導航:首頁 > 異常信息 > 普通的神經網路連接方式

普通的神經網路連接方式

發布時間:2023-05-12 09:36:03

Ⅰ 神經網路

神經網路是一種運算模型,模擬大腦神經網路處理、記憶信息的方式進行信息處理。晌棗敏

.

搜索神經網路經常會看到這種圈、線圖。神經網路定義是由大量的節點之間相互聯接構成,每個結點代表什麼?每條線代表什麼?

上圖每個圓圓的圈稱之為節點,節點就是對輸入數據乘上一定的權重後,進行函數處理。

每兩個節點間的連接都代表一個權重,這相當於人工神經網路的記憶。

術語上把上面一個個圓圈叫做 「神經元」 ,深入了解這些圈圈的內部構造。
當這些圈圈(神經元)收到數據輸入時,經歷三個步驟:

輸出的結果又可以作為數據進入下一個神經元。

還有一個「偏置」的定義用來完善步驟二,這里就不提了。

·

有時候會遇到這樣的神經網路的圖,其實就是把上面兩種類型圖結合起來。

輸入數據經過3層神經網路處理後,輸岩悔出結果。
不同層數可以有不同數量的神經元。
每個神經元都有對應輸入值的權值w,以及一個偏置b,還有一個激活函數f。
每個神經元的權重w、偏置b、激活函數f都可以不一樣。

所以針對這一特性,當神經元函數採用sigmoid函數時,權重的計算:

其中gj計算如下:

這里y為實際分類,y^為預測分類(神經元f處理結果) 詳細計算

.

有一組數據,包含4個樣本,每個樣本有3個屬性,每一個樣本對於一個已知的分類結果y。(相當於已知結果的訓練樣本,4個樣本,3個特徵)

每個樣本有3個屬性,對應3個權重,進入神經元訓練。第宴枝一層採用10個神經元進行處理。

步驟一:輸入數據*權重

步驟二:代入函數f中計算
上面加權求和後的數據帶入函數,這里使用sigmoid函數。

到這一步一層的神經網路就處理好了,比較預測結果和實際y之間的數值差(上面演算法中提到的偏差d)為:-0.009664、0.00788003、0.00641069、-0.00786466,相差不多。

步驟三:完善權重w
一開始的權重是隨便設置的,故需要根據公式需要完善權重值。

權重計算結果為-0.62737713,-0.30887831,-0.20651647,三個屬性重新賦予合適的權重。

Ⅱ 什麼是人工神經網路及其演算法實現方式

人工神經網路(Artificial Neural Network,即ANN ),是20世紀80 年代以來人工智慧領域興起的研究熱點。它從信息處理角度對人腦神經元網路進行抽象, 建立某種簡單模型,按不同的連接方式擾亂組成不同的網路。在工程與學術界也常直接簡稱為神經網路或類神經網路。神經網路是一種運算模型,由大量的節點(或稱神經元)之間相互聯接構成。每個節點代表一種特定脊蠢的輸出函數,稱為激勵函數(activation function)。每兩個節點間的連接都代表一個對於通過該連接信號的加權值,稱之為櫻李陪權重,這相當於人工神經網路的記憶。網路的輸出則依網路的連接方式,權重值和激勵函數的不同而不同。而網路自身通常都是對自然界某種演算法或者函數的逼近,也可能是對一種邏輯策略的表達。
最近十多年來,人工神經網路的研究工作不斷深入,已經取得了很大的進展,其在模式識別、智能機器人、自動控制、預測估計、生物、醫學、經濟等領域已成功地解決了許多現代計算機難以解決的實際問題,表現出了良好的智能特性。

Ⅲ 一文讀懂神經網路

要說近幾年最引人注目的技術,無疑的,非人工智慧莫屬。無論你是否身處科技互聯網行業,隨處可見人工智慧的身影:從 AlphaGo 擊敗世界圍棋冠軍,到無人駕駛概念的興起,再到科技巨頭 All in AI,以及各大高校向社會輸送海量的人工智慧專業的畢業生。以至於人們開始萌生一個想法:新的革命就要來了,我們的世界將再次發生一次巨變;而後開始焦慮:我的工作是否會被機器取代?我該如何才能抓住這次革命?

人工智慧背後的核心技術是深度神經網路(Deep Neural Network),大概是一年前這個時候,我正在回老家的高鐵上學習 3Blue1Brown 的 Neural Network 系列視頻課程,短短 4 集 60 多分鍾的時間,就把神經網路從 High Level 到推導細節說得清清楚楚,當時的我除了獲得新知的興奮之外,還有一點新的認知,算是給頭腦中的革命性的技術潑了盆冷水:神經網路可以解決一些復雜的、以前很難通過寫程序來完成的任務——例如圖像、語音識別等,但它的實現機制告訴我,神經網路依然沒有達到生物級別的智能,短期內期待它來取代人也是不可能的。

一年後的今天,依然在這個春運的時間點,將我對神經網路的理解寫下來,算是對這部分知識的一個學習筆記,運氣好的話,還可以讓不了解神經網路的同學了解起來。

維基網路這樣解釋 神經網路 :

這個定義比較寬泛,你甚至還可以用它來定義其它的機器學習演算法,例如之前我們一起學習的邏輯回歸和 GBDT 決策樹。下面我們具體一點,下圖是一個邏輯回歸的示意圖:

其中 x1 和 x2 表示輸入,w1 和 w2 是模型的參數,z 是一個線性函數:

接著我們對 z 做一個 sigmod 變換(圖中藍色圓),得到輸出 y:

其實,上面的邏輯回歸就可以看成是一個只有 1 層 輸入層 , 1 層 輸出層 的神經網路,圖中容納數字的圈兒被稱作 神經元 ;其中,層與層之間的連接 w1、w2 以及 b,是這個 神經網路的參數 ,層之間如果每個神經元之間都保持著連接,這樣的層被稱為 全連接層 (Full Connection Layer),或 稠密層 (Dense Layer);此外,sigmoid 函數又被稱作 激活函數 (Activation Function),除了 sigmoid 外,常用的激活函數還有 ReLU、tanh 函數等,這些函數都起到將線性函數進行非線性變換的作用。我們還剩下一個重要的概念: 隱藏層 ,它需要把 2 個以上的邏輯回歸疊加起來加以說明:

如上圖所示,除輸入層和輸出層以外,其他的層都叫做 隱藏層 。如果我們多疊加幾層,這個神經網路又可以被稱作 深度神經網路 (Deep Neural Network),有同學可能會問多少層才算「深」呢?這個沒有絕對的定論,個人認為 3 層以上就算吧:)

以上,便是神經網路,以及神經網路中包含的概念,可見,神經網路並不特別,廣義上講,它就是

可見,神經網路和人腦神經也沒有任何關聯,如果我們說起它的另一個名字—— 多層感知機(Mutilayer Perceptron) ,就更不會覺得有多麼玄乎了,多層感知機創造於 80 年代,可為什麼直到 30 年後的今天才爆發呢?你想得沒錯,因為改了個名字……開個玩笑;實際上深度學習這項技術也經歷過很長一段時間的黑暗低谷期,直到人們開始利用 GPU 來極大的提升訓練模型的速度,以及幾個標志性的事件:如 AlphaGo戰勝李世石、Google 開源 TensorFlow 框架等等,感興趣的同學可以翻一下這里的歷史。

就拿上圖中的 3 個邏輯回歸組成的神經網路作為例子,它和普通的邏輯回歸比起來,有什麼優勢呢?我們先來看下單邏輯回歸有什麼劣勢,對於某些情況來說,邏輯回歸可能永遠無法使其分類,如下面數據:

這 4 個樣本畫在坐標系中如下圖所示

因為邏輯回歸的決策邊界(Decision Boundary)是一條直線,所以上圖中的兩個分類,無論你怎麼做,都無法找到一條直線將它們分開,但如果藉助神經網路,就可以做到這一點。

由 3 個邏輯回歸組成的網路(這里先忽略 bias)如下:

觀察整個網路的計算過程,在進入輸出層之前,該網路所做的計算實際上是:

即把輸入先做了一次線性變換(Linear Transformation),得到 [z1, z2] ,再把 [z1, z2] 做了一個非線性變換(sigmoid),得到 [x1', x2'] ,(線性變換的概念可以參考 這個視頻 )。從這里開始,後面的操作就和一個普通的邏輯回歸沒有任何差別了,所以它們的差異在於: 我們的數據在輸入到模型之前,先做了一層特徵變換處理(Feature Transformation,有時又叫做特徵抽取 Feature Extraction),使之前不可能被分類的數據變得可以分類了

我們繼續來看下特徵變換的效果,假設 為 ,帶入上述公式,算出 4 個樣本對應的 [x1', x2'] 如下:

再將變換後的 4 個點繪制在坐標系中:

顯然,在做了特徵變換之後,這兩個分類就可以很容易的被一條決策邊界分開了。

所以, 神經網路的優勢在於,它可以幫助我們自動的完成特徵變換或特徵提取 ,尤其對於聲音、圖像等復雜問題,因為在面對這些問題時,人們很難清晰明確的告訴你,哪些特徵是有用的。

在解決特徵變換的同時,神經網路也引入了新的問題,就是我們需要設計各式各樣的網路結構來針對性的應對不同的場景,例如使用卷積神經網路(CNN)來處理圖像、使用長短期記憶網路(LSTM)來處理序列問題、使用生成式對抗網路(GAN)來寫詩和作圖等,就連去年自然語言處理(NLP)中取得突破性進展的 Transformer/Bert 也是一種特定的網路結構。所以, 學好神經網路,對理解其他更高級的網路結構也是有幫助的

上面說了,神經網路可以看作一個非線性函數,該函數的參數是連接神經元的所有的 Weights 和 Biases,該函數可以簡寫為 f(W, B) ,以手寫數字識別的任務作為例子:識別 MNIST 數據集 中的數字,數據集(MNIST 數據集是深度學習中的 HelloWorld)包含上萬張不同的人寫的數字圖片,共有 0-9 十種數字,每張圖片為 28*28=784 個像素,我們設計一個這樣的網路來完成該任務:

把該網路函數所具備的屬性補齊:

接下來的問題是,這個函數是如何產生的?這個問題本質上問的是這些參數的值是怎麼確定的。

在機器學習中,有另一個函數 c 來衡量 f 的好壞,c 的參數是一堆數據集,你輸入給 c 一批 Weights 和 Biases,c 輸出 Bad 或 Good,當結果是 Bad 時,你需要繼續調整 f 的 Weights 和 Biases,再次輸入給 c,如此往復,直到 c 給出 Good 為止,這個 c 就是損失函數 Cost Function(或 Loss Function)。在手寫數字識別的列子中,c 可以描述如下:

可見,要完成手寫數字識別任務,只需要調整這 12730 個參數,讓損失函數輸出一個足夠小的值即可,推而廣之,絕大部分神經網路、機器學習的問題,都可以看成是定義損失函數、以及參數調優的問題。

在手寫識別任務中,我們既可以使用交叉熵(Cross Entropy)損失函數,也可以使用 MSE(Mean Squared Error)作為損失函數,接下來,就剩下如何調優參數了。

神經網路的參數調優也沒有使用特別的技術,依然是大家剛接觸機器學習,就學到的梯度下降演算法,梯度下降解決了上面迭代過程中的遺留問題——當損失函數給出 Bad 結果時,如何調整參數,能讓 Loss 減少得最快。

梯度可以理解為:

把 Loss 對應到 H,12730 個參數對應到 (x,y),則 Loss 對所有參數的梯度可以表示為下面向量,該向量的長度為 12730:
$$
abla L(w,b) = left[

frac{partial L}{partial w_1},
frac{partial L}{partial w_2},...,
frac{partial L}{partial b_{26}}

ight] ^ op
$$
所以,每次迭代過程可以概括為

用梯度來調整參數的式子如下(為了簡化,這里省略了 bias):

上式中, 是學習率,意為每次朝下降最快的方向前進一小步,避免優化過頭(Overshoot)。

由於神經網路參數繁多,所以需要更高效的計算梯度的演算法,於是,反向傳播演算法(Backpropagation)呼之欲出。

在學習反向傳播演算法之前,我們先復習一下微積分中的鏈式法則(Chain Rule):設 g = u(h) , h = f(x) 是兩個可導函數,x 的一個很小的變化 △x 會使 h 產生一個很小的變化 △h,從而 g 也產生一個較小的變化 △g,現要求 △g/△x,可以使用鏈式法則:

有了以上基礎,理解反向傳播演算法就簡單了。

假設我們的演示網路只有 2 層,輸入輸出都只有 2 個神經元,如下圖所示:

其中 是輸入, 是輸出, 是樣本的目標值,這里使用的損失函數 L 為 MSE;圖中的上標 (1) 或 (2) 分別表示參數屬於第 (1) 層或第 (2) 層,下標 1 或 2 分別表示該層的第 1 或 第 2 個神經元。

現在我們來計算 和 ,掌握了這 2 個參數的偏導數計算之後,整個梯度的計算就掌握了。

所謂反向傳播演算法,指的是從右向左來計算每個參數的偏導數,先計算 ,根據鏈式法則

對左邊項用鏈式法則展開

又 是輸出值, 可以直接通過 MSE 的導數算出:

而 ,則 就是 sigmoid 函數的導數在 處的值,即

於是 就算出來了:

再來看 這一項,因為

所以

注意:上面式子對於所有的 和 都成立,且結果非常直觀,即 對 的偏導為左邊的輸入 的大小;同時,這里還隱含著另一層意思:需要調整哪個 來影響 ,才能使 Loss 下降得最快,從該式子可以看出,當然是先調整較大的 值所對應的 ,效果才最顯著 。

於是,最後一層參數 的偏導數就算出來了

我們再來算上一層的 ,根據鏈式法則 :

繼續展開左邊這一項

你發現沒有,這幾乎和計算最後一層一摸一樣,但需要注意的是,這里的 對 Loss 造成的影響有多條路徑,於是對於只有 2 個輸出的本例來說:

上式中, 都已經在最後一層算出,下面我們來看下 ,因為

於是

同理

注意:這里也引申出梯度下降的調參直覺:即要使 Loss 下降得最快,優先調整 weight 值比較大的 weight。

至此, 也算出來了

觀察上式, 所謂每個參數的偏導數,通過反向傳播演算法,都可以轉換成線性加權(Weighted Sum)計算 ,歸納如下:

式子中 n 代表分類數,(l) 表示第 l 層,i 表示第 l 層的第 i 個神經元。 既然反向傳播就是一個線性加權,那整個神經網路就可以藉助於 GPU 的矩陣並行計算了

最後,當你明白了神經網路的原理,是不是越發的認為,它就是在做一堆的微積分運算,當然,作為能證明一個人是否學過微積分,神經網路還是值得學一下的。Just kidding ..

本文我們通過

這四點,全面的學習了神經網路這個知識點,希望本文能給你帶來幫助。

參考:

Ⅳ 簡述神經網路的分類,試列舉常用神經的類型。

神經網路老派螞是一種通用機器學習模型,是一套特定的演算法集,在機器學習領域掀起了一場變革,本身就是普通函數的逼近,可以應用到任何機器學習輸入到輸出的復雜映射問題。

一般來說,神經網路架構可分為3類:

1、前饋神經網路:侍埋是最常見的類型,第一層為輸入,最後一層為輸出。如果有多個隱藏層,則稱為「深度」神經網路。它能夠計算出一系列事件間相似轉變的變化,每層神經元的活動是下一層的非線性函數。

Ⅳ 前饋型神經網路和反饋型神經網路之間的聯系和區別

前饋型神經網路和反饋型神經網路都是人工神經網路的一種,但它們在神經元之間連接的方式和信息傳遞的方式上存在區別。具體來說:

1、連接方式不同:前饋型神經網路中,神經元之間只存在向前的連接,即輸入層的神經元只與隱藏層的神經元相連,隱藏層的神經元也只與輸出層的神經元相連。而反饋型神經網路中,神經元之間可能存在循環連接,因此信息可以在神經燃大元之間反復傳遞。

2、信息傳遞方式不同:前饋型神經網路的信息傳遞是單向的,從輸入層到輸出層,沒有回饋。而反饋型神經網路存在反饋機制,信息可以從輸出層返回到輸入層或中間層,並影響網路的輸出結果。

3、應用場景不同:由於反饋型神經網路具有記憶功能,能夠處理帶有時序關系的數據,因此祥段備在語音識別、時間序列預測等領域有著廣泛的應用。而前饋型神經網路則更適合處理非時序數據問題,如圖像分類、文本分類等。

4、並行計算能力強:人工神經網路的計算過程可以進行並行處理,能夠處理大量的數據和高維度的數據。

5、可自適應:人工神經網路可以根據不同的任務和需求進行自適應調整,能夠有效地處理不同類型的數據和問題。

6、模式識別能力強:人工神經網路可以通過學習和訓練來識別和分類不同的模式和對象,能夠應用於圖像識別、語音識別等領域。

總的來說,人工神經網路具有適應性強、學習能力強、容錯性好、計算能力強等優點,可以應用於多種領域和問題中。同時,由於其模擬人腦神經元的方式,也有一定的生物學啟示意義。

Ⅵ 神經網路模型-27種神經網路模型們的簡介

​ 

【1】Perceptron(P) 感知機

【1】感知機 

感知機是我們知道的最簡單和最古老的神經元模型,它接收一些輸入,然後把它們加總,通過激活函數並傳遞到輸出層。

【2】Feed Forward(FF)前饋神經網路

 【2】前饋神經網路

前饋神經網路(FF),這也是一個很古老的方法——這種方法起源於50年代。它的工作原理通常遵循以下規則:

1.所有節點都完全連接

2.激活從輸入層流向輸出,無回環

3.輸入和輸出之間有一層(隱含層)

在大多數情況下,這種類型的網路使用反向傳播方法進行訓練。

【3】Radial Basis Network(RBF) RBF神經網路

 【3】RBF神經網路

RBF 神經網路實際上是 激活函數是徑向基函數 而非邏輯函數的FF前饋神經網路(FF)。兩者之間有什麼區別呢?

邏輯函數--- 將某個任意值映射到[0 ,... 1]范圍內來,回答「是或否」問題。適用於分類決策系統,但不適用於連續變數。

相反, 徑向基函數--- 能顯示「我們距離目標有多遠」。 這完美適用於函數逼近和機器控制(例如作為PID控制器的替代)。

簡而言之,RBF神經網路其實就是, 具有不同激活函數和應用方向的前饋網路 。

【4】Deep Feed Forword(DFF)深度前饋神經網路

【4】DFF深度前饋神經網路 

DFF深度前饋神經網路在90年代初期開啟了深度學習的潘多拉盒子。 這些依然是前饋神經網路,但有不止一個隱含層 。那麼,它到底有什麼特殊性?

在訓練傳統的前饋神經網路時,我們只向上一層傳遞了少量的誤差信息。由於堆疊更多的層次導致訓練時間的指數增長,使得深度前饋神經網路非常不實用。 直到00年代初,我們開發了一系列有效的訓練深度前饋神經網路的方法; 現在它們構成了現代機器學習系統的核心 ,能實現前饋神經網路的功能,但效果遠高於此。

【5】Recurrent Neural Network(RNN) 遞歸神經網路

【5】RNN遞歸神經網路 

RNN遞歸神經網路引入不同類型的神經元——遞歸神經元。這種類型的第一個網路被稱為約旦網路(Jordan Network),在網路中每個隱含神經元會收到它自己的在固定延遲(一次或多次迭代)後的輸出。除此之外,它與普通的模糊神經網路非常相似。

當然,它有許多變化 — 如傳遞狀態到輸入節點,可變延遲等,但主要思想保持不變。這種類型的神經網路主要被使用在上下文很重要的時候——即過去的迭代結果和樣本產生的決策會對當前產生影響。最常見的上下文的例子是文本——一個單詞只能在前面的單詞或句子的上下文中進行分析。

【6】Long/Short Term Memory (LSTM) 長短時記憶網路

【6】LSTM長短時記憶網路 

LSTM長短時記憶網路引入了一個存儲單元,一個特殊的單元,當數據有時間間隔(或滯後)時可以處理數據。遞歸神經網路可以通過「記住」前十個詞來處理文本,LSTM長短時記憶網路可以通過「記住」許多幀之前發生的事情處理視頻幀。 LSTM網路也廣泛用於寫作和語音識別。

存儲單元實際上由一些元素組成,稱為門,它們是遞歸性的,並控制信息如何被記住和遺忘。

【7】Gated Recurrent Unit (GRU)

 【7】GRU是具有不同門的LSTM

GRU是具有不同門的LSTM。

聽起來很簡單,但缺少輸出門可以更容易基於具體輸入重復多次相同的輸出,目前此模型在聲音(音樂)和語音合成中使用得最多。

實際上的組合雖然有點不同:但是所有的LSTM門都被組合成所謂的更新門(Update Gate),並且復位門(Reset Gate)與輸入密切相關。

它們比LSTM消耗資源少,但幾乎有相同的效果。

【8】Auto Encoder (AE) 自動編碼器

 【8】AE自動編碼器

Autoencoders自動編碼器用於分類,聚類和特徵壓縮。

當您訓練前饋(FF)神經網路進行分類時,您主要必須在Y類別中提供X個示例,並且期望Y個輸出單元格中的一個被激活。 這被稱為「監督學習」。

另一方面,自動編碼器可以在沒有監督的情況下進行訓練。它們的結構 - 當隱藏單元數量小於輸入單元數量(並且輸出單元數量等於輸入單元數)時,並且當自動編碼器被訓練時輸出盡可能接近輸入的方式,強制自動編碼器泛化數據並搜索常見模式。

【9】Variational AE (VAE)  變分自編碼器

 【9】VAE變分自編碼器

變分自編碼器,與一般自編碼器相比,它壓縮的是概率,而不是特徵。

盡管如此簡單的改變,但是一般自編碼器只能回答當「我們如何歸納數據?」的問題時,變分自編碼器回答了「兩件事情之間的聯系有多強大?我們應該在兩件事情之間分配誤差還是它們完全獨立的?」的問題。

【10】Denoising AE (DAE) 降噪自動編碼器

 【10】DAE降噪自動編碼器

雖然自動編碼器很酷,但它們有時找不到最魯棒的特徵,而只是適應輸入數據(實際上是過擬合的一個例子)。

降噪自動編碼器(DAE)在輸入單元上增加了一些雜訊 - 通過隨機位來改變數據,隨機切換輸入中的位,等等。通過這樣做,一個強制降噪自動編碼器從一個有點嘈雜的輸入重構輸出,使其更加通用,強制選擇更常見的特徵。

【11】Sparse AE (SAE) 稀疏自編碼器

【11】SAE稀疏自編碼器 

稀疏自編碼器(SAE)是另外一個有時候可以抽離出數據中一些隱藏分組樣試的自動編碼的形式。結構和AE是一樣的,但隱藏單元的數量大於輸入或輸出單元的數量。

【12】Markov Chain (MC) 馬爾科夫鏈

 【12】Markov Chain (MC) 馬爾科夫鏈

馬爾可夫鏈(Markov Chain, MC)是一個比較老的圖表概念了,它的每一個端點都存在一種可能性。過去,我們用它來搭建像「在單詞hello之後有0.0053%的概率會出現dear,有0.03551%的概率出現you」這樣的文本結構。

這些馬爾科夫鏈並不是典型的神經網路,它可以被用作基於概率的分類(像貝葉斯過濾),用於聚類(對某些類別而言),也被用作有限狀態機。

【13】Hopfield Network (HN) 霍普菲爾網路

【13】HN霍普菲爾網路 

霍普菲爾網路(HN)對一套有限的樣本進行訓練,所以它們用相同的樣本對已知樣本作出反應。

在訓練前,每一個樣本都作為輸入樣本,在訓練之中作為隱藏樣本,使用過之後被用作輸出樣本。

在HN試著重構受訓樣本的時候,他們可以用於給輸入值降噪和修復輸入。如果給出一半圖片或數列用來學習,它們可以反饋全部樣本。

【14】Boltzmann Machine (BM) 波爾滋曼機

【14】 BM 波爾滋曼機 

波爾滋曼機(BM)和HN非常相像,有些單元被標記為輸入同時也是隱藏單元。在隱藏單元更新其狀態時,輸入單元就變成了輸出單元。(在訓練時,BM和HN一個一個的更新單元,而非並行)。

這是第一個成功保留模擬退火方法的網路拓撲。

多層疊的波爾滋曼機可以用於所謂的深度信念網路,深度信念網路可以用作特徵檢測和抽取。

【15】Restricted BM (RBM) 限制型波爾滋曼機

【15】 RBM 限制型波爾滋曼機 

在結構上,限制型波爾滋曼機(RBM)和BM很相似,但由於受限RBM被允許像FF一樣用反向傳播來訓練(唯一的不同的是在反向傳播經過數據之前RBM會經過一次輸入層)。

【16】Deep Belief Network (DBN) 深度信念網路

【16】DBN 深度信念網路 

像之前提到的那樣,深度信念網路(DBN)實際上是許多波爾滋曼機(被VAE包圍)。他們能被連在一起(在一個神經網路訓練另一個的時候),並且可以用已經學習過的樣式來生成數據。

【17】Deep Convolutional Network (DCN) 深度卷積網路

【17】 DCN 深度卷積網路

當今,深度卷積網路(DCN)是人工神經網路之星。它具有卷積單元(或者池化層)和內核,每一種都用以不同目的。

卷積核事實上用來處理輸入的數據,池化層是用來簡化它們(大多數情況是用非線性方程,比如max),來減少不必要的特徵。

他們通常被用來做圖像識別,它們在圖片的一小部分上運行(大約20x20像素)。輸入窗口一個像素一個像素的沿著圖像滑動。然後數據流向卷積層,卷積層形成一個漏斗(壓縮被識別的特徵)。從圖像識別來講,第一層識別梯度,第二層識別線,第三層識別形狀,以此類推,直到特定的物體那一級。DFF通常被接在卷積層的末端方便未來的數據處理。

【18】Deconvolutional Network (DN) 去卷積網路

 【18】 DN 去卷積網路

去卷積網路(DN)是將DCN顛倒過來。DN能在獲取貓的圖片之後生成像(狗:0,蜥蜴:0,馬:0,貓:1)一樣的向量。DNC能在得到這個向量之後,能畫出一隻貓。

【19】Deep Convolutional Inverse Graphics Network (DCIGN) 深度卷積反轉圖像網路

【19】 DCIGN 深度卷積反轉圖像網路

深度卷積反轉圖像網路(DCIGN),長得像DCN和DN粘在一起,但也不完全是這樣。

事實上,它是一個自動編碼器,DCN和DN並不是作為兩個分開的網路,而是承載網路輸入和輸出的間隔區。大多數這種神經網路可以被用作圖像處理,並且可以處理他們以前沒有被訓練過的圖像。由於其抽象化的水平很高,這些網路可以用於將某個事物從一張圖片中移除,重畫,或者像大名鼎鼎的CycleGAN一樣將一匹馬換成一個斑馬。

【20】Generative Adversarial Network (GAN) 生成對抗網路

 【20】 GAN 生成對抗網路

生成對抗網路(GAN)代表了有生成器和分辨器組成的雙網路大家族。它們一直在相互傷害——生成器試著生成一些數據,而分辨器接收樣本數據後試著分辨出哪些是樣本,哪些是生成的。只要你能夠保持兩種神經網路訓練之間的平衡,在不斷的進化中,這種神經網路可以生成實際圖像。

【21】Liquid State Machine (LSM) 液體狀態機

 【21】 LSM 液體狀態機

液體狀態機(LSM)是一種稀疏的,激活函數被閾值代替了的(並不是全部相連的)神經網路。只有達到閾值的時候,單元格從連續的樣本和釋放出來的輸出中積累價值信息,並再次將內部的副本設為零。

這種想法來自於人腦,這些神經網路被廣泛的應用於計算機視覺,語音識別系統,但目前還沒有重大突破。

【22】Extreme  Learning Machine (ELM) 極端學習機

【22】ELM 極端學習機 

極端學習機(ELM)是通過產生稀疏的隨機連接的隱藏層來減少FF網路背後的復雜性。它們需要用到更少計算機的能量,實際的效率很大程度上取決於任務和數據。

【23】Echo State Network (ESN) 回聲狀態網路

【23】 ESN 回聲狀態網路

回聲狀態網路(ESN)是重復網路的細分種類。數據會經過輸入端,如果被監測到進行了多次迭代(請允許重復網路的特徵亂入一下),只有在隱藏層之間的權重會在此之後更新。

據我所知,除了多個理論基準之外,我不知道這種類型的有什麼實際應用。。。。。。。

【24】Deep Resial Network (DRN) 深度殘差網路

​【24】 DRN 深度殘差網路 

深度殘差網路(DRN)是有些輸入值的部分會傳遞到下一層。這一特點可以讓它可以做到很深的層級(達到300層),但事實上它們是一種沒有明確延時的RNN。

【25】Kohonen Network (KN) Kohonen神經網路

​ 【25】 Kohonen神經網路

Kohonen神經網路(KN)引入了「單元格距離」的特徵。大多數情況下用於分類,這種網路試著調整它們的單元格使其對某種特定的輸入作出最可能的反應。當一些單元格更新了, 離他們最近的單元格也會更新。

像SVM一樣,這些網路總被認為不是「真正」的神經網路。

【26】Support Vector Machine (SVM)

​【26】 SVM 支持向量機 

支持向量機(SVM)用於二元分類工作,無論這個網路處理多少維度或輸入,結果都會是「是」或「否」。

SVM不是所有情況下都被叫做神經網路。

【27】Neural Turing Machine (NTM) 神經圖靈機

​【27】NTM 神經圖靈機 

神經網路像是黑箱——我們可以訓練它們,得到結果,增強它們,但實際的決定路徑大多數我們都是不可見的。

神經圖靈機(NTM)就是在嘗試解決這個問題——它是一個提取出記憶單元之後的FF。一些作者也說它是一個抽象版的LSTM。

記憶是被內容編址的,這個網路可以基於現狀讀取記憶,編寫記憶,也代表了圖靈完備神經網路。

Ⅶ 什麼是全連接神經網路怎麼理解「全連接」

1、全連接神經網路解析:對n-1層和n層而言,n-1層的任意一個節點,都和第n層所有節點有連接。即第n層的每個節點在進行計算的時候,激活函數的輸入是n-1層所有節點的加權。

2、全連接的神經網路示意圖:


3、「全連接」是一種不錯的模式,但是網路很大的時候,訓練速度回很慢。部分連接就是認為的切斷某兩個節點直接的連接,這樣訓練時計算量大大減小。

Ⅷ 神經網路:卷積神經網路(CNN)

神經網路 最早是由心理學家和神經學家提出的,旨在尋求開發和測試神經的計算模擬。

粗略地說, 神經網路 是一組連接的 輸入/輸出單元 ,其中每個連接都與一個 權 相關聯。在學習階段,通過調整權值,使得神經網路的預測准確性逐步提高。由於單元之間的連接,神經網路學習又稱 連接者學習。

神經網路是以模擬人腦神經元的數學模型為基礎而建立的,它由一系列神經元組成,單元之間彼此連接。從信息處理角度看,神經元可以看作是一個多輸入單輸出的信息處理單元,根據神經元的特性和功能,可以把神經元抽象成一個簡單的數學模型。

神經網路有三個要素: 拓撲結構、連接方式、學習規則

神經網路的拓撲結構 :神經網路的單元通常按照層次排列,根據網路的層次數,可以將神經網路分為單層神經網路、兩層神經網路、三層神經網路等。結構簡單的神經網路,在學習時收斂的速度快,但准確度低。

神經網路的層數和每層的單元數由問題的復雜程度而定。問題越復雜,神經網路的層數就越多。例如,兩層神經網路常用來解決線性問題,而多層網路就可以解決多元非線性問題

神經網路的連接 :包括層次之間的連接和每一層內部的連接,連接的強度用權來表示。

根據層次之間的連接方式,分為:

1)前饋式網路:連接是單向的,上層單元的輸出是下層單元的輸入,如反向傳播網路,Kohonen網路

2)反饋式網路:除了單項的連接外,還把最後一層單元的輸出作為第一層單元的輸入,如Hopfield網路

根據連接的范圍,分為:

1)全連接神經網路:每個單元和相鄰層上的所有單元相連

2)局部連接網路:每個單元只和相鄰層上的部分單元相連

神經網路的學習

根據學習方法分:

感知器:有監督的學習方法,訓練樣本的類別是已知的,並在學習的過程中指導模型的訓練

認知器:無監督的學習方法,訓練樣本類別未知,各單元通過競爭學習。

根據學習時間分:

離線網路:學習過程和使用過程是獨立的

在線網路:學習過程和使用過程是同時進行的

根據學習規則分:

相關學習網路:根據連接間的激活水平改變權系數

糾錯學習網路:根據輸出單元的外部反饋改變權系數

自組織學習網路:對輸入進行自適應地學習

摘自《數學之美》對人工神經網路的通俗理解:

神經網路種類很多,常用的有如下四種:

1)Hopfield網路,典型的反饋網路,結構單層,有相同的單元組成

2)反向傳播網路,前饋網路,結構多層,採用最小均方差的糾錯學習規則,常用於語言識別和分類等問題

3)Kohonen網路:典型的自組織網路,由輸入層和輸出層構成,全連接

4)ART網路:自組織網路

深度神經網路:

Convolutional Neural Networks(CNN)卷積神經網路

Recurrent neural Network(RNN)循環神經網路

Deep Belief Networks(DBN)深度信念網路

深度學習是指多層神經網路上運用各種機器學習演算法解決圖像,文本等各種問題的演算法集合。深度學習從大類上可以歸入神經網路,不過在具體實現上有許多變化。

深度學習的核心是特徵學習,旨在通過分層網路獲取分層次的特徵信息,從而解決以往需要人工設計特徵的重要難題。

Machine Learning vs. Deep Learning 

神經網路(主要是感知器)經常用於 分類

神經網路的分類知識體現在網路連接上,被隱式地存儲在連接的權值中。

神經網路的學習就是通過迭代演算法,對權值逐步修改的優化過程,學習的目標就是通過改變權值使訓練集的樣本都能被正確分類。

神經網路特別適用於下列情況的分類問題:

1) 數據量比較小,缺少足夠的樣本建立模型

2) 數據的結構難以用傳統的統計方法來描述

3) 分類模型難以表示為傳統的統計模型

缺點:

1) 需要很長的訓練時間,因而對於有足夠長訓練時間的應用更合適。

2) 需要大量的參數,這些通常主要靠經驗確定,如網路拓撲或「結構」。

3)  可解釋性差 。該特點使得神經網路在數據挖掘的初期並不看好。

優點:

1) 分類的准確度高

2)並行分布處理能力強

3)分布存儲及學習能力高

4)對噪音數據有很強的魯棒性和容錯能力

最流行的基於神經網路的分類演算法是80年代提出的 後向傳播演算法 。後向傳播演算法在多路前饋神經網路上學習。 

定義網路拓撲

在開始訓練之前,用戶必須說明輸入層的單元數、隱藏層數(如果多於一層)、每一隱藏層的單元數和輸出層的單元數,以確定網路拓撲。

對訓練樣本中每個屬性的值進行規格化將有助於加快學習過程。通常,對輸入值規格化,使得它們落入0.0和1.0之間。

離散值屬性可以重新編碼,使得每個域值一個輸入單元。例如,如果屬性A的定義域為(a0,a1,a2),則可以分配三個輸入單元表示A。即,我們可以用I0 ,I1 ,I2作為輸入單元。每個單元初始化為0。如果A = a0,則I0置為1;如果A = a1,I1置1;如此下去。

一個輸出單元可以用來表示兩個類(值1代表一個類,而值0代表另一個)。如果多於兩個類,則每個類使用一個輸出單元。

隱藏層單元數設多少個「最好」 ,沒有明確的規則。

網路設計是一個實驗過程,並可能影響准確性。權的初值也可能影響准確性。如果某個經過訓練的網路的准確率太低,則通常需要採用不同的網路拓撲或使用不同的初始權值,重復進行訓練。

後向傳播演算法學習過程:

迭代地處理一組訓練樣本,將每個樣本的網路預測與實際的類標號比較。

每次迭代後,修改權值,使得網路預測和實際類之間的均方差最小。

這種修改「後向」進行。即,由輸出層,經由每個隱藏層,到第一個隱藏層(因此稱作後向傳播)。盡管不能保證,一般地,權將最終收斂,學習過程停止。

演算法終止條件:訓練集中被正確分類的樣本達到一定的比例,或者權系數趨近穩定。

後向傳播演算法分為如下幾步:

1) 初始化權

網路的權通常被初始化為很小的隨機數(例如,范圍從-1.0到1.0,或從-0.5到0.5)。

每個單元都設有一個偏置(bias),偏置也被初始化為小隨機數。

2) 向前傳播輸入

對於每一個樣本X,重復下面兩步:

向前傳播輸入,向後傳播誤差

計算各層每個單元的輸入和輸出。輸入層:輸出=輸入=樣本X的屬性;即,對於單元j,Oj = Ij = Xj。隱藏層和輸出層:輸入=前一層的輸出的線性組合,即,對於單元j, Ij =wij Oi + θj,輸出=

3) 向後傳播誤差

計算各層每個單元的誤差。

輸出層單元j,誤差:

Oj是單元j的實際輸出,而Tj是j的真正輸出。

隱藏層單元j,誤差:

wjk是由j到下一層中單元k的連接的權,Errk是單元k的誤差

更新 權 和 偏差 ,以反映傳播的誤差。

權由下式更新:

 其中,△wij是權wij的改變。l是學習率,通常取0和1之間的值。

 偏置由下式更新:

  其中,△θj是偏置θj的改變。

Example

人類視覺原理:

深度學習的許多研究成果,離不開對大腦認知原理的研究,尤其是視覺原理的研究。1981 年的諾貝爾醫學獎,頒發給了 David Hubel(出生於加拿大的美國神經生物學家) 和Torsten Wiesel,以及Roger Sperry。前兩位的主要貢獻,是「發現了視覺系統的信息處理」, 可視皮層是分級的 。

人類的視覺原理如下:從原始信號攝入開始(瞳孔攝入像素Pixels),接著做初步處理(大腦皮層某些細胞發現邊緣和方向),然後抽象(大腦判定,眼前的物體的形狀,是圓形的),然後進一步抽象(大腦進一步判定該物體是只氣球)。

對於不同的物體,人類視覺也是通過這樣逐層分級,來進行認知的:

在最底層特徵基本上是類似的,就是各種邊緣,越往上,越能提取出此類物體的一些特徵(輪子、眼睛、軀乾等),到最上層,不同的高級特徵最終組合成相應的圖像,從而能夠讓人類准確的區分不同的物體。

可以很自然的想到:可以不可以模仿人類大腦的這個特點,構造多層的神經網路,較低層的識別初級的圖像特徵,若干底層特徵組成更上一層特徵,最終通過多個層級的組合,最終在頂層做出分類呢?答案是肯定的,這也是許多深度學習演算法(包括CNN)的靈感來源。

卷積神經網路是一種多層神經網路,擅長處理圖像特別是大圖像的相關機器學習問題。卷積網路通過一系列方法,成功將數據量龐大的圖像識別問題不斷降維,最終使其能夠被訓練。

CNN最早由Yann LeCun提出並應用在手寫字體識別上。LeCun提出的網路稱為LeNet,其網路結構如下:

這是一個最典型的卷積網路,由 卷積層、池化層、全連接層 組成。其中卷積層與池化層配合,組成多個卷積組,逐層提取特徵,最終通過若干個全連接層完成分類。

CNN通過卷積來模擬特徵區分,並且通過卷積的權值共享及池化,來降低網路參數的數量級,最後通過傳統神經網路完成分類等任務。

降低參數量級:如果使用傳統神經網路方式,對一張圖片進行分類,那麼,把圖片的每個像素都連接到隱藏層節點上,對於一張1000x1000像素的圖片,如果有1M隱藏層單元,一共有10^12個參數,這顯然是不能接受的。

但是在CNN里,可以大大減少參數個數,基於以下兩個假設:

1)最底層特徵都是局部性的,也就是說,用10x10這樣大小的過濾器就能表示邊緣等底層特徵

2)圖像上不同小片段,以及不同圖像上的小片段的特徵是類似的,也就是說,能用同樣的一組分類器來描述各種各樣不同的圖像

基於以上兩個假設,就能把第一層網路結構簡化

用100個10x10的小過濾器,就能夠描述整幅圖片上的底層特徵。

卷積運算的定義如下圖所示:

如上圖所示,一個5x5的圖像,用一個3x3的 卷積核 :

   101

   010

   101

來對圖像進行卷積操作(可以理解為有一個滑動窗口,把卷積核與對應的圖像像素做乘積然後求和),得到了3x3的卷積結果。

這個過程可以理解為使用一個過濾器(卷積核)來過濾圖像的各個小區域,從而得到這些小區域的特徵值。在實際訓練過程中, 卷積核的值是在學習過程中學到的。

在具體應用中,往往有多個卷積核,可以認為, 每個卷積核代表了一種圖像模式 ,如果某個圖像塊與此卷積核卷積出的值大,則認為此圖像塊十分接近於此卷積核。如果設計了6個卷積核,可以理解為這個圖像上有6種底層紋理模式,也就是用6種基礎模式就能描繪出一副圖像。以下就是24種不同的卷積核的示例:

池化 的過程如下圖所示:

可以看到,原始圖片是20x20的,對其進行采樣,采樣窗口為10x10,最終將其采樣成為一個2x2大小的特徵圖。

之所以這么做,是因為即使做完了卷積,圖像仍然很大(因為卷積核比較小),所以為了降低數據維度,就進行采樣。

即使減少了許多數據,特徵的統計屬性仍能夠描述圖像,而且由於降低了數據維度,有效地避免了過擬合。

在實際應用中,分為最大值采樣(Max-Pooling)與平均值采樣(Mean-Pooling)。

LeNet網路結構:

注意,上圖中S2與C3的連接方式並不是全連接,而是部分連接。最後,通過全連接層C5、F6得到10個輸出,對應10個數字的概率。

卷積神經網路的訓練過程與傳統神經網路類似,也是參照了反向傳播演算法

第一階段,向前傳播階段:

a)從樣本集中取一個樣本(X,Yp),將X輸入網路;

b)計算相應的實際輸出Op

第二階段,向後傳播階段

a)計算實際輸出Op與相應的理想輸出Yp的差;

b)按極小化誤差的方法反向傳播調整權矩陣。

Ⅸ 一文看懂四種基本的神經網路架構

原文鏈接:
http://blackblog.tech/2018/02/23/Eight-Neural-Network/

更多干貨就在我的個人博客 http://blackblog.tech 歡迎關注

剛剛入門神經網路,往往會對眾多的神經網路架構感到困惑,神經網路看起來復雜多樣,但是這么多架構無非也就是三類,前饋神經網路,循環網路,對稱連接網路,本文將介紹四種常見的神經網路,分別是CNN,RNN,DBN,GAN。通過這四種基本的神經網路架構,我們來對神經網路進行一定的了解。

神經網路是機器學習中的一種模型,是一種模仿動物神經網路行為特徵,進行分布式並行信息處理的演算法數學模型。這種網路依靠系統的復雜程度,通過調整內部大量節點之間相互連接的關系,從而達到處理信息的目的。
一般來說,神經網路的架構可以分為三類:

前饋神經網路:
這是實際應用中最常見的神經網路類型。第一層是輸入,最後一層是輸出。如果有多個隱藏層,我們稱之為「深度」神經網路。他們計算出一系列改變樣本相似性的變換。各層神經元的活動是前一層活動的非線性函數。

循環網路:
循環網路在他們的連接圖中定向了循環,這意味著你可以按照箭頭回到你開始的地方。他們可以有復雜的動態,使其很難訓練。他們更具有生物真實性。
循環網路的目的使用來處理序列數據。在傳統的神經網路模型中,是從輸入層到隱含層再到輸出層,層與層之間是全連接的,每層之間的節點是無連接的。但是這種普通的神經網路對於很多問題卻無能無力。例如,你要預測句子的下一個單詞是什麼,一般需要用到前面的單詞,因為一個句子中前後單詞並不是獨立的。
循環神經網路,即一個序列當前的輸出與前面的輸出也有關。具體的表現形式為網路會對前面的信息進行記憶並應用於當前輸出的計算中,即隱藏層之間的節點不再無連接而是有連接的,並且隱藏層的輸入不僅包括輸入層的輸出還包括上一時刻隱藏層的輸出。

對稱連接網路:
對稱連接網路有點像循環網路,但是單元之間的連接是對稱的(它們在兩個方向上權重相同)。比起循環網路,對稱連接網路更容易分析。這個網路中有更多的限制,因為它們遵守能量函數定律。沒有隱藏單元的對稱連接網路被稱為「Hopfield 網路」。有隱藏單元的對稱連接的網路被稱為玻爾茲曼機。

其實之前的帖子講過一些關於感知機的內容,這里再復述一下。
首先還是這張圖
這是一個M-P神經元

一個神經元有n個輸入,每一個輸入對應一個權值w,神經元內會對輸入與權重做乘法後求和,求和的結果與偏置做差,最終將結果放入激活函數中,由激活函數給出最後的輸出,輸出往往是二進制的,0 狀態代表抑制,1 狀態代表激活。

可以把感知機看作是 n 維實例空間中的超平面決策面,對於超平面一側的樣本,感知器輸出 1,對於另一側的實例輸出 0,這個決策超平面方程是 w⋅x=0。 那些可以被某一個超平面分割的正反樣例集合稱為線性可分(linearly separable)樣例集合,它們就可以使用圖中的感知機表示。
與、或、非問題都是線性可分的問題,使用一個有兩輸入的感知機能容易地表示,而異或並不是一個線性可分的問題,所以使用單層感知機是不行的,這時候就要使用多層感知機來解決疑惑問題了。

如果我們要訓練一個感知機,應該怎麼辦呢?
我們會從隨機的權值開始,反復地應用這個感知機到每個訓練樣例,只要它誤分類樣例就修改感知機的權值。重復這個過程,直到感知機正確分類所有的樣例。每一步根據感知機訓練法則來修改權值,也就是修改與輸入 xi 對應的權 wi,法則如下:

這里 t 是當前訓練樣例的目標輸出,o 是感知機的輸出,η 是一個正的常數稱為學習速率。學習速率的作用是緩和每一步調整權的程度,它通常被設為一個小的數值(例如 0.1),而且有時會使其隨著權調整次數的增加而衰減。

多層感知機,或者說是多層神經網路無非就是在輸入層與輸出層之間加了多個隱藏層而已,後續的CNN,DBN等神經網路只不過是將重新設計了每一層的類型。感知機可以說是神經網路的基礎,後續更為復雜的神經網路都離不開最簡單的感知機的模型,

談到機器學習,我們往往還會跟上一個詞語,叫做模式識別,但是真實環境中的模式識別往往會出現各種問題。比如:
圖像分割:真實場景中總是摻雜著其它物體。很難判斷哪些部分屬於同一個對象。對象的某些部分可以隱藏在其他對象的後面。
物體光照:像素的強度被光照強烈影響。
圖像變形:物體可以以各種非仿射方式變形。例如,手寫也可以有一個大的圓圈或只是一個尖頭。
情景支持:物體所屬類別通常由它們的使用方式來定義。例如,椅子是為了讓人們坐在上面而設計的,因此它們具有各種各樣的物理形狀。
卷積神經網路與普通神經網路的區別在於,卷積神經網路包含了一個由卷積層和子采樣層構成的特徵抽取器。在卷積神經網路的卷積層中,一個神經元只與部分鄰層神經元連接。在CNN的一個卷積層中,通常包含若干個特徵平面(featureMap),每個特徵平面由一些矩形排列的的神經元組成,同一特徵平面的神經元共享權值,這里共享的權值就是卷積核。卷積核一般以隨機小數矩陣的形式初始化,在網路的訓練過程中卷積核將學習得到合理的權值。共享權值(卷積核)帶來的直接好處是減少網路各層之間的連接,同時又降低了過擬合的風險。子采樣也叫做池化(pooling),通常有均值子采樣(mean pooling)和最大值子采樣(max pooling)兩種形式。子采樣可以看作一種特殊的卷積過程。卷積和子采樣大大簡化了模型復雜度,減少了模型的參數。
卷積神經網路由三部分構成。第一部分是輸入層。第二部分由n個卷積層和池化層的組合組成。第三部分由一個全連結的多層感知機分類器構成。
這里舉AlexNet為例:

·輸入:224×224大小的圖片,3通道
·第一層卷積:11×11大小的卷積核96個,每個GPU上48個。
·第一層max-pooling:2×2的核。
·第二層卷積:5×5卷積核256個,每個GPU上128個。
·第二層max-pooling:2×2的核。
·第三層卷積:與上一層是全連接,3*3的卷積核384個。分到兩個GPU上個192個。
·第四層卷積:3×3的卷積核384個,兩個GPU各192個。該層與上一層連接沒有經過pooling層。
·第五層卷積:3×3的卷積核256個,兩個GPU上個128個。
·第五層max-pooling:2×2的核。
·第一層全連接:4096維,將第五層max-pooling的輸出連接成為一個一維向量,作為該層的輸入。
·第二層全連接:4096維
·Softmax層:輸出為1000,輸出的每一維都是圖片屬於該類別的概率。

卷積神經網路在模式識別領域有著重要應用,當然這里只是對卷積神經網路做了最簡單的講解,卷積神經網路中仍然有很多知識,比如局部感受野,權值共享,多卷積核等內容,後續有機會再進行講解。

傳統的神經網路對於很多問題難以處理,比如你要預測句子的下一個單詞是什麼,一般需要用到前面的單詞,因為一個句子中前後單詞並不是獨立的。RNN之所以稱為循環神經網路,即一個序列當前的輸出與前面的輸出也有關。具體的表現形式為網路會對前面的信息進行記憶並應用於當前輸出的計算中,即隱藏層之間的節點不再無連接而是有連接的,並且隱藏層的輸入不僅包括輸入層的輸出還包括上一時刻隱藏層的輸出。理論上,RNN能夠對任何長度的序列數據進行處理。
這是一個簡單的RNN的結構,可以看到隱藏層自己是可以跟自己進行連接的。

那麼RNN為什麼隱藏層能夠看到上一刻的隱藏層的輸出呢,其實我們把這個網路展開來開就很清晰了。

從上面的公式我們可以看出,循環層和全連接層的區別就是循環層多了一個權重矩陣 W。
如果反復把式2帶入到式1,我們將得到:

在講DBN之前,我們需要對DBN的基本組成單位有一定的了解,那就是RBM,受限玻爾茲曼機。
首先什麼是玻爾茲曼機?
[圖片上傳失敗...(image-d36b31-1519636788074)]
如圖所示為一個玻爾茲曼機,其藍色節點為隱層,白色節點為輸入層。
玻爾茲曼機和遞歸神經網路相比,區別體現在以下幾點:
1、遞歸神經網路本質是學習一個函數,因此有輸入和輸出層的概念,而玻爾茲曼機的用處在於學習一組數據的「內在表示」,因此其沒有輸出層的概念。
2、遞歸神經網路各節點鏈接為有向環,而玻爾茲曼機各節點連接成無向完全圖。

而受限玻爾茲曼機是什麼呢?
最簡單的來說就是加入了限制,這個限制就是將完全圖變成了二分圖。即由一個顯層和一個隱層構成,顯層與隱層的神經元之間為雙向全連接。

h表示隱藏層,v表示顯層
在RBM中,任意兩個相連的神經元之間有一個權值w表示其連接強度,每個神經元自身有一個偏置系數b(對顯層神經元)和c(對隱層神經元)來表示其自身權重。
具體的公式推導在這里就不展示了

DBN是一個概率生成模型,與傳統的判別模型的神經網路相對,生成模型是建立一個觀察數據和標簽之間的聯合分布,對P(Observation|Label)和 P(Label|Observation)都做了評估,而判別模型僅僅而已評估了後者,也就是P(Label|Observation)。
DBN由多個限制玻爾茲曼機(Restricted Boltzmann Machines)層組成,一個典型的神經網路類型如圖所示。這些網路被「限制」為一個可視層和一個隱層,層間存在連接,但層內的單元間不存在連接。隱層單元被訓練去捕捉在可視層表現出來的高階數據的相關性。

生成對抗網路其實在之前的帖子中做過講解,這里在說明一下。
生成對抗網路的目標在於生成,我們傳統的網路結構往往都是判別模型,即判斷一個樣本的真實性。而生成模型能夠根據所提供的樣本生成類似的新樣本,注意這些樣本是由計算機學習而來的。
GAN一般由兩個網路組成,生成模型網路,判別模型網路。
生成模型 G 捕捉樣本數據的分布,用服從某一分布(均勻分布,高斯分布等)的雜訊 z 生成一個類似真實訓練數據的樣本,追求效果是越像真實樣本越好;判別模型 D 是一個二分類器,估計一個樣本來自於訓練數據(而非生成數據)的概率,如果樣本來自於真實的訓練數據,D 輸出大概率,否則,D 輸出小概率。
舉個例子:生成網路 G 好比假幣製造團伙,專門製造假幣,判別網路 D 好比警察,專門檢測使用的貨幣是真幣還是假幣,G 的目標是想方設法生成和真幣一樣的貨幣,使得 D 判別不出來,D 的目標是想方設法檢測出來 G 生成的假幣。
傳統的判別網路:

生成對抗網路:

下面展示一個cDCGAN的例子(前面帖子中寫過的)
生成網路

判別網路

最終結果,使用MNIST作為初始樣本,通過學習後生成的數字,可以看到學習的效果還是不錯的。

本文非常簡單的介紹了四種神經網路的架構,CNN,RNN,DBN,GAN。當然也僅僅是簡單的介紹,並沒有深層次講解其內涵。這四種神經網路的架構十分常見,應用也十分廣泛。當然關於神經網路的知識,不可能幾篇帖子就講解完,這里知識講解一些基礎知識,幫助大家快速入(zhuang)門(bi)。後面的帖子將對深度自動編碼器,Hopfield 網路長短期記憶網路(LSTM)進行講解。

Ⅹ 神經網路簡述

機器學習中談論的神經網路是指「神經網路學習」,或者說,是機器學習和神經網路這兩個學科領域的交叉部分[1]。

在這里,神經網路更多的是指計算機科學家模擬人類大腦結構和智能行為,發明的一類演算法的統稱。

神經網路是眾多優秀仿生演算法中的一種,讀書時曾接觸過蟻群優化演算法,曾驚訝於其強大之處,但神經網路的強大,顯然蟻群優化還不能望其項背。

A、起源與第一次高潮。有人認為,神經網路的最早討論,源於現代計算機科學的先驅——阿蘭.圖靈在1948年的論文中描述的「B型組織機器」[2]。二十世紀50年代出現了以感知機、Adaling為代表的一系列成功,這是神經網路發展的第一個高潮[1]。

B、第一次低谷。1969年,馬文.明斯基出版《感知機》一書,書中論斷直接將神經網路打入冷宮,導致神經網路十多年的「冰河期」。值得一提的是,在這期間的1974年,哈佛大學Paul Webos發明BP演算法,但當時未受到應有的重視[1]。

C、第二次高潮。1983年,加州理工學院的物理學家John Hopfield利用神經網路,在旅行商問題上獲得當時最好結果,引起轟動;Rumelhart等人重新發明了BP演算法,BP演算法迅速走紅,掀起神經網路第二次高潮[1]。

D、第二次低谷。二十世紀90年代中期,統計學習理論和支持向量機興起,較之於這些演算法,神經網路的理論基礎不清晰等缺點更加凸顯,神經網路研究進入第二次低谷[1]。

E、深度學習的崛起。2010年前後,隨著計算能力的提升和大數據的涌現,以神經網路為基礎的「深度學習」崛起,科技巨頭公司谷歌、Facebook、網路投入巨資研發,神經網路迎來第三次高潮[1]。2016年3月9日至15日,Google人工智慧程序AlphaGo對陣韓國圍棋世界冠軍李世乭,以4:1大比分獲勝,比眾多專家預言早了十年。這次比賽,迅速在全世界經濟、科研、計算機產業各領域掀起人工智慧和深度學習的熱烈討論。

F、展望。從幾個方面討論一下。

1)、近期在Google AlphaGo掀起的熱潮中,民眾的熱情與期待最大,甚至有少許恐慌情緒;計算機產業和互聯網產業熱情也非常巨大,對未來充滿期待,各大巨頭公司對其投入大量資源;學術界的反應倒是比較冷靜的。學術界的冷靜,是因為神經網路和深度神經網路的理論基礎還沒有出現長足的進步,其缺點還沒有根本改善。這也從另一個角度說明了深度神經網路理論進步的空間很大。

2)、"當代神經網路是基於我們上世紀六十年代掌握的腦知識。"關於人類大腦的科學與知識正在爆炸式增長。[3]世界上很多學術團隊正在基於大腦機制新的認知建立新的模型[3]。我個人對此報樂觀態度,從以往的仿生演算法來看,經過億萬年進化的自然界對科技發展的促進從來沒有停止過。

3)、還說AlphaGo,它並不是理論和演算法的突破,而是基於已有演算法的工程精品。AlhphaGo的工作,為深度學習的應用提供了非常廣闊的想像空間。分布式技術提供了巨大而廉價的計算能力,巨量數據的積累提供了豐富的訓練樣本,深度學習開始騰飛,這才剛剛開始。

一直沿用至今的,是McChlloch和Pitts在1943年依據腦神經信號傳輸結構抽象出的簡單模型,所以也被稱作」M-P神經元模型「。

其中,

f函數像一般形如下圖的函數,既考慮階躍性,又考慮光滑可導性。

實際常用如下公式,因形如S,故被稱作sigmoid函數。

把很多個這樣的神經元按一定層次連接起來,就得到了神經網路。

兩層神經元組成,輸入層接收外界輸入信號,輸出層是M-P神經元(只有輸出層是)。

感知機的數學模型和單個M-P神經元的數學模型是一樣的,如因為輸入層只需接收輸入信號,不是M-P神經元。

感知機只有輸出層神經元是B-P神經元,學習能力非常有限。對於現行可分問題,可以證明學習過程一定會收斂。而對於非線性問題,感知機是無能為力的。

BP神經網路全稱叫作誤差逆傳播(Error Propagation)神經網路,一般是指基於誤差逆傳播演算法的多層前饋神經網路。這里為了不佔篇幅,BP神經網路將起篇另述。

BP演算法是迄今最為成功的神經網路學習演算法,也是最有代表性的神經網路學習演算法。BP演算法不僅用於多層前饋神經網路,還用於其他類型神經網路的訓練。

RBF網路全程徑向基函數(Radial Basis Function)網路,是一種單隱層前饋神經網路,其與BP網路最大的不同是採用徑向基函數作為隱層神經元激活函數。

卷積神經網路(Convolutional neural networks,簡稱CNNs)是一種深度學習的前饋神經網路,在大型圖片處理中取得巨大成功。卷積神經網路將起篇另述。

循環神經網路(Recurrent Neural Networks,RNNs)與傳統的FNNs不同,RNNs引入定向循環,能夠處理那些輸入之間前後關聯的問題。RNNs已經在眾多自然語言處理(Natural Language Processing, NLP)中取得了巨大成功以及廣泛應用[5]。RNNs將起篇另述。[5]

[1]、《機器學習》,周志華著

[2]、《模式識別(第二版)》,Richard O.Duda等著,李宏東等譯

[3]、《揭秘IARPA項目:解碼大腦演算法或將徹底改變機器學習》,Emily Singerz著,機器之心編譯出品

[4]、圖片來源於互聯網

[5]、 循環神經網路(RNN, Recurrent Neural Networks)介紹

閱讀全文

與普通的神經網路連接方式相關的資料

熱點內容
網路共享中心沒有網卡 瀏覽:513
電腦無法檢測到網路代理 瀏覽:1364
筆記本電腦一天會用多少流量 瀏覽:550
蘋果電腦整機轉移新機 瀏覽:1368
突然無法連接工作網路 瀏覽:1032
聯通網路怎麼設置才好 瀏覽:1213
小區網路電腦怎麼連接路由器 瀏覽:1009
p1108列印機網路共享 瀏覽:1203
怎麼調節台式電腦護眼 瀏覽:669
深圳天虹蘋果電腦 瀏覽:908
網路總是異常斷開 瀏覽:603
中級配置台式電腦 瀏覽:966
中國網路安全的戰士 瀏覽:623
同志網站在哪裡 瀏覽:1404
版觀看完整完結免費手機在線 瀏覽:1449
怎樣切換默認數據網路設置 瀏覽:1099
肯德基無線網無法訪問網路 瀏覽:1275
光纖貓怎麼連接不上網路 瀏覽:1448
神武3手游網路連接 瀏覽:956
局網列印機網路共享 瀏覽:991