備相同結構的不同的神經網路中。這兩種神經元本質上都是一般意義上的神經元,但是,它們的使用方式卻不同。
池化神經元和插值神經元(Pooling and interpolating cells)經常和卷積神經元結合起來使用。它們不是真正意義上的神經元,只能進行一些簡單的操作。
池化神經元接受到來自其它神經元的輸出過後,決定哪些值可以通過,哪些值不能通過。在圖像領域,可以理解成是把一個圖像縮小了(在查看圖片的時候,一般軟體都有一個放大、縮小的功能;這里的圖像縮小,就相當於軟體上的縮小圖像;也就是說我們能看到圖像的內容更加少了;在這個池化的過程當中,圖像的大小也會相應地減少)。這樣,你就再也不能看到所有的像素了,池化函數會知道什麼像素該保留,什麼像素該舍棄。
插值神經元恰好是相反的操作:它們獲取一些信息,然後映射出更多的信息。額外的信息都是按照某種方式製造出來的,這就好像在一張小解析度的圖片上面進行放大。插值神經元不僅僅是池化神經元的反向操作,而且,它們也是很常見,因為它們運行非常快,同時,實現起來也很簡單。池化神經元和插值神經元之間的關系,就像卷積神經元和解卷積神經元之間的關系。
均值神經元和標准方差神經元(Mean and standard deviation cells)(作為概率神經元它們總是成對地出現)是一類用來描述數據概率分布的神經元。均值就是所有值的平均值,而標准方差描述的是這些數據偏離(兩個方向)均值有多遠。比如:一個用於圖像處理的概率神經元可以包含一些信息,比如:在某個特定的像素裡面有多少紅色。舉個例來說,均值可能是0.5,同時標准方差是0.2。當要從這些概率神經元取樣的時候,你可以把這些值輸入到一個高斯隨機數生成器,這樣就會生成一些分布在0.4和0.6之間的值;值離0.5越遠,對應生成的概率也就越小。它們一般和前一神經元層或者下一神經元層是全連接,而且,它們沒有偏差(bias)。
循環神經元(Recurrent cells )不僅僅在神經細胞層之間有連接,而且在時間軸上也有相應的連接。每一個神經元內部都會保存它先前的值。它們跟一般的神經元一樣更新,但是,具有額外的權重:與當前神經元之前值之間的權重,還有大多數情況下,與同一神經細胞層各個神經元之間的權重。當前值和存儲的先前值之間權重的工作機制,與非永久性存儲器(比如RAM)的工作機制很相似,繼承了兩個性質:
第一,維持一個特定的狀態;
第二:如果不對其持續進行更新(輸入),這個狀態就會消失。
由於先前的值是通過激活函數得到的,而在每一次的更新時,都會把這個值和其它權重一起輸入到激活函數,因此,信息會不斷地流失。實際上,信息的保存率非常的低,以至於僅僅四次或者五次迭代更新過後,幾乎之前所有的信息都會流失掉。
B. 神經網路簡述
機器學習中談論的神經網路是指「神經網路學習」,或者說,是機器學習和神經網路這兩個學科領域的交叉部分[1]。
在這里,神經網路更多的是指計算機科學家模擬人類大腦結構和智能行為,發明的一類演算法的統稱。
神經網路是眾多優秀仿生演算法中的一種,讀書時曾接觸過蟻群優化演算法,曾驚訝於其強大之處,但神經網路的強大,顯然蟻群優化還不能望其項背。
A、起源與第一次高潮。有人認為,神經網路的最早討論,源於現代計算機科學的先驅——阿蘭.圖靈在1948年的論文中描述的「B型組織機器」[2]。二十世紀50年代出現了以感知機、Adaling為代表的一系列成功,這是神經網路發展的第一個高潮[1]。
B、第一次低谷。1969年,馬文.明斯基出版《感知機》一書,書中論斷直接將神經網路打入冷宮,導致神經網路十多年的「冰河期」。值得一提的是,在這期間的1974年,哈佛大學Paul Webos發明BP演算法,但當時未受到應有的重視[1]。
C、第二次高潮。1983年,加州理工學院的物理學家John Hopfield利用神經網路,在旅行商問題上獲得當時最好結果,引起轟動;Rumelhart等人重新發明了BP演算法,BP演算法迅速走紅,掀起神經網路第二次高潮[1]。
D、第二次低谷。二十世紀90年代中期,統計學習理論和支持向量機興起,較之於這些演算法,神經網路的理論基礎不清晰等缺點更加凸顯,神經網路研究進入第二次低谷[1]。
E、深度學習的崛起。2010年前後,隨著計算能力的提升和大數據的涌現,以神經網路為基礎的「深度學習」崛起,科技巨頭公司谷歌、Facebook、網路投入巨資研發,神經網路迎來第三次高潮[1]。2016年3月9日至15日,Google人工智慧程序AlphaGo對陣韓國圍棋世界冠軍李世乭,以4:1大比分獲勝,比眾多專家預言早了十年。這次比賽,迅速在全世界經濟、科研、計算機產業各領域掀起人工智慧和深度學習的熱烈討論。
F、展望。從幾個方面討論一下。
1)、近期在Google AlphaGo掀起的熱潮中,民眾的熱情與期待最大,甚至有少許恐慌情緒;計算機產業和互聯網產業熱情也非常巨大,對未來充滿期待,各大巨頭公司對其投入大量資源;學術界的反應倒是比較冷靜的。學術界的冷靜,是因為神經網路和深度神經網路的理論基礎還沒有出現長足的進步,其缺點還沒有根本改善。這也從另一個角度說明了深度神經網路理論進步的空間很大。
2)、"當代神經網路是基於我們上世紀六十年代掌握的腦知識。"關於人類大腦的科學與知識正在爆炸式增長。[3]世界上很多學術團隊正在基於大腦機制新的認知建立新的模型[3]。我個人對此報樂觀態度,從以往的仿生演算法來看,經過億萬年進化的自然界對科技發展的促進從來沒有停止過。
3)、還說AlphaGo,它並不是理論和演算法的突破,而是基於已有演算法的工程精品。AlhphaGo的工作,為深度學習的應用提供了非常廣闊的想像空間。分布式技術提供了巨大而廉價的計算能力,巨量數據的積累提供了豐富的訓練樣本,深度學習開始騰飛,這才剛剛開始。
一直沿用至今的,是McChlloch和Pitts在1943年依據腦神經信號傳輸結構抽象出的簡單模型,所以也被稱作」M-P神經元模型「。
其中,
f函數像一般形如下圖的函數,既考慮階躍性,又考慮光滑可導性。
實際常用如下公式,因形如S,故被稱作sigmoid函數。
把很多個這樣的神經元按一定層次連接起來,就得到了神經網路。
兩層神經元組成,輸入層接收外界輸入信號,輸出層是M-P神經元(只有輸出層是)。
感知機的數學模型和單個M-P神經元的數學模型是一樣的,如因為輸入層只需接收輸入信號,不是M-P神經元。
感知機只有輸出層神經元是B-P神經元,學習能力非常有限。對於現行可分問題,可以證明學習過程一定會收斂。而對於非線性問題,感知機是無能為力的。
BP神經網路全稱叫作誤差逆傳播(Error Propagation)神經網路,一般是指基於誤差逆傳播演算法的多層前饋神經網路。這里為了不佔篇幅,BP神經網路將起篇另述。
BP演算法是迄今最為成功的神經網路學習演算法,也是最有代表性的神經網路學習演算法。BP演算法不僅用於多層前饋神經網路,還用於其他類型神經網路的訓練。
RBF網路全程徑向基函數(Radial Basis Function)網路,是一種單隱層前饋神經網路,其與BP網路最大的不同是採用徑向基函數作為隱層神經元激活函數。
卷積神經網路(Convolutional neural networks,簡稱CNNs)是一種深度學習的前饋神經網路,在大型圖片處理中取得巨大成功。卷積神經網路將起篇另述。
循環神經網路(Recurrent Neural Networks,RNNs)與傳統的FNNs不同,RNNs引入定向循環,能夠處理那些輸入之間前後關聯的問題。RNNs已經在眾多自然語言處理(Natural Language Processing, NLP)中取得了巨大成功以及廣泛應用[5]。RNNs將起篇另述。[5]
[1]、《機器學習》,周志華著
[2]、《模式識別(第二版)》,Richard O.Duda等著,李宏東等譯
[3]、《揭秘IARPA項目:解碼大腦演算法或將徹底改變機器學習》,Emily Singerz著,機器之心編譯出品
[4]、圖片來源於互聯網
[5]、 循環神經網路(RNN, Recurrent Neural Networks)介紹
C. 一文讀懂神經網路
要說近幾年最引人注目的技術,無疑的,非人工智慧莫屬。無論你是否身處科技互聯網行業,隨處可見人工智慧的身影:從 AlphaGo 擊敗世界圍棋冠軍,到無人駕駛概念的興起,再到科技巨頭 All in AI,以及各大高校向社會輸送海量的人工智慧專業的畢業生。以至於人們開始萌生一個想法:新的革命就要來了,我們的世界將再次發生一次巨變;而後開始焦慮:我的工作是否會被機器取代?我該如何才能抓住這次革命?
人工智慧背後的核心技術是深度神經網路(Deep Neural Network),大概是一年前這個時候,我正在回老家的高鐵上學習 3Blue1Brown 的 Neural Network 系列視頻課程,短短 4 集 60 多分鍾的時間,就把神經網路從 High Level 到推導細節說得清清楚楚,當時的我除了獲得新知的興奮之外,還有一點新的認知,算是給頭腦中的革命性的技術潑了盆冷水:神經網路可以解決一些復雜的、以前很難通過寫程序來完成的任務——例如圖像、語音識別等,但它的實現機制告訴我,神經網路依然沒有達到生物級別的智能,短期內期待它來取代人也是不可能的。
一年後的今天,依然在這個春運的時間點,將我對神經網路的理解寫下來,算是對這部分知識的一個學習筆記,運氣好的話,還可以讓不了解神經網路的同學了解起來。
維基網路這樣解釋 神經網路 :
這個定義比較寬泛,你甚至還可以用它來定義其它的機器學習演算法,例如之前我們一起學習的邏輯回歸和 GBDT 決策樹。下面我們具體一點,下圖是一個邏輯回歸的示意圖:
其中 x1 和 x2 表示輸入,w1 和 w2 是模型的參數,z 是一個線性函數:
接著我們對 z 做一個 sigmod 變換(圖中藍色圓),得到輸出 y:
其實,上面的邏輯回歸就可以看成是一個只有 1 層 輸入層 , 1 層 輸出層 的神經網路,圖中容納數字的圈兒被稱作 神經元 ;其中,層與層之間的連接 w1、w2 以及 b,是這個 神經網路的參數 ,層之間如果每個神經元之間都保持著連接,這樣的層被稱為 全連接層 (Full Connection Layer),或 稠密層 (Dense Layer);此外,sigmoid 函數又被稱作 激活函數 (Activation Function),除了 sigmoid 外,常用的激活函數還有 ReLU、tanh 函數等,這些函數都起到將線性函數進行非線性變換的作用。我們還剩下一個重要的概念: 隱藏層 ,它需要把 2 個以上的邏輯回歸疊加起來加以說明:
如上圖所示,除輸入層和輸出層以外,其他的層都叫做 隱藏層 。如果我們多疊加幾層,這個神經網路又可以被稱作 深度神經網路 (Deep Neural Network),有同學可能會問多少層才算「深」呢?這個沒有絕對的定論,個人認為 3 層以上就算吧:)
以上,便是神經網路,以及神經網路中包含的概念,可見,神經網路並不特別,廣義上講,它就是
可見,神經網路和人腦神經也沒有任何關聯,如果我們說起它的另一個名字—— 多層感知機(Mutilayer Perceptron) ,就更不會覺得有多麼玄乎了,多層感知機創造於 80 年代,可為什麼直到 30 年後的今天才爆發呢?你想得沒錯,因為改了個名字……開個玩笑;實際上深度學習這項技術也經歷過很長一段時間的黑暗低谷期,直到人們開始利用 GPU 來極大的提升訓練模型的速度,以及幾個標志性的事件:如 AlphaGo戰勝李世石、Google 開源 TensorFlow 框架等等,感興趣的同學可以翻一下這里的歷史。
就拿上圖中的 3 個邏輯回歸組成的神經網路作為例子,它和普通的邏輯回歸比起來,有什麼優勢呢?我們先來看下單邏輯回歸有什麼劣勢,對於某些情況來說,邏輯回歸可能永遠無法使其分類,如下面數據:
這 4 個樣本畫在坐標系中如下圖所示
因為邏輯回歸的決策邊界(Decision Boundary)是一條直線,所以上圖中的兩個分類,無論你怎麼做,都無法找到一條直線將它們分開,但如果藉助神經網路,就可以做到這一點。
由 3 個邏輯回歸組成的網路(這里先忽略 bias)如下:
觀察整個網路的計算過程,在進入輸出層之前,該網路所做的計算實際上是:
即把輸入先做了一次線性變換(Linear Transformation),得到 [z1, z2] ,再把 [z1, z2] 做了一個非線性變換(sigmoid),得到 [x1', x2'] ,(線性變換的概念可以參考 這個視頻 )。從這里開始,後面的操作就和一個普通的邏輯回歸沒有任何差別了,所以它們的差異在於: 我們的數據在輸入到模型之前,先做了一層特徵變換處理(Feature Transformation,有時又叫做特徵抽取 Feature Extraction),使之前不可能被分類的數據變得可以分類了 。
我們繼續來看下特徵變換的效果,假設 為 ,帶入上述公式,算出 4 個樣本對應的 [x1', x2'] 如下:
再將變換後的 4 個點繪制在坐標系中:
顯然,在做了特徵變換之後,這兩個分類就可以很容易的被一條決策邊界分開了。
所以, 神經網路的優勢在於,它可以幫助我們自動的完成特徵變換或特徵提取 ,尤其對於聲音、圖像等復雜問題,因為在面對這些問題時,人們很難清晰明確的告訴你,哪些特徵是有用的。
在解決特徵變換的同時,神經網路也引入了新的問題,就是我們需要設計各式各樣的網路結構來針對性的應對不同的場景,例如使用卷積神經網路(CNN)來處理圖像、使用長短期記憶網路(LSTM)來處理序列問題、使用生成式對抗網路(GAN)來寫詩和作圖等,就連去年自然語言處理(NLP)中取得突破性進展的 Transformer/Bert 也是一種特定的網路結構。所以, 學好神經網路,對理解其他更高級的網路結構也是有幫助的 。
上面說了,神經網路可以看作一個非線性函數,該函數的參數是連接神經元的所有的 Weights 和 Biases,該函數可以簡寫為 f(W, B) ,以手寫數字識別的任務作為例子:識別 MNIST 數據集 中的數字,數據集(MNIST 數據集是深度學習中的 HelloWorld)包含上萬張不同的人寫的數字圖片,共有 0-9 十種數字,每張圖片為 28*28=784 個像素,我們設計一個這樣的網路來完成該任務:
把該網路函數所具備的屬性補齊:
接下來的問題是,這個函數是如何產生的?這個問題本質上問的是這些參數的值是怎麼確定的。
在機器學習中,有另一個函數 c 來衡量 f 的好壞,c 的參數是一堆數據集,你輸入給 c 一批 Weights 和 Biases,c 輸出 Bad 或 Good,當結果是 Bad 時,你需要繼續調整 f 的 Weights 和 Biases,再次輸入給 c,如此往復,直到 c 給出 Good 為止,這個 c 就是損失函數 Cost Function(或 Loss Function)。在手寫數字識別的列子中,c 可以描述如下:
可見,要完成手寫數字識別任務,只需要調整這 12730 個參數,讓損失函數輸出一個足夠小的值即可,推而廣之,絕大部分神經網路、機器學習的問題,都可以看成是定義損失函數、以及參數調優的問題。
在手寫識別任務中,我們既可以使用交叉熵(Cross Entropy)損失函數,也可以使用 MSE(Mean Squared Error)作為損失函數,接下來,就剩下如何調優參數了。
神經網路的參數調優也沒有使用特別的技術,依然是大家剛接觸機器學習,就學到的梯度下降演算法,梯度下降解決了上面迭代過程中的遺留問題——當損失函數給出 Bad 結果時,如何調整參數,能讓 Loss 減少得最快。
梯度可以理解為:
把 Loss 對應到 H,12730 個參數對應到 (x,y),則 Loss 對所有參數的梯度可以表示為下面向量,該向量的長度為 12730:
$$
abla L(w,b) = left[
frac{partial L}{partial w_1},
frac{partial L}{partial w_2},...,
frac{partial L}{partial b_{26}}
ight] ^ op
$$
所以,每次迭代過程可以概括為
用梯度來調整參數的式子如下(為了簡化,這里省略了 bias):
上式中, 是學習率,意為每次朝下降最快的方向前進一小步,避免優化過頭(Overshoot)。
由於神經網路參數繁多,所以需要更高效的計算梯度的演算法,於是,反向傳播演算法(Backpropagation)呼之欲出。
在學習反向傳播演算法之前,我們先復習一下微積分中的鏈式法則(Chain Rule):設 g = u(h) , h = f(x) 是兩個可導函數,x 的一個很小的變化 △x 會使 h 產生一個很小的變化 △h,從而 g 也產生一個較小的變化 △g,現要求 △g/△x,可以使用鏈式法則:
有了以上基礎,理解反向傳播演算法就簡單了。
假設我們的演示網路只有 2 層,輸入輸出都只有 2 個神經元,如下圖所示:
其中 是輸入, 是輸出, 是樣本的目標值,這里使用的損失函數 L 為 MSE;圖中的上標 (1) 或 (2) 分別表示參數屬於第 (1) 層或第 (2) 層,下標 1 或 2 分別表示該層的第 1 或 第 2 個神經元。
現在我們來計算 和 ,掌握了這 2 個參數的偏導數計算之後,整個梯度的計算就掌握了。
所謂反向傳播演算法,指的是從右向左來計算每個參數的偏導數,先計算 ,根據鏈式法則
對左邊項用鏈式法則展開
又 是輸出值, 可以直接通過 MSE 的導數算出:
而 ,則 就是 sigmoid 函數的導數在 處的值,即
於是 就算出來了:
再來看 這一項,因為
所以
注意:上面式子對於所有的 和 都成立,且結果非常直觀,即 對 的偏導為左邊的輸入 的大小;同時,這里還隱含著另一層意思:需要調整哪個 來影響 ,才能使 Loss 下降得最快,從該式子可以看出,當然是先調整較大的 值所對應的 ,效果才最顯著 。
於是,最後一層參數 的偏導數就算出來了
我們再來算上一層的 ,根據鏈式法則 :
繼續展開左邊這一項
你發現沒有,這幾乎和計算最後一層一摸一樣,但需要注意的是,這里的 對 Loss 造成的影響有多條路徑,於是對於只有 2 個輸出的本例來說:
上式中, 都已經在最後一層算出,下面我們來看下 ,因為
於是
同理
注意:這里也引申出梯度下降的調參直覺:即要使 Loss 下降得最快,優先調整 weight 值比較大的 weight。
至此, 也算出來了
觀察上式, 所謂每個參數的偏導數,通過反向傳播演算法,都可以轉換成線性加權(Weighted Sum)計算 ,歸納如下:
式子中 n 代表分類數,(l) 表示第 l 層,i 表示第 l 層的第 i 個神經元。 既然反向傳播就是一個線性加權,那整個神經網路就可以藉助於 GPU 的矩陣並行計算了 。
最後,當你明白了神經網路的原理,是不是越發的認為,它就是在做一堆的微積分運算,當然,作為能證明一個人是否學過微積分,神經網路還是值得學一下的。Just kidding ..
本文我們通過
這四點,全面的學習了神經網路這個知識點,希望本文能給你帶來幫助。
參考:
D. 神經網路:卷積神經網路(CNN)
神經網路 最早是由心理學家和神經學家提出的,旨在尋求開發和測試神經的計算模擬。
粗略地說, 神經網路 是一組連接的 輸入/輸出單元 ,其中每個連接都與一個 權 相關聯。在學習階段,通過調整權值,使得神經網路的預測准確性逐步提高。由於單元之間的連接,神經網路學習又稱 連接者學習。
神經網路是以模擬人腦神經元的數學模型為基礎而建立的,它由一系列神經元組成,單元之間彼此連接。從信息處理角度看,神經元可以看作是一個多輸入單輸出的信息處理單元,根據神經元的特性和功能,可以把神經元抽象成一個簡單的數學模型。
神經網路有三個要素: 拓撲結構、連接方式、學習規則
神經網路的拓撲結構 :神經網路的單元通常按照層次排列,根據網路的層次數,可以將神經網路分為單層神經網路、兩層神經網路、三層神經網路等。結構簡單的神經網路,在學習時收斂的速度快,但准確度低。
神經網路的層數和每層的單元數由問題的復雜程度而定。問題越復雜,神經網路的層數就越多。例如,兩層神經網路常用來解決線性問題,而多層網路就可以解決多元非線性問題
神經網路的連接 :包括層次之間的連接和每一層內部的連接,連接的強度用權來表示。
根據層次之間的連接方式,分為:
1)前饋式網路:連接是單向的,上層單元的輸出是下層單元的輸入,如反向傳播網路,Kohonen網路
2)反饋式網路:除了單項的連接外,還把最後一層單元的輸出作為第一層單元的輸入,如Hopfield網路
根據連接的范圍,分為:
1)全連接神經網路:每個單元和相鄰層上的所有單元相連
2)局部連接網路:每個單元只和相鄰層上的部分單元相連
神經網路的學習
根據學習方法分:
感知器:有監督的學習方法,訓練樣本的類別是已知的,並在學習的過程中指導模型的訓練
認知器:無監督的學習方法,訓練樣本類別未知,各單元通過競爭學習。
根據學習時間分:
離線網路:學習過程和使用過程是獨立的
在線網路:學習過程和使用過程是同時進行的
根據學習規則分:
相關學習網路:根據連接間的激活水平改變權系數
糾錯學習網路:根據輸出單元的外部反饋改變權系數
自組織學習網路:對輸入進行自適應地學習
摘自《數學之美》對人工神經網路的通俗理解:
神經網路種類很多,常用的有如下四種:
1)Hopfield網路,典型的反饋網路,結構單層,有相同的單元組成
2)反向傳播網路,前饋網路,結構多層,採用最小均方差的糾錯學習規則,常用於語言識別和分類等問題
3)Kohonen網路:典型的自組織網路,由輸入層和輸出層構成,全連接
4)ART網路:自組織網路
深度神經網路:
Convolutional Neural Networks(CNN)卷積神經網路
Recurrent neural Network(RNN)循環神經網路
Deep Belief Networks(DBN)深度信念網路
深度學習是指多層神經網路上運用各種機器學習演算法解決圖像,文本等各種問題的演算法集合。深度學習從大類上可以歸入神經網路,不過在具體實現上有許多變化。
深度學習的核心是特徵學習,旨在通過分層網路獲取分層次的特徵信息,從而解決以往需要人工設計特徵的重要難題。
Machine Learning vs. Deep Learning
神經網路(主要是感知器)經常用於 分類
神經網路的分類知識體現在網路連接上,被隱式地存儲在連接的權值中。
神經網路的學習就是通過迭代演算法,對權值逐步修改的優化過程,學習的目標就是通過改變權值使訓練集的樣本都能被正確分類。
神經網路特別適用於下列情況的分類問題:
1) 數據量比較小,缺少足夠的樣本建立模型
2) 數據的結構難以用傳統的統計方法來描述
3) 分類模型難以表示為傳統的統計模型
缺點:
1) 需要很長的訓練時間,因而對於有足夠長訓練時間的應用更合適。
2) 需要大量的參數,這些通常主要靠經驗確定,如網路拓撲或「結構」。
3) 可解釋性差 。該特點使得神經網路在數據挖掘的初期並不看好。
優點:
1) 分類的准確度高
2)並行分布處理能力強
3)分布存儲及學習能力高
4)對噪音數據有很強的魯棒性和容錯能力
最流行的基於神經網路的分類演算法是80年代提出的 後向傳播演算法 。後向傳播演算法在多路前饋神經網路上學習。
定義網路拓撲
在開始訓練之前,用戶必須說明輸入層的單元數、隱藏層數(如果多於一層)、每一隱藏層的單元數和輸出層的單元數,以確定網路拓撲。
對訓練樣本中每個屬性的值進行規格化將有助於加快學習過程。通常,對輸入值規格化,使得它們落入0.0和1.0之間。
離散值屬性可以重新編碼,使得每個域值一個輸入單元。例如,如果屬性A的定義域為(a0,a1,a2),則可以分配三個輸入單元表示A。即,我們可以用I0 ,I1 ,I2作為輸入單元。每個單元初始化為0。如果A = a0,則I0置為1;如果A = a1,I1置1;如此下去。
一個輸出單元可以用來表示兩個類(值1代表一個類,而值0代表另一個)。如果多於兩個類,則每個類使用一個輸出單元。
隱藏層單元數設多少個「最好」 ,沒有明確的規則。
網路設計是一個實驗過程,並可能影響准確性。權的初值也可能影響准確性。如果某個經過訓練的網路的准確率太低,則通常需要採用不同的網路拓撲或使用不同的初始權值,重復進行訓練。
後向傳播演算法學習過程:
迭代地處理一組訓練樣本,將每個樣本的網路預測與實際的類標號比較。
每次迭代後,修改權值,使得網路預測和實際類之間的均方差最小。
這種修改「後向」進行。即,由輸出層,經由每個隱藏層,到第一個隱藏層(因此稱作後向傳播)。盡管不能保證,一般地,權將最終收斂,學習過程停止。
演算法終止條件:訓練集中被正確分類的樣本達到一定的比例,或者權系數趨近穩定。
後向傳播演算法分為如下幾步:
1) 初始化權
網路的權通常被初始化為很小的隨機數(例如,范圍從-1.0到1.0,或從-0.5到0.5)。
每個單元都設有一個偏置(bias),偏置也被初始化為小隨機數。
2) 向前傳播輸入
對於每一個樣本X,重復下面兩步:
向前傳播輸入,向後傳播誤差
計算各層每個單元的輸入和輸出。輸入層:輸出=輸入=樣本X的屬性;即,對於單元j,Oj = Ij = Xj。隱藏層和輸出層:輸入=前一層的輸出的線性組合,即,對於單元j, Ij =wij Oi + θj,輸出=
3) 向後傳播誤差
計算各層每個單元的誤差。
輸出層單元j,誤差:
Oj是單元j的實際輸出,而Tj是j的真正輸出。
隱藏層單元j,誤差:
wjk是由j到下一層中單元k的連接的權,Errk是單元k的誤差
更新 權 和 偏差 ,以反映傳播的誤差。
權由下式更新:
其中,△wij是權wij的改變。l是學習率,通常取0和1之間的值。
偏置由下式更新:
其中,△θj是偏置θj的改變。
Example
人類視覺原理:
深度學習的許多研究成果,離不開對大腦認知原理的研究,尤其是視覺原理的研究。1981 年的諾貝爾醫學獎,頒發給了 David Hubel(出生於加拿大的美國神經生物學家) 和Torsten Wiesel,以及Roger Sperry。前兩位的主要貢獻,是「發現了視覺系統的信息處理」, 可視皮層是分級的 。
人類的視覺原理如下:從原始信號攝入開始(瞳孔攝入像素Pixels),接著做初步處理(大腦皮層某些細胞發現邊緣和方向),然後抽象(大腦判定,眼前的物體的形狀,是圓形的),然後進一步抽象(大腦進一步判定該物體是只氣球)。
對於不同的物體,人類視覺也是通過這樣逐層分級,來進行認知的:
在最底層特徵基本上是類似的,就是各種邊緣,越往上,越能提取出此類物體的一些特徵(輪子、眼睛、軀乾等),到最上層,不同的高級特徵最終組合成相應的圖像,從而能夠讓人類准確的區分不同的物體。
可以很自然的想到:可以不可以模仿人類大腦的這個特點,構造多層的神經網路,較低層的識別初級的圖像特徵,若干底層特徵組成更上一層特徵,最終通過多個層級的組合,最終在頂層做出分類呢?答案是肯定的,這也是許多深度學習演算法(包括CNN)的靈感來源。
卷積神經網路是一種多層神經網路,擅長處理圖像特別是大圖像的相關機器學習問題。卷積網路通過一系列方法,成功將數據量龐大的圖像識別問題不斷降維,最終使其能夠被訓練。
CNN最早由Yann LeCun提出並應用在手寫字體識別上。LeCun提出的網路稱為LeNet,其網路結構如下:
這是一個最典型的卷積網路,由 卷積層、池化層、全連接層 組成。其中卷積層與池化層配合,組成多個卷積組,逐層提取特徵,最終通過若干個全連接層完成分類。
CNN通過卷積來模擬特徵區分,並且通過卷積的權值共享及池化,來降低網路參數的數量級,最後通過傳統神經網路完成分類等任務。
降低參數量級:如果使用傳統神經網路方式,對一張圖片進行分類,那麼,把圖片的每個像素都連接到隱藏層節點上,對於一張1000x1000像素的圖片,如果有1M隱藏層單元,一共有10^12個參數,這顯然是不能接受的。
但是在CNN里,可以大大減少參數個數,基於以下兩個假設:
1)最底層特徵都是局部性的,也就是說,用10x10這樣大小的過濾器就能表示邊緣等底層特徵
2)圖像上不同小片段,以及不同圖像上的小片段的特徵是類似的,也就是說,能用同樣的一組分類器來描述各種各樣不同的圖像
基於以上兩個假設,就能把第一層網路結構簡化
用100個10x10的小過濾器,就能夠描述整幅圖片上的底層特徵。
卷積運算的定義如下圖所示:
如上圖所示,一個5x5的圖像,用一個3x3的 卷積核 :
101
010
101
來對圖像進行卷積操作(可以理解為有一個滑動窗口,把卷積核與對應的圖像像素做乘積然後求和),得到了3x3的卷積結果。
這個過程可以理解為使用一個過濾器(卷積核)來過濾圖像的各個小區域,從而得到這些小區域的特徵值。在實際訓練過程中, 卷積核的值是在學習過程中學到的。
在具體應用中,往往有多個卷積核,可以認為, 每個卷積核代表了一種圖像模式 ,如果某個圖像塊與此卷積核卷積出的值大,則認為此圖像塊十分接近於此卷積核。如果設計了6個卷積核,可以理解為這個圖像上有6種底層紋理模式,也就是用6種基礎模式就能描繪出一副圖像。以下就是24種不同的卷積核的示例:
池化 的過程如下圖所示:
可以看到,原始圖片是20x20的,對其進行采樣,采樣窗口為10x10,最終將其采樣成為一個2x2大小的特徵圖。
之所以這么做,是因為即使做完了卷積,圖像仍然很大(因為卷積核比較小),所以為了降低數據維度,就進行采樣。
即使減少了許多數據,特徵的統計屬性仍能夠描述圖像,而且由於降低了數據維度,有效地避免了過擬合。
在實際應用中,分為最大值采樣(Max-Pooling)與平均值采樣(Mean-Pooling)。
LeNet網路結構:
注意,上圖中S2與C3的連接方式並不是全連接,而是部分連接。最後,通過全連接層C5、F6得到10個輸出,對應10個數字的概率。
卷積神經網路的訓練過程與傳統神經網路類似,也是參照了反向傳播演算法
第一階段,向前傳播階段:
a)從樣本集中取一個樣本(X,Yp),將X輸入網路;
b)計算相應的實際輸出Op
第二階段,向後傳播階段
a)計算實際輸出Op與相應的理想輸出Yp的差;
b)按極小化誤差的方法反向傳播調整權矩陣。
E. CNN、RNN、DNN的一般解釋
CNN(卷積神經網路)、RNN(循環神經網路)、DNN(深度神經網路)的內部網路結構有什麼區別?
轉自知乎 科言君 的回答
神經網路技術起源於上世紀五、六十年代,當時叫 感知機 (perceptron),擁有輸入層、輸出層和一個隱含層。輸入的特徵向量通過隱含層變換達到輸出層,在輸出層得到分類結果。早期感知機的推動者是Rosenblatt。 (扯一個不相關的:由於計算技術的落後,當時感知器傳輸函數是用線拉動變阻器改變電阻的方法機械實現的,腦補一下科學家們扯著密密麻麻的導線的樣子…)
但是,Rosenblatt的單層感知機有一個嚴重得不能再嚴重的問題,即它對稍復雜一些的函數都無能為力(比如最為典型的「異或」操作)。連異或都不能擬合,你還能指望這貨有什麼實際用途么o(╯□╰)o
隨著數學的發展,這個缺點直到上世紀八十年代才被Rumelhart、Williams、Hinton、LeCun等人(反正就是一票大牛)發明的 多層感知機 (multilayerperceptron)克服。多層感知機,顧名思義,就是有多個隱含層的感知機(廢話……)。好好,我們看一下多層感知機的結構:
圖1 上下層神經元全部相連的神經網路——多層感知機
多層感知機可以擺脫早期離散傳輸函數的束縛,使用sigmoid或tanh等連續函數模擬神經元對激勵的響應,在訓練演算法上則使用Werbos發明的反向傳播BP演算法。對,這貨就是我們現在所說的 神經網路 NN ——神經網路聽起來不知道比感知機高端到哪裡去了!這再次告訴我們起一個好聽的名字對於研(zhuang)究(bi)很重要!
多層感知機解決了之前無法模擬異或邏輯的缺陷,同時更多的層數也讓網路更能夠刻畫現實世界中的復雜情形。相信年輕如Hinton當時一定是春風得意。
多層感知機給我們帶來的啟示是, 神經網路的層數直接決定了它對現實的刻畫能力 ——利用每層更少的神經元擬合更加復雜的函數[1]。
(Bengio如是說:functions that can be compactly
represented by a depth k architecture might require an exponential number of
computational elements to be represented by a depth k − 1 architecture.)
即便大牛們早就預料到神經網路需要變得更深,但是有一個夢魘總是縈繞左右。隨著神經網路層數的加深, 優化函數越來越容易陷入局部最優解 ,並且這個「陷阱」越來越偏離真正的全局最優。利用有限數據訓練的深層網路,性能還不如較淺層網路。同時,另一個不可忽略的問題是隨著網路層數增加, 「梯度消失」現象更加嚴重 。具體來說,我們常常使用sigmoid作為神經元的輸入輸出函數。對於幅度為1的信號,在BP反向傳播梯度時,每傳遞一層,梯度衰減為原來的0.25。層數一多,梯度指數衰減後低層基本上接受不到有效的訓練信號。
2006年,Hinton利用預訓練方法緩解了局部最優解問題,將隱含層推動到了7層[2],神經網路真正意義上有了「深度」,由此揭開了深度學習的熱潮。這里的「深度」並沒有固定的定義——在語音識別中4層網路就能夠被認為是「較深的」,而在圖像識別中20層以上的網路屢見不鮮。為了克服梯度消失,ReLU、maxout等傳輸函數代替了sigmoid,形成了如今DNN的基本形式。單從結構上來說, 全連接的 DNN 和圖 1 的多層感知機是沒有任何區別的 。
值得一提的是,今年出現的高速公路網路(highway network)和深度殘差學習(deep resial learning)進一步避免了梯度消失,網路層數達到了前所未有的一百多層(深度殘差學習:152層)[3,4]!具體結構題主可自行搜索了解。如果你之前在懷疑是不是有很多方法打上了「深度學習」的噱頭,這個結果真是深得讓人心服口服。
圖2 縮減版的深度殘差學習網路,僅有34 層,終極版有152 層,自行感受一下
如圖1所示,我們看到 全連接 DNN 的結構里下層神經元和所有上層神經元都能夠形成連接 ,帶來的潛在問題是 參數數量的膨脹 。假設輸入的是一幅像素為1K*1K的圖像,隱含層有1M個節點,光這一層就有10^12個權重需要訓練,這不僅容易過擬合,而且極容易陷入局部最優。另外,圖像中有固有的局部模式(比如輪廓、邊界,人的眼睛、鼻子、嘴等)可以利用,顯然應該將圖像處理中的概念和神經網路技術相結合。此時我們可以祭出題主所說的卷積神經網路CNN。對於CNN來說,並不是所有上下層神經元都能直接相連,而是 通過「卷積核」作為中介。同一個卷積核在所有圖像內是共享的,圖像通過卷積操作後仍然保留原先的位置關系。 兩層之間的卷積傳輸的示意圖如下:
圖3 卷積神經網路隱含層(摘自Theano 教程)
通過一個例子簡單說明卷積神經網路的結構。假設圖3中m-1=1是輸入層,我們需要識別一幅彩色圖像,這幅圖像具有四個通道ARGB(透明度和紅綠藍,對應了四幅相同大小的圖像),假設卷積核大小為100*100,共使用100個卷積核w1到w100(從直覺來看,每個卷積核應該學習到不同的結構特徵)。用w1在ARGB圖像上進行卷積操作,可以得到隱含層的第一幅圖像;這幅隱含層圖像左上角第一個像素是四幅輸入圖像左上角100*100區域內像素的加權求和,以此類推。同理,算上其他卷積核,隱含層對應100幅「圖像」。每幅圖像對是對原始圖像中不同特徵的響應。按照這樣的結構繼續傳遞下去。CNN中還有max-pooling等操作進一步提高魯棒性。
圖4 一個典型的卷積神經網路結構,注意到最後一層實際上是一個全連接層(摘自Theano 教程)
在這個例子里,我們注意到 輸入層到隱含層的參數瞬間降低到了 100*100*100=10^6 個 !這使得我們能夠用已有的訓練數據得到良好的模型。題主所說的適用於圖像識別,正是由於 CNN 模型限制參數了個數並挖掘了局部結構的這個特點 。順著同樣的思路,利用語音語譜結構中的局部信息,CNN照樣能應用在語音識別中。
全連接的DNN還存在著另一個問題——無法對時間序列上的變化進行建模。然而, 樣本出現的時間順序對於自然語言處理、語音識別、手寫體識別等應用非常重要 。對了適應這種需求,就出現了題主所說的另一種神經網路結構——循環神經網路RNN。
在普通的全連接網路或CNN中,每層神經元的信號只能向上一層傳播,樣本的處理在各個時刻獨立,因此又被成為前向神經網路(Feed-forward Neural Networks)。而在 RNN 中,神經元的輸出可以在下一個時間戳直接作用到自身 ,即第i層神經元在m時刻的輸入,除了(i-1)層神經元在該時刻的輸出外,還包括其自身在(m-1)時刻的輸出!表示成圖就是這樣的:
圖5 RNN 網路結構
我們可以看到在隱含層節點之間增加了互連。為了分析方便,我們常將RNN在時間上進行展開,得到如圖6所示的結構:
圖6 RNN 在時間上進行展開
Cool, ( t+1 )時刻網路的最終結果O(t+1) 是該時刻輸入和所有歷史共同作用的結果 !這就達到了對時間序列建模的目的。
不知題主是否發現,RNN可以看成一個在時間上傳遞的神經網路,它的深度是時間的長度!正如我們上面所說, 「梯度消失」現象又要出現了,只不過這次發生在時間軸上 。對於t時刻來說,它產生的梯度在時間軸上向歷史傳播幾層之後就消失了,根本就無法影響太遙遠的過去。因此,之前說「所有歷史」共同作用只是理想的情況,在實際中,這種影響也就只能維持若干個時間戳。
為了解決時間上的梯度消失,機器學習領域發展出了 長短時記憶單元 LSTM ,通過門的開關實現時間上記憶功能,並防止梯度消失 ,一個LSTM單元長這個樣子:
圖7 LSTM 的模樣
除了題主疑惑的三種網路,和我之前提到的深度殘差學習、LSTM外,深度學習還有許多其他的結構。舉個例子,RNN既然能繼承歷史信息,是不是也能吸收點未來的信息呢?因為在序列信號分析中,如果我能預知未來,對識別一定也是有所幫助的。因此就有了 雙向 RNN 、雙向 LSTM ,同時利用歷史和未來的信息。
圖8 雙向RNN
事實上, 不論是那種網路,他們在實際應用中常常都混合著使用,比如 CNN 和RNN 在上層輸出之前往往會接上全連接層,很難說某個網路到底屬於哪個類別。 不難想像隨著深度學習熱度的延續,更靈活的組合方式、更多的網路結構將被發展出來。盡管看起來千變萬化,但研究者們的出發點肯定都是為了解決特定的問題。題主如果想進行這方面的研究,不妨仔細分析一下這些結構各自的特點以及它們達成目標的手段。入門的話可以參考:
Ng寫的Ufldl: UFLDL教程 - Ufldl
也可以看Theano內自帶的教程,例子非常具體: Deep Learning Tutorials
歡迎大家繼續推薦補充。
當然啦,如果題主只是想湊個熱鬧時髦一把,或者大概了解一下方便以後把妹使,這樣看看也就罷了吧。
參考文獻:
[1]
Bengio Y. Learning Deep
Architectures for AI[J]. Foundations & Trends® in Machine Learning, 2009,
2(1):1-127.
[2]
Hinton G E, Salakhutdinov R R.
Recing the Dimensionality of Data with Neural Networks[J]. Science, 2006,
313(5786):504-507.
[3]
He K, Zhang X, Ren S, Sun J. Deep
Resial Learning for Image Recognition. arXiv:1512.03385, 2015.
[4]
Srivastava R K, Greff K,
Schmidhuber J. Highway networks. arXiv:1505.00387, 2015.
F. 什麼是全連接神經網路,怎麼理解「全連接」
1、全連接神經網路解析:對n-1層和n層而言,n-1層的任意一個節點,都和第n層所有節點有連接。即第n層的每個節點在進行計算的時候,激活函數的輸入是n-1層所有節點的加權。
2、全連接的神經網路示意圖:
3、「全連接」是一種不錯的模式,但是網路很大的時候,訓練速度回很慢。部分連接就是認為的切斷某兩個節點直接的連接,這樣訓練時計算量大大減小。
G. DNN、RNN、CNN分別是什麼意思
DNN(深度神經網路),是深度學習的基礎。
DNN可以理解為有很多隱藏層的神經網路。這個很多其實也沒有什麼度量標准, 多層神經網路和深度神經網路DNN其實也是指的一個東西,當然,DNN有時也叫做多層感知機(Multi-Layer perceptron,MLP)。
從DNN按不同層的位置劃分,DNN內部的神經網路層可以分為三類,輸入層,隱藏層和輸出層,如下圖示例,一般來說第一層是輸出層,最後一層是輸出層,而中間的層數都是隱藏層。
CNN(卷積神經網路),是一種前饋型的神經網路,目前深度學習技術領域中非常具有代表性的神經網路之一。
CNN在大型圖像處理方面有出色的表現,目前已經被大范圍使用到圖像分類、定位等領域中。相比於其他神經網路結構,卷積神經網路需要的參數相對較少,使的其能夠廣泛應用。
RNN(循環神經網路),一類用於處理序列數據的神經網路,RNN最大的不同之處就是在層之間的神經元之間也建立的權連接。
從廣義上來說,DNN被認為包含了CNN、RNN這些具體的變種形式。在實際應用中,深度神經網路DNN融合了多種已知的結構,包含卷積層或LSTM單元,特指全連接的神經元結構,並不包含卷積單元或時間上的關聯。
H. 什麼是全連接神經網路怎麼理解「全連接」
1、全連接神經網路解析:對n-1層和n層而言,n-1層的任意一個節點,都和第n層所有節點有連接。即第n層的每個節點在進行計算的時候,激活函數的輸入是n-1層所有節點的加權。
2、全連接的神經網路示意圖:
3、「全連接」是一種不錯的模式,但是網路很大的時候,訓練速度回很慢。部分連接就是認為的切斷某兩個節點直接的連接,這樣訓練時計算量大大減小。