導航:首頁 > 異常信息 > 網路考試異常行為檢測演算法

網路考試異常行為檢測演算法

發布時間:2023-05-28 02:02:51

⑴ 異常檢測(Anomaly Detection)

異常檢測(Anomaly Detection)是機器學習演算法的一個常見應用。它主要用於非監督學習,但又類似一些監督學習問題。

異常檢測常用在對網站異常用戶的檢測;還有在工程上一些零件,設備異常的檢查;還有機房異常機器的監控等等

假設有數據集 ,當又有一個新的測試樣本 ;
想要知道這個新樣本是否是異常的;
首先對x的分布概率建模p(x) ,用來說明這個例子不是異常的概率;
然後定一個閾值 ,當 時說明是異常的。

當出現在高概率分布的區域時,說明該例子時正常的;當出現在低概率的區域時,說明是異常的。

高斯分布又被稱之為正態分布,曲線呈鍾型,兩頭低,中間高,左右對稱因其曲線呈鍾形,因此人們又經常稱之為鍾形曲線

假設x是一個實數隨機變數,如果它的概率分布為高斯分布,定義幾個變數:
=平均值
=標准差
=方差
那麼x的概率分布可以用公式來表示:

其平均值 決定了其位置,其標准差 決定了分布的幅度

完整的高斯分布的概率公式為:

當參數平均值 和標准差 變化時:

關於平均值和方差的求解:

在一個異常檢測的例子中,有m個訓練樣本,每個樣本的特徵值數量有n個,那麼某個樣本的分布概率模型p(x)就可以用樣本的每個特徵值的概率分布來計算:

上面的式子可以用更簡潔的方式來表達

總計一下,異常檢測的過程:

如何評估一個異常檢測演算法,以及如何開發一個關於異常檢測的應用:

首先,在獲取到的一堆數據中,取一大部分正常的(可能包含少部分異常)的數據用於訓練集來訓練分布概率公式p(x)。

然後,在交叉驗證和測試集中使用包含正常和一定比例異常的數據,來通過查准率和召回率,以及F值公式來評價一個演算法。

舉個例子

假設有:

下面分割一下訓練集,交叉驗證集和測試集:

在訓練集上訓練出概率分布函數p(x)
在交叉驗證集上,預測y:

下面通過和真實標簽的比較,可以計算出 查准率(Precision)和召回率(Recall),然後通過F值公式來得到一個數值。

總結一下,我們將正常的數據分成60:20:20,分別給訓練集,交叉驗證集,測試集,然後將異常的數據分成兩半,交叉驗證集和測試集各一半。
我們可以通過改變不同的閾值 從而得到不同的評信檔價系數來選取一個最佳的閾值。
當得到的評價系數不佳時,也可以通過改變特徵值的種類和數量來獲取理想的評價系數

在使用異常檢測時,對性能影響最大的因素是特徵值的選擇。

首先要對特徵向量使用高斯分布來建模,通常情況下,我們得到的原始數據並沒有呈現高斯分布,例如這種:

有幾種方法可以實現:

通過上述辦法,可以將數據轉換成高斯分布的形式。

異常檢測有點類似監督學習中的二元分類問題。
我們的目標是使得p(x)對於正常的數據來說好坦中是大的,而對於異常的數據來說是很小的,而在異常檢測中一個常見的問題是最終我們的到的p(x)對於正常和異常的都很大。
在這種情況下需要觀察一下交叉驗證集中的異常示例,嘗試找出能更好區分數據的新特性。

例子

例如,有一個關於機房機器的樣本示例,開始收集的樣本示例中包含的特徵值有關於cpu負載和網路流量的。

cpu負載和網路流量是呈線性關系的,當網路流量變大時,cpu也會相應增大。

現在有一個異常的示例是網路流量不大,cpu確負載很大。假如在只有這兩個特徵值的情況下運行異常檢測演算法得出的p(x),可能就效果不佳。這時可以添加一個特徵值,是流量和cpu的比例關系,這樣就約束來上述的異常示例,通過這三個特徵值得到的異常檢測演算法可能就會好一點。

異常檢測一般用於:
樣友山本中 的數量非常少(0-50個),而 的非常多。這樣由於樣本數量的過少,達不到良好的訓練效果,而在異常檢測中確能夠表現良好。
還有就是導致 的情況非常多,且有不可預見性。

監督學習一般用於:
樣本中 和 的數量都非常多。這樣就有足夠的樣本數量去訓練演算法。

多元高斯分布是異常檢測的一種推廣,它可能會檢測到更多的異常。

在原始高斯分布中,模型p(x)的搭建是通過分別計算 來完成的,而多元高斯分布則是一步到位,直接計算出模型:

PS: 是一個協方差矩陣。

通過改變 和 可以得到不同的多元高斯分布圖:

原始高斯分布模型,它的多個特徵值之間的關系是軸對齊的(axis-aligned),兩個或多個高斯分布之間沒有相關性。
而多元高斯分布能夠自動捕獲x的不同特徵之間的相關性。因此它在圖像上會現實橢圓或有斜率的橢圓。

在平常的使用中,一般是使用原始高斯分布模型的,因為它的計算成本比較低。
在多元高斯分布中,因為要計算多個特徵值之間的相關性,導致計算會慢很多,而且當特徵值很多是,協方差矩陣就會很大,計算它的逆矩陣就會花費很多時間。

要保證樣本數量m大於特徵值數量n,否則協方差矩陣會不可逆;
根據經驗法則,當 時,多元高斯分布會表現良好。

在原始高斯分布模型中可以手動添加相關性高的特徵值之間的關系,可以避免了使用多元高斯分布,減小計算成本。

⑵ 異常點檢測方法

一、基本概念

異常對象被稱作離群點。異常檢測也稱偏差檢測和例外挖掘。

常見的異常成因:數據來源於不同的類(異常對象來自於一個與大多數數據對象源(類)不同的源(類)的思想),自然變異,以及數據測量或收集誤差。

異常檢測的方法:

(1)基於模型的技術:首先建立一個數據模型,異常是那些同模型不能完美擬合的對象;如果模型是簇的集合,則異常是不顯著屬於任何簇的對象;在使用回歸模型時,異常是相對遠離預測值的對象。

(2)基於鄰近度的技術:通常可以在對象之間定義鄰近性度量,異常對象是那些遠離其他對象的對象。

(3)基於密度的技術:僅當一個點的局部密度顯著低於它的大部分近鄰時才將其分類為離群點。

二、異常點檢測的方法

1、統計方法檢測離群點

統計學方法是基於模型的方法,即為數據創建一個模型,並且根據對象擬合模型的情況來評估它們。大部分用於離群點檢測的統計學方法都是構建一個概率分布模型,並考慮對象有多大可能符合該模型。離群點的概率定義:離群點是一個對象,關於數據的概率分布模型,它具有低概率。這種情況的前提是必須知道數據集服從什麼分布,如果估計錯誤就造成了重尾分布。異常檢測的混合模型方法:對於異常檢測,數據用兩個分布的混合模型建模,一個分布為普通數據,而另一個為離群點。

聚類和異常檢測目標都是估計分布的參數,以最大化數據的總似然(概率)。聚類時,使用EM演算法估計每個概率分布的參數。然而,這里提供的異常檢測技術使用一種更簡單的方法。初始時將所有對象放入普通對象集,而異常對象集為空。然後,用一個迭代過程將對象從普通集轉移到異常集,只要該轉移能提高數據的總似然(其實等價於把在正常對象的分布下具有低概率的對象分類為離群點)。(假設異常對象屬於均勻分布)。異常對象由這樣一些對象組成,這些對象在均勻分布下比在正常分布下具有顯著較高的概率。

優缺點:(1)有堅實的統計學理論基礎,當存在充分的數據和所用的檢驗類型的知識時,這些檢驗可能非常有效;(2)對於多元數據,可用的選擇少一些,並且對於高維數據,這些檢測可能性很差。

2、基於鄰近度的離群點檢測。

一個對象是異常的,如果它遠離大部分點。這種方法比統計學方法更一般、更容易使用,因為確定數據集的有意義的鄰近性度量比確定它的統計分布更容易。一個對象的離群點得分由到它的k-最近鄰的距離給定。離群點得分對k的取值高度敏感。如果k太小(例如1),則少量的鄰近離群點可能導致較低的離群點得分;如果k太大,則點數少於k的簇中所有的對象可能都成了離群點。為了使該方案對於k的選取咐族數更具有魯棒性,可以使用k個最近鄰的平均距離。

優缺點:(1)簡單;(2)缺點:基於鄰近度的方法需要O(m^2)時間,大數據集不適用;(3)該方法對參數的選擇也是敏感的;(4)不能處理具有不同密度區域的數據集,因為它使用全局閾值,不能考慮這種密度的變化。

3、基於密度的離群點檢測。

從基於密度的觀點來說,離群點是在低密度區域中的對象。一個對象的離群點得分是該對象周圍密度的逆。基於密度的離群點檢測與基於鄰近度的離群點檢測密切相關,因為密度通常用鄰近度定義。一種常用的定義密度的方法是,定義密度為到k個最近鄰的平均距離的倒數。如果該距離小,則密度高,反之亦然。另一種密度定義是使用DBSCAN聚類演算法使用的密度定義,即一個對象周圍的密度等於該對象指定距離d內對象的個數。需要小心的選擇d,如果d太小,則許多正常點可能具有低密度,從而具有高離穗輪群點得分。如果d太大,則許多離群點可能具有與正常點類似的密度(和離群點得分)。使用任何密度定義檢測離群點具有與基於鄰近度的離群點方案類似的特點和局限性。特殊地,當數據包含不同密度的區域時,它們不能正確的識別離群點。

為了正確的識別這種數據集中的離群點,我們需要與對象鄰域相關的密度概念,也就是定義相衡首對密度。常見的有兩種方法:(1)使用基於SNN密度的聚類演算法使用的方法;(2)用點x的密度與它的最近鄰y的平均密度之比作為相對密度。

使用相對密度的離群點檢測(局部離群點要素LOF技術):首先,對於指定的近鄰個數(k),基於對象的最近鄰計算對象的密度density(x,k) ,由此計算每個對象的離群點得分;然後,計算點的鄰近平均密度,並使用它們計算點的平均相對密度。這個量指示x是否在比它的近鄰更稠密或更稀疏的鄰域內,並取作x的離群點得分(這個是建立在上面的離群點得分基礎上的)。

優缺點:

(1)給出了對象是離群點的定量度量,並且即使數據具有不同的區域也能夠很好的處理;

(2)與基於距離的方法一樣,這些方法必然具有O(m2)的時間復雜度。對於低維數據使用特定的數據結構可以達到O(mlogm);

(3)參數選擇是困難的。雖然LOF演算法通過觀察不同的k值,然後取得最大離群點得分來處理該問題,但是,仍然需要選擇這些值的上下界。

4、基於聚類的技術

一種利用聚類檢測離群點的方法是丟棄遠離其他簇的小簇。這個方法可以和其他任何聚類技術一起使用,但是需要最小簇大小和小簇與其他簇之間距離的閾值。這種方案對簇個數的選擇高度敏感。使用這個方案很難將離群點得分附加到對象上。一種更系統的方法,首先聚類所有對象,然後評估對象屬於簇的程度(離群點得分)(基於原型的聚類可用離中心點的距離來評估,對具有目標函數的聚類技術該得分反映刪除對象後目標函數的改進(這個可能是計算密集的))。基於聚類的離群點:一個對象是基於聚類的離群點,如果該對象不強屬於任何簇。離群點對初始聚類的影響:如果通過聚類檢測離群點,則由於離群點影響聚類,存在一個問題:結構是否有效。為了處理該問題,可以使用如下方法:對象聚類,刪除離群點,對象再次聚類(這個不能保證產生最優結果)。還有一種更復雜的方法:取一組不能很好的擬合任何簇的特殊對象,這組對象代表潛在的離群點。隨著聚類過程的進展,簇在變化。不再強屬於任何簇的對象被添加到潛在的離群點集合;而當前在該集合中的對象被測試,如果它現在強屬於一個簇,就可以將它從潛在的離群點集合中移除。聚類過程結束時還留在該集合中的點被分類為離群點(這種方法也不能保證產生最優解,甚至不比前面的簡單演算法好,在使用相對距離計算離群點得分時,這個問題特別嚴重)。

對象是否被認為是離群點可能依賴於簇的個數(如k很大時的雜訊簇)。該問題也沒有簡單的答案。一種策略是對於不同的簇個數重復該分析。另一種方法是找出大量小簇,其想法是(1)較小的簇傾向於更加凝聚,(2)如果存在大量小簇時一個對象是離群點,則它多半是一個真正的離群點。不利的一面是一組離群點可能形成小簇而逃避檢測。

優缺點:

(1)基於線性和接近線性復雜度(k均值)的聚類技術來發現離群點可能是高度有效的;

(2)簇的定義通常是離群點的補,因此可能同時發現簇和離群點;

(3) 產生的離群點集和它們的得分可能非常依賴所用的簇的個數和數據中離群點的存在性;

(4)聚類演算法產生的簇的質量對該演算法產生的離群點的質量影響非常大。

新穎性和離群值檢測

離群值檢測:訓練數據包含離群值,即與其他觀測值相距甚遠的觀測值。離群檢測估計器會嘗試擬合訓練數據最集中的區域,忽略異常觀察。

新穎性檢測:訓練數據不受異常值的污染,有興趣檢測新觀察值是否是異常值。該情況下離群值也稱為新穎性。

離群值檢測和新穎性檢測均用於異常檢測,離群值檢測稱為無監督異常檢測,新穎性檢測稱為半監督異常檢測。離群值檢測的情況下,離群值/異常不能形成密集的群集,可假設離群值/異常位於低密度區域;新穎性檢測的情況下,只要新穎性/異常位於訓練數據的低密度區域,就可以形成密集的簇。

通過對玩具數據集進行異常檢測比較異常檢測演算法

數據集中包含一種或兩種模式(高密度區域),以說明演算法處理多模式數據的能力。

對於每個數據集,將生成15%的樣本作為隨機均勻雜訊。該比例是OneClassSVM的nu參數和其他異常值檢測演算法的污染參數提供的值。離群值之間的決策邊界以黑色顯示,但是LOF除外,因為當採用LOF用於離群值檢測時,沒有適用於新數據的預測方法。

OneClassSVM對異常值敏感,對異常值檢測執行的不好。當訓練集不受異常值污染時,此估計器最適合新穎性檢測。即不適用在高維中進行離群值檢測或者不對基礎數據的分布進行任何假設,OneClassSVM在這些情況下可能會根據其超參數給出有用的結果。

covariance EllipticEnvelope(協方差橢圓密度)假定數據是高斯分布並學習一個橢圓。在數據不是單峰時,會退化。此估計器對異常值具有魯棒性。

IsolationFrorest和LocalOutlierFactor針對多模式數據集效果顯著。LOF針對第三種數據集,明顯優於其它三種估計器,該數據集中兩種模式的密度不同。LOF的局部方面,即它僅將一個樣本的異常評分與其鄰居評分作比較,從何體現了該方法的優勢。

針對最後一個均勻分布在超立方體中的數據集,很難說一個樣本比另一個樣本異常得多。除了OneClassSVM有些過擬合外,所有估計器都針對該情況提出不錯的解決方案。針對這種情況,應該仔細觀察樣本的異常分數,性能好的估算器應該為所有樣本分配相似的分數。

使用局部離群因子(LOF)進行離群值檢測

LOF演算法是一種無監督的異常檢測方法,可計算給定數據點相對於其鄰居的局部密度偏差。其中密度遠低於其鄰居的樣本為異常值。

LOF演算法的優勢在於同時考慮了數據集的局部和全局屬性:即使在異常樣本具有不同底層密度的數據集中,仍能保持良好性能。問題不在於樣本有多孤立,而在於樣本相對於周圍鄰域有多孤立。

通常考慮的鄰居數量(1)大於群集必須包含的最小樣本數量,以便其他樣本可以是相對於該群集的局部離散值;(2)小於可能是局部異常值的最大進距采樣數,此類消息通常不可用,採用n_neighbors=20。

具有局部異常值的新穎性檢驗

LOF是一種無監督的異常檢測方法,可計算給定數據點相對於其鄰居的局部密度偏差,密度遠低於其鄰居的樣本為異常值。LOF用於新穎性檢驗時,切勿在訓練集上使用預測、決定函數、實例得分,會導致結果錯誤。只能對新的看不見的數據(不在訓練集中)使用這些方法。

通常考慮鄰居數量(1)大於群集必須包含的最小樣本數,以便其他樣本可以是相對於該群集的局部離群值;(2)小於可能是局部異常值的最大進距采樣數,此類消息通常不可用,採用n_neighbors=20。

隔離林

在高維數據集中執行異常檢測的一種有效方法是使用隨機森林,分離的觀察通過隨機選擇一個函數,隨機選擇所選擇的特徵的最大值和最小值之間的分割值。遞歸分區可用樹結構表示,隔離樣本所需的拆分數量等於從根節點到終止結點的路徑長度。隨機樹的森林中的平均路徑長度是對正態性和決策函數的度量。隨機分區產生的異常路徑明顯較短,因此如果隨機樹森林為特定樣本生成的較短路徑,則該樹代表的值很可能是異常的。

OneClassSVM

無監督的離群值檢測,支持高維分布,基於libsvm

不假定數據分布的任何參數形式,可以更好的對數據的復雜形狀進行建模,能夠捕獲真實的數據結構,難點在於調整核函數寬度參數,以便在數據散布矩陣的形狀和數據過度擬合的風險間取得折中。

協方差橢圓密度

用於檢測高斯分布數據集中的異常值的對象

經驗協方差估計(作為非穩健估計)受到觀測值異質結構的高度影響;魯棒協方差估計能夠集中於數據分布的主要模式,但是它堅持假設數據是高斯分布,產生了對數據結構的某些估計,在一定程度上是准確的。

HBOS單維效果極佳,但是標准差方法的mask 掩碼效應嚴重。例如 數據通常在100以內,但是有兩個異常點,500,1000000。這個演算法就不能檢出500這個異常點。

對比而言,孤立森林理論上更適合大數據的異常檢測,且無掩碼效應。孤立森林確定異常時訓練只用樣本數據。每顆樹樣本數量默認只有256個,默認只用100顆樹。所以理論上25600個樣本就能確定海量數據中的異常點了。

Sklearn的 isolation forest 例子默認是讀入全量數據再采樣。如果配上warm up 選項就能分批放入采樣。

異常檢測的深度學習研究綜述

⑶ 對於入侵檢測,統計異常檢測方法和特徵選擇異常檢測方法有什麼區別

統計異常檢測的方法用的是特徵輪廓的異常值加權,而特徵選擇異常檢測方法用的是特徵空間構成入侵的子集來判斷是否入侵。

這里ai表示與度量Mi的相關權重。一般而言,變數M1,M2…Mi 不是相互獨立的,需要更復雜的函數處理其相關性。異常性測量值僅僅是數字,沒有明確的理論依據支持這種處理方式。例如,使用多個獨立的異常性變數作為結合的依據,概率計算在理論上是正確的。但是,異常性測量和貝葉斯概率計算之間的關系並不是很清晰的。常見的幾種測量類型通常包括:



統計異常檢測方法的優點是所應用的技術方法在統計學中已經得到很好的研究。例如,位於標准方差兩側的數據可認為是異常的。但統計入侵檢測系統有以下幾點不足:



特徵選擇異常檢測方法

特徵選擇異常檢測方法是通過從一組度量中挑選能檢測出入侵的度量構成子集來准確地預測或分類已檢測到的入侵。判斷符合實際的度量是復雜的,因為合適地選擇度量子集依賴於檢測到的入侵類型,一個度量集對所有的各種各樣的入侵類型不可能是足夠的。預先確定特定的度量來檢測入侵可能會錯過單獨的特別的環境下的入侵。最理想的檢測入侵度量集必須動態地決策判斷以獲得最好的效果。假設與入侵潛在相關的度量有n 個,則這n個度量構成的子集數是2^n 個 。由於搜索空間同度量數是指數關系,所以窮盡搜索最理想的度量子集的開銷不是很有效的。Maccabe提出遺傳方法來搜索整個度量子空間以尋找正確的度量子集。其方法是使用學習分類器方法生成遺傳交叉運算元和基因突變運算元,除去降低預測入侵的度量子集,而採用遺傳運算元產生更強的度量子集取代。這種方法採用與較高的預測度量子集相結合,允許搜索的空間大小比其它的啟發式搜索技術更有效。

⑷ 異常檢測統計學方法

1. 概述
2. 參數方法

3. 非參數方法
4. HBOS
5. 總結

<span id="1"></span>

統計學方法對數據的正常性做出假定。 它們假定正常的數據對象由一個統計模型產生,而不遵守該模型的數據是異常點。 統計學方法的有效性高度依賴於對給定數據所做的統計模型假定是否成立。

具體方法:先基於統計學方法確定一個概率分布模型,然後判斷各個離散點有多大概率符合該模型。

難點在於如何得到概率分布模型。首先是識別數據集的具體分布:數據的真實分布是否是現在手裡的數據集完全體現的。盡管許多類型的數據都可以用常見的分布(高斯分布、泊松分布或者二項式分布)來描述,但是具有非標准分布的數據集非常常見。如果選擇了錯誤的模型,則對象可能會被錯誤地識別為異常點。其次,如何確定使用屬性的個數,基於統計學的方法,數據的屬性一般具有一個或多個,那麼在建立概率分布模型的過程中究竟是用一個屬性還是多個屬性需要分析和嘗試。最後,當使用數據屬性很多時,模型比較復雜並且難以理解,會涉及到EM演算法。

異常檢測的統計學方法,有兩種具體的方法:參數方法和非參數方法。

<span id="2"></span>

假定正常的數據對象被一個以 為參數的參數分布產生。該參數分布的概率密度函數 給出對象 被該分布產生的概率。該值越小, 越可能是異常點。

<span id="2.1"></span>

僅涉及一個屬性或變數的數據稱為一元數據。我們假定數據分布符合正態分布,然後通過現有的數據得到正態分布的關鍵參數,把低概率的點識別為異常點。

假定輸入的數據集為 ,數據集中的樣本服從正態分布,即存在一個 和 ,使得 。這里的 和 可以通過計算求得。

計算公式如下:

求出上述的參數後,我們就可以根據概率密度函數計算每個數據點服從正態分布的概率,或者說離散數據點的概率。

概率計算公式為:

需要確定一個閾值,這個閾值一般是經驗值,可以選擇在驗證集上使得評估指標值最大的閾值取值作為最終閾值。如果計算出來的概率低於閾值,就可以認為該數據點為異常點。

例如常用的3sigma原則,如果數據點超過范圍 ,那麼這些點可能是異常點。鉛汪頌

這個方法還可以用於可視化。參考箱型圖,以數據集的上下四分位數(Q1和Q3)、中點等參數,異常點常被定義為小於 和 。其中, 。

利用python畫一個箱型圖:

<span id="2.2"></span>

涉及兩個或多個屬性或變數的數據稱為多元數據。分為兩種情況,一種是特徵相互獨立,一種是特徵間不相互獨立。

<span id="2.2"></span>

當數據是多元數據的時候,核心思想是把多元異常點檢測任務轉換為一元異常點檢測問題。例如基於正態分布的一元異常點檢測擴充到多元情形時,可以求出每一維度的均值和標准差。對於第 維:

計算概率密度函數:

<span id="2.2.2"></span>

<span id="2.3"></span>

當實際數據很復雜時,可以考慮建立混合參數模型,假定數據集 包含來自兩個概率分布: 是大多數(正常)對象的分布,而 是異常對象的分布。數據的總概率分布可以記作

其中, 是一個數據對象; 是0和1之間的數,給出離群點的期望比例。

<span id="3"></span>

相比參數方法,非參數方法對數據做較少的假定,不做先驗概率分布,因而在更多情況下被使用。

直方圖是一種頻繁使用的非參數統計模型,可以用來檢測異常點。該過程包括如下兩步:

步驟1:構造直方圖。使用輸入數據(訓練數據)構造一個直方圖。該直方圖可以是一元的,或者多元的(如果輸入數據是多維的)。

盡管非參數方法並不假定任何先驗統計模型,但是通常確實要求用戶提供參數,以便由數據學習。例如,用戶必須指定直方圖的類型(等寬的或等深的)和其他參數(直方圖中的箱數或每個箱的大小等)。與參數方法不同,這些參數並不指定數據分布的類型。

步驟2:陵爛檢測異常點。為了確定一個對象是否是異常點,可以對照直方圖檢查它。在最簡單的方法中,如果槐鄭該對象落入直方圖的一個箱中,則該對象被看作正常的,否則被認為是異常點。

對於更復雜的方法,可以使用直方圖賦予每個對象一個異常點得分。例如令對象的異常點得分為該對象落入的箱的容積的倒數。

使用直方圖作為異常點檢測的非參數模型的一個缺點是, 很難選擇一個合適的箱尺寸 。一方面,如果箱尺寸太小,則許多正常對象都會落入空的或稀疏的箱中,因而被誤識別為異常點。另一方面,如果箱尺寸太大,則異常點對象可能滲入某些頻繁的箱中,因而「假扮」成正常的。

<span id="4"></span>

HBOS全名為:Histogram-based Outlier Score。它是一種單變數方法的組合,不能對特徵之間的依賴關系進行建模,但是計算速度較快,對大數據集友好。其基本假設是數據集的每個維度 相互獨立 。然後對每個維度進行區間(bin)劃分,區間的密度越高,異常評分越低。

HBOS演算法流程:

推導過程如下:

<span id="5"></span>

⑸ 異常檢測有哪些主要的分析方法

1. 概率統計方法
在基於異常鋒姿檢測技術的IDS中應用最早也是最多的一種方法。
首先要對系統或用戶的行為按照一定的時間間隔進行采樣,樣本的內容包括每個會話的登錄、退出情況,CPU和內存的佔用情況,硬碟等存儲介質的使用情況等。
將每次採集到的樣本進行計算,得出一系列的參數變數對這些行為進行描述,從而產生行為輪廓,將每次采樣後得到的行為輪廓與已有輪廓進行合並,最終得到系統和用戶的正常行為輪廓。IDS通過將當前採集到的行為輪廓與正常行為輪廓相比較,來檢測是否存在網路入侵行為。
2. 預測模式生成法
假設條件是事件序列不是隨機的而是遵循可辨別的模式。這種檢測方法的特點是考慮了事件的序列及其相互聯系,利用時間規則識別用戶行為正常模式的特徵。通過歸納學習產生這些規則集,並能動態地修改系統中的這些規則,使之具有較高的預測性、准確性。如果規則在大部分時間是正確的,並能夠成功地運用預測所觀察到的數據,那麼規則就具有高可信度。
3. 神經網路方法
基本思想是用一系列信息單元(命令)訓練神經單元,這樣在給定一組輸入後、就可能預測出輸出。與統計理論相比,神經網路更好地表達了變數間的非線性關系,並且能自睜基兆動學習並更新。悉租實驗表明UNIX系統管理員的行為幾乎全是可以預測的,對於一般用戶,不可預測的行為也只佔了很少的一部分。

⑹ 入侵檢測系統異常檢測方法有什麼

入侵檢測技術基礎 1. IDS(入侵檢測系統)存在與發展的必然性 (1)網路安全本身的復雜性,被動式的防禦方式顯得力不從心。(2)有關供觸垛吠艹杜訛森番緝防火牆:網路邊界的設備;自身可以被攻破;對某些攻擊保護很弱;並非所有威脅均來自防火牆外部。(3)入侵很容易:入侵教程隨處可見;各種工具唾手可得 2. 入侵檢測(Intrusion Detection) ●定義:通過從計算機網路或計算機系統中的若干關鍵點收集信息並對其進行分析,從中發現網路或系統中是否有違反安全策略的行為和遭到襲擊的跡象的一種安全技術。入侵檢測的分類(1)按照分析方法/檢測原理分類 ●異常檢測(Anomaly Detection):基於統計分析原理。首先總結正常操作應該具有的特徵(用戶輪廓),試圖用定量的方式加以描述,當用戶活動與正常行為有重大偏離時即被認為是入侵。前提:入侵是異常活動的子集。指標:漏報率低,誤報率高。用戶輪廓(Profile):通常定義為各種行為參數及其閥值的集合,用於描述正常行為范圍。特點:異常檢測系統的效率取決於用戶輪廓的完備性和監控的頻率;不需要對每種入侵行為進行定義,因此能有效檢測未知的入侵;系統能針對用戶行為的改變進行自我調整和優化,但隨著檢測模型的逐步精確,異常檢測會消耗更多的系統資源 ●誤用檢測(Misuse Detection):基於模式匹配原理。收集非正常操作的行為特徵,建立相關的特徵庫,當監測的用戶或系統行為與庫中的記錄相匹配時,系統就認為這種行為是入侵。前提:所有的入侵行為都有可被檢測到的特徵。指標:誤報低、漏報高。攻擊特徵庫:當監測的用戶或系統行為與庫中的記錄相匹配時,系統就認為這種行為是入侵。特點:採用模式匹配,誤用模式能明顯降低誤報率,但漏報率隨之增加。攻擊特徵的細微變化,會使得誤用檢測無能為力。

⑺ 大數據科學家需要掌握的幾種異常值檢測方法

引言

異常值檢測與告警一直是工業界非常關注的問題,自動准確地檢測出系統的異常值,不僅可以節約大量的人力物力,還能盡早發現系統的異常情況,挽回不必要的損失。個推也非常重視大數據中的異常值檢測,例如在運維部門的流量管理業務中,個推很早便展開了對異常值檢測的實踐,也因此積累了較為豐富的經驗。本文將從以下幾個方面介紹異常值檢測。

1、異常值檢測研究背景

2、異常值檢測方法原理

3、異常值檢測應用實踐

異常值檢測研究背景

異常值,故名思議就是不同於正常值的值。 在數學上,可以用離群點來表述,這樣便可以將異常值檢測問題轉化為數學問題來求解。

異常值檢測在很多場景都有廣泛的應用,比如:

1、流量監測

互聯網上某些伺服器的訪問量,可能具有周期性或趨勢性:一般情況下都是相對平穩的,但是當受到某些黑客攻擊後,其訪問量可能發生顯著的變化,及早發現這些異常變化對企業而言有著很好的預防告警作用。

2、金融風控

正常賬戶中,用戶的轉賬行為一般屬於低頻事件,但在某些金融詐騙案中,一些嫌犯的賬戶就可能會出現高頻的轉賬行為,異常檢測系統如果能發現這些異常行為,及時採取相關措施,則會規避不少損失。

3、機器故障檢測

一個運行中的流水線,可能會裝有不同的感測器用來監測運行中的機器,這些感測器數據就反應了機器運行的狀態,這些實時的監測數據具有數據量大、維度廣的特點,用人工盯著看的話成本會非常高,高效的自動異常檢測演算法將能很好地解決這一問題。

異常值檢測方法原理

本文主要將異常值檢測方法分為兩大類:一類是基於統計的異常值檢測,另一類是基於模型的異常值檢測。

基於統計的方法  

基於模型的方法

1、基於統計的異常值檢測方法

常見的基於統計的異常值檢測方法有以下2種,一種是基於3σ法則,一種是基於箱體圖。

3σ法則  

箱體圖

3σ法則是指在樣本服從正態分布時,一般可認為小於μ-3σ或者大於μ+3σ的樣本值為異常樣本,其中μ為樣本均值,σ為樣本標准差。在實際使用中,我們雖然不知道樣本的真實分布,但只要真實分布與正太分布相差不是太大,該經驗法則在大部分情況下便是適用的。

箱體圖也是一種比較常見的異常值檢測方法,一般取所有樣本的25%分位點Q1和75%分位點Q3,兩者之間的距離為箱體的長度IQR,可認為小於Q1-1.5IQR或者大於Q3+1.5IQR的樣本值為異常樣本。

基於統計的異常檢測往往具有計算簡單、有堅實的統計學基礎等特點,但缺點也非常明顯,例如需要大量的樣本數據進行統計,難以對高維樣本數據進行異常值檢測等。

2、基於模型的異常值檢測

通常可將異常值檢測看作是一個二分類問題,即將所有樣本分為正常樣本和異常樣本,但這和常規的二分類問題又有所區別,常規的二分類一般要求正負樣本是均衡的,如果正負樣本不均勻的話,訓練結果往往會不太好。但在異常值檢測問題中,往往面臨著正(正常值)負(異常值)樣本不均勻的問題,異常值通常比正常值要少得多,因此需要對常規的二分類模型做一些改進。

基於模型的異常值檢測一般可分為有監督模型異常值檢測和無監督模型異常值檢測,比較典型的有監督模型如oneclassSVM、基於神經網路的自編碼器等。 oneclassSVM就是在經典的SVM基礎上改進而來,它用一個超球面替代了超平面,超球面以內的值為正常值,超球面以外的值為異常值。

經典的SVM  

1

 基於模型的方法

2

基於神經網路的自編碼器結構如下圖所示。

自編碼器(AE)

將正常樣本用於模型訓練,輸入與輸出之間的損失函數可採用常見的均方誤差,因此檢測過程中,當正常樣本輸入時,均方誤差會較小,當異常樣本輸入時,均方誤差會較大,設置合適的閾值便可將異常樣本檢測出來。但該方法也有缺點,就是對於訓練樣本比較相近的正常樣本判別較好,但若正常樣本與訓練樣本相差較大,則可能會導致模型誤判。

無監督模型的異常值檢測是異常值檢測中的主流方法,因為異常值的標注成本往往較高,另外異常值的產生往往無法預料,因此有些異常值可能在過去的樣本中根本沒有出現過, 這將導致某些異常樣本無法標注,這也是有監督模型的局限性所在。 較為常見的無監督異常值檢測模型有密度聚類(DBSCAN)、IsolationForest(IF)、RadomCutForest(RCF)等,其中DBSCAN是一種典型的無監督聚類方法,對某些類型的異常值檢測也能起到不錯的效果。該演算法原理網上資料較多,本文不作詳細介紹。

IF演算法最早由南京大學人工智慧學院院長周志華的團隊提出,是一種非常高效的異常值檢測方法,該方法不需要對樣本數據做任何先驗的假設,只需基於這樣一個事實——異常值只是少數,並且它們具有與正常值非常不同的屬性值。與隨機森林由大量決策樹組成一樣,IsolationForest也由大量的樹組成。IsolationForest中的樹叫isolation tree,簡稱iTree。iTree樹和決策樹不太一樣,其構建過程也比決策樹簡單,因為其中就是一個完全隨機的過程。

假設數據集有N條數據,構建一顆iTree時,從N條數據中均勻抽樣(一般是無放回抽樣)出n個樣本出來,作為這顆樹的訓練樣本。

在樣本中,隨機選一個特徵,並在這個特徵的所有值范圍內(最小值與最大值之間)隨機選一個值,對樣本進行二叉劃分,將樣本中小於該值的劃分到節點的左邊,大於等於該值的劃分到節點的右邊。

這樣得到了一個分裂條件和左、右兩邊的數據集,然後分別在左右兩邊的數據集上重復上面的過程,直至達到終止條件。 終止條件有兩個,一個是數據本身不可再分(只包括一個樣本,或者全部樣本相同),另外一個是樹的高度達到log2(n)。 不同於決策樹,iTree在演算法裡面已經限制了樹的高度。不限制雖然也可行,但出於效率考慮,演算法一般要求高度達到log2(n)深度即可。

把所有的iTree樹構建好了,就可以對測試數據進行預測了。預測的過程就是把測試數據在iTree樹上沿對應的條件分支往下走,直到達到葉子節點,並記錄這過程中經過的路徑長度h(x),即從根節點,穿過中間的節點,最後到達葉子節點,所走過的邊的數量(path length)。最後,將h(x)帶入公式,其中E(.)表示計算期望,c(n)表示當樣本數量為n時,路徑長度的平均值,從而便可計算出每條待測數據的異常分數s(Anomaly Score)。異常分數s具有如下性質:

1)如果分數s越接近1,則該樣本是異常值的可能性越高;

2)如果分數s越接近0,則該樣本是正常值的可能性越高;

RCF演算法與IF演算法思想上是比較類似的,前者可以看成是在IF演算法上做了一些改進。針對IF演算法中沒有考慮到的時間序列因素,RCF演算法考慮了該因素,並且在數據樣本采樣策略上作出了一些改進,使得異常值檢測相對IF演算法變得更加准確和高效,並能更好地應用於流式數據檢測。

IF演算法

RCF演算法

上圖展示了IF演算法和RCF演算法對於異常值檢測的異同。我們可以看出原始數據中有兩個突變異常數據值,對於後一個較大的突變異常值,IF演算法和RCF演算法都檢測了出來,但對於前一個較小的突變異常值,IF演算法沒有檢測出來,而RCF演算法依然檢測了出來,這意味著RCF有更好的異常值檢測性能。

異常值檢測應用實踐

理論還需結合實踐,下面我們將以某應用從2016.08.16至2019.09.21的日活變化情況為例,對異常值檢測的實際應用場景予以介紹:

從上圖中可以看出該應用的日活存在著一些顯著的異常值(比如紅色圓圈部分),這些異常值可能由於活動促銷或者更新迭代出現bug導致日活出現了比較明顯的波動。下面分別用基於統計的方法和基於模型的方法對該日活序列數據進行異常值檢測。

基於3σ法則(基於統計)

RCF演算法(基於模型)

從圖中可以看出,對於較大的突變異常值,3σ法則和RCF演算法都能較好地檢測出來, 但對於較小的突變異常值,RCF演算法則要表現得更好。

總結

上文為大家講解了異常值檢測的方法原理以及應用實踐。綜合來看,異常值檢測演算法多種多樣 ,每一種都有自己的優缺點和適用范圍,很難直接判斷哪一種異常檢測演算法是最佳的, 具體在實戰中,我們需要根據自身業務的特點,比如對計算量的要求、對異常值的容忍度等,選擇合適的異常值檢測演算法。

接下來,個推也會結合自身實踐,在大數據異常檢測方面不斷深耕,繼續優化演算法模型在不同業務場景中的性能,持續為開發者們分享前沿的理念與最新的實踐方案。

⑻ 「宏觀網路流量」的定義是什麼有哪些異常檢測方法

一種互聯網宏觀流量異常檢測方法(2007-11-7 10:37) 摘要:網路流量異常指網路中流量不規則地顯著變化。網路短暫擁塞、分布式拒絕服務攻擊、大范圍掃描等本地事件或者網路路由異常等全局事件都能夠引起網路的異常。網路異常的檢測和分析對於網路安全應急響應部門非常重要,但是宏觀流量異常檢測需要從大量高維的富含雜訊的數據中提取和解釋異常模式,因此變得很困難。文章提出一種分析網路異常的通用方法,該方法運用主成分分析手段將高維空間劃分為對應正常和異常網路行為的子空間,並將流量向量影射在正常子空間中,使用基於距離的度量來檢測宏觀網路流量異常事件。公共互聯網正在社會生活的各個領域發揮著越來越重要的作用,與此同時,由互聯網的開放性和應用系統的復雜性所帶來的安全風險也隨之增多。2006年,國家計算機網路應急技術處理協調中心(CNCERT/CC)共接收26 476件非掃描類網路安全事件報告,與2005年相比增加2倍,超過2003—2005年3年的總和。2006年,CNCERT/CC利用部署的863-917網路安全監測平台,抽樣監測發現中國大陸地區約4.5萬個IP地址的主機被植入木馬,與2005年同期相比增加1倍;約有1千多萬個IP地址的主機被植入僵屍程序,被境外約1.6萬個主機進行控制。黑客利用木馬、僵屍網路等技術操縱數萬甚至上百萬台被入侵的計算機,釋放惡意代碼、發送垃圾郵件,並實施分布式拒絕服務攻擊,這對包括骨幹網在內的整個互聯網網路帶來嚴重的威脅。由數萬台機器同時發起的分布式拒絕服務攻擊能夠在短時間內耗盡城域網甚至骨幹網的帶寬,從而造成局部的互聯網崩潰。由於政府、金融、證券、能源、海關等重要信息系統的諸多業務依賴互聯網開展,互聯網骨幹網路的崩潰不僅會帶來巨額的商業損失,還會嚴重威脅國家安全。據不完全統計,2001年7月19日爆發的紅色代碼蠕蟲病毒造成的損失估計超過20億美元;2001年9月18日爆發的Nimda蠕蟲病毒造成的經濟損失超過26億美元;2003年1月爆發的SQL Slammer蠕蟲病毒造成經濟損失超過12億美元。針對目前互聯網宏觀網路安全需求,本文研究並提出一種宏觀網路流量異常檢測方法,能夠在骨幹網路層面對流量異常進行分析,在大規模安全事件爆發時進行快速有效的監測,從而為網路防禦贏得時間。1 網路流量異常檢測研究現狀在骨幹網路層面進行宏觀網路流量異常檢測時,巨大流量的實時處理和未知攻擊的檢測給傳統入侵檢測技術帶來了很大的挑戰。在流量異常檢測方面,國內外的學術機構和企業不斷探討並提出了多種檢測方法[1]。經典的流量監測方法是基於閾值基線的檢測方法,這種方法通過對歷史數據的分析建立正常的參考基線范圍,一旦超出此范圍就判斷為異常,它的特點是簡單、計算復雜度小,適用於實時檢測,然而它作為一種實用的檢測手段時,需要結合網路流量的特點進行修正和改進。另一種常用的方法是基於統計的檢測,如一般似然比(GLR)檢測方法[2],它考慮兩個相鄰的時間窗口以及由這兩個窗口構成的合並窗口,每個窗口都用自回歸模型擬合,並計算各窗口序列殘差的聯合似然比,然後與某個預先設定的閾值T 進行比較,當超過閾值T 時,則窗口邊界被認定為異常點。這種檢測方法對於流量的突變檢測比較有效,但是由於它的閾值不是自動選取,並且當異常持續長度超過窗口長度時,該方法將出現部分失效。統計學模型在流量異常檢測中具有廣闊的研究前景,不同的統計學建模方式能夠產生不同的檢測方法。最近有許多學者研究了基於變換域進行流量異常檢測的方法[3],基於變換域的方法通常將時域的流量信號變換到頻域或者小波域,然後依據變換後的空間特徵進行異常監測。P. Barford等人[4]將小波分析理論運用於流量異常檢測,並給出了基於其理論的4類異常結果,但該方法的計算過於復雜,不適於在高速骨幹網上進行實時檢測。Lakhina等人[5-6]利用主成分分析方法(PCA),將源和目標之間的數據流高維結構空間進行PCA分解,歸結到3個主成分上,以3個新的復合變數來重構網路流的特徵,並以此發展出一套檢測方法。此外還有一些其他的監測方法[7],例如基於Markov模型的網路狀態轉換概率檢測方法,將每種類型的事件定義為系統狀態,通過過程轉換模型來描述所預測的正常的網路特徵,當到來的流量特徵與期望特徵產生偏差時進行報警。又如LERAD檢測[8],它是基於網路安全特徵的檢測,這種方法通過學習得到流量屬性之間的正常的關聯規則,然後建立正常的規則集,在實際檢測中對流量進行規則匹配,對違反規則的流量進行告警。這種方法能夠對發生異常的地址進行定位,並對異常的程度進行量化。但學習需要大量正常模式下的純凈數據,這在實際的網路中並不容易實現。隨著宏觀網路異常流量檢測成為網路安全的技術熱點,一些廠商紛紛推出了電信級的異常流量檢測產品,如Arbor公司的Peakflow、GenieNRM公司的GenieNTG 2100、NetScout公司的nGenius等。國外一些研究機構在政府資助下,開始部署宏觀網路異常監測的項目,並取得了較好的成績,如美國研究機構CERT建立了SiLK和AirCERT項目,澳大利亞啟動了NMAC流量監測系統等項目。針對宏觀網路異常流量監測的需要,CNCERT/CC部署運行863-917網路安全監測平台,採用分布式的架構,能夠通過多點對骨幹網路實現流量監測,通過分析協議、地址、埠、包長、流量、時序等信息,達到對中國互聯網宏觀運行狀態的監測。本文基於863-917網路安全監測平台獲取流量信息,構成監測矩陣,矩陣的行向量由源地址數量、目的地址數量、傳輸控制協議(TCP)位元組數、TCP報文數、數據報協議(UDP)位元組數、UDP報文數、其他流量位元組數、其他流量報文書、WEB流量位元組數、WEB流量報文數、TOP10個源IP占總位元組比例、TOP10個源IP占總報文數比例、TOP10個目的IP占總位元組數比例、TOP10個目的IP占總報文數比例14個部分組成,系統每5分鍾產生一個行向量,觀測窗口為6小時,從而形成了一個72×14的數量矩陣。由於在這14個觀測向量之間存在著一定的相關性,這使得利用較少的變數反映原來變數的信息成為可能。本項目採用了主成份分析法對觀測數據進行數據降維和特徵提取,下面對該演算法的工作原理進行介紹。 2 主成分分析技術主成分分析是一種坐標變換的方法,將給定數據集的點映射到一個新軸上面,這些新軸稱為主成分。主成分在代數學上是p 個隨機變數X 1, X 2……X p 的一系列的線性組合,在幾何學中這些現線性組合代表選取一個新的坐標系,它是以X 1,X 2……X p 為坐標軸的原來坐標系旋轉得到。新坐標軸代表數據變異性最大的方向,並且提供對於協方差結果的一個較為簡單但更精練的刻畫。主成分只是依賴於X 1,X 2……X p 的協方差矩陣,它是通過一組變數的幾個線性組合來解釋這些變數的協方差結構,通常用於高維數據的解釋和數據的壓縮。通常p 個成分能夠完全地再現全系統的變異性,但是大部分的變異性常常能夠只用少量k 個主成分就能夠說明,在這種情況下,這k 個主成分中所包含的信息和那p 個原變數做包含的幾乎一樣多,於是可以使用k 個主成分來代替原來p 個初始的變數,並且由對p 個變數的n 次測量結果所組成的原始數據集合,能夠被壓縮成為對於k 個主成分的n 次測量結果進行分析。運用主成分分析的方法常常能夠揭示出一些先前不曾預料的關系,因而能夠對於數據給出一些不同尋常的解釋。當使用零均值的數據進行處理時,每一個主成分指向了變化最大的方向。主軸以變化量的大小為序,一個主成分捕捉到在一個軸向上最大變化的方向,另一個主成分捕捉到在正交方向上的另一個變化。設隨機向量X '=[X 1,X 1……X p ]有協方差矩陣∑,其特徵值λ1≥λ2……λp≥0。考慮線性組合:Y1 =a 1 'X =a 11X 1+a 12X 2……a 1pX pY2 =a 2 'X =a 21X 1+a 22X 2……a 2pX p……Yp =a p'X =a p 1X 1+a p 2X 2……a p pX p從而得到:Var (Yi )=a i' ∑a i ,(i =1,2……p )Cov (Yi ,Yk )=a i '∑a k ,(i ,k =1,2……p )主成分就是那些不相關的Y 的線性組合,它們能夠使得方差盡可能大。第一主成分是有最大方差的線性組合,也即它能夠使得Var (Yi )=a i' ∑a i 最大化。我們只是關注有單位長度的系數向量,因此我們定義:第1主成分=線性組合a 1'X,在a1'a 1=1時,它能夠使得Var (a1 'X )最大;第2主成分=線性組合a 2 'X,在a2'a 2=1和Cov(a 1 'X,a 2 'X )=0時,它能夠使得Var (a 2 'X )最大;第i 個主成分=線性組合a i'X,在a1'a 1=1和Cov(a i'X,a k'X )=0(k<i )時,它能夠使得Var (a i'X )最大。由此可知主成分都是不相關的,它們的方差等於協方差矩陣的特徵值。總方差中屬於第k個主成分(被第k個主成分所解釋)的比例為:如果總方差相當大的部分歸屬於第1個、第2個或者前幾個成分,而p較大的時候,那麼前幾個主成分就能夠取代原來的p個變數來對於原有的數據矩陣進行解釋,而且信息損失不多。在本項目中,對於一個包含14個特徵的矩陣進行主成分分析可知,特徵的最大變化基本上能夠被2到3個主成分捕捉到,這種主成分變化曲線的陡降特性構成了劃分正常子空間和異常子空間的基礎。3 異常檢測演算法本項目的異常流量檢測過程分為3個階段:建模階段、檢測階段和評估階段。下面對每個階段的演算法進行詳細的介紹。3.1 建模階段本項目採用滑動時間窗口建模,將當前時刻前的72個樣本作為建模空間,這72個樣本的數據構成了一個數據矩陣X。在試驗中,矩陣的行向量由14個元素構成。主成份分為正常主成分和異常主成份,它們分別代表了網路中的正常流量和異常流量,二者的區別主要體現在變化趨勢上。正常主成份隨時間的變化較為平緩,呈現出明顯的周期性;異常主成份隨時間的變化幅度較大,呈現出較強的突發性。根據采樣數據,判斷正常主成分的演算法是:依據主成分和采樣數據計算出第一主成分變數,求第一主成分變數這72個數值的均值μ1和方差σ1,找出第一主成分變數中偏離均值最大的元素,判斷其偏離均值的程度是否超過了3σ1。如果第一主成分變數的最大偏離超過了閾值,取第一主成份為正常主成分,其他主成份均為異常主成分,取主成份轉換矩陣U =[L 1];如果最大偏離未超過閾值,轉入判斷第下一主成分,最後取得U =[L 1……L i -1]。第一主成份具有較強的周期性,隨後的主成份的周期性漸弱,突發性漸強,這也體現了網路中正常流量和異常流量的差別。在得到主成份轉換矩陣U後,針對每一個采樣數據Sk =xk 1,xk 2……xk p ),將其主成份投影到p維空間進行重建,重建後的向量為:Tk =UU T (Sk -X )T計算該采樣數據重建前與重建後向量之間的歐氏距離,稱之為殘差:dk =||Sk -Tk ||根據采樣數據,我們分別計算72次采樣數據的殘差,然後求其均值μd 和標准差σd 。轉換矩陣U、殘差均值μd 、殘差標准差σd 是我們構造的網路流量模型,也是進行流量異常檢測的前提條件。 3.2 檢測階段在通過建模得到網路流量模型後,對於新的觀測向量N,(n 1,n 2……np ),採用與建模階段類似的分析方法,將其中心化:Nd =N -X然後將中心化後的向量投影到p維空間重建,並計算殘差:Td =UUTNdTd =||Nd -Td ||如果該觀測值正常,則重建前與重建後向量應該非常相似,計算出的殘差d 應該很小;如果觀測值代表的流量與建模時發生了明顯變化,則計算出的殘差值會較大。本項目利用如下演算法對殘差進行量化:3.3 評估階段評估階段的任務是根據當前觀測向量的量化值q (d ),判斷網路流量是否正常。根據經驗,如果|q (d )|<5,網路基本正常;如果5≤|q (d )|<10,網路輕度異常;如果10≤|q (d )|,網路重度異常。4 實驗結果分析利用863-917網路安全監測平台,對北京電信骨幹網流量進行持續監測,我們提取6小時的觀測數據,由於篇幅所限,我們給出圖1—4的時間序列曲線。由圖1—4可知單獨利用任何一個曲線都難以判定異常,而利用本演算法可以容易地標定異常發生的時間。本演算法計算結果如圖5所示,異常發生時間在圖5中標出。我們利用863-917平台的回溯功能對於異常發生時間進行進一步的分析,發現在標出的異常時刻,一個大規模的僵屍網路對網外的3個IP地址發起了大規模的拒絕服務攻擊。 5 結束語本文提出一種基於主成分分析的方法來劃分子空間,分析和發現網路中的異常事件。本方法能夠准確快速地標定異常發生的時間點,從而幫助網路安全應急響應部門及時發現宏觀網路的流量異常狀況,為迅速解決網路異常贏得時間。試驗表明,我們採用的14個特徵構成的分析矩陣具有較好的識別准確率和分析效率,我們接下來將會繼續尋找更具有代表性的特徵來構成數據矩陣,並研究更好的特徵矩陣構造方法來進一步提高此方法的識別率,並將本方法推廣到短時分析中。6 參考文獻[1] XU K, ZHANG Z L, BHATTACHARYYA S. Profiling Internet backbone traffic: Behavior models and applications [C]// Proceedings of ACM SIGCOMM, Aug 22- 25, 2005, Philadelphia, PA, USA. New York, NY,USA:ACM,2005:169-180.[2] HAWKINS D M, QQUI P, KANG C W. The change point model for statistical process control [J]. Journal of Quality Technology,2003, 35(4).[3] THOTTAN M, JI C. Anomaly detection in IP networks [J]. IEEE Transactions on Signal Processing, 2003, 51 )8):2191-2204.[4] BARFORD P, KLINE J, PLONKA D, et al. A signal analysis of network traffic anomalies [C]//Proceedings of ACM SIGCOMM Intemet Measurement Workshop (IMW 2002), Nov 6-8, 2002, Marseilles, France. New York, NY,USA:ACM, 2002:71-82.[5] LAKHINA A, CROVELLA M, DIOT C. Mining anomalies using traffic feature distributions [C]// Proceedings of SIGCOMM, Aug 22-25, 2005, Philadelphia, PA, USA. New York, NY,USA: ACM, 2005: 217-228.[6] LAKHINA A, CROVELLA M, DIOT C. Diagnosing network-wide traffic anomalies [C]// Proceedings of ACM SIGCOMM, Aug 30 - Sep 3, 2004, Portland, OR, USA. New York, NY,USA: ACM, 2004: 219-230.[7] SCHWELLER R, GUPTA A, PARSONS E, et al. Reversible sketches for efficient and accurate change detection over network data streams [C]//Proceedings of ACM SIGCOMM Internet Measurement Conference (IMC』04), Oct 25-27, 2004, Taormina, Sicily, Italy. New York, NY,USA: ACM, 2004:207-212.[8] MAHONEY M V, CHAN P K. Learning rules for anomaly detection of hostile network traffic [C]// Proceedings of International Conference on Data Mining (ICDM』03), Nov 19-22, Melbourne, FL, USA . Los Alamitos, CA, USA: IEEE Computer Society, 2003:601-604.

閱讀全文

與網路考試異常行為檢測演算法相關的資料

熱點內容
網路共享中心沒有網卡 瀏覽:513
電腦無法檢測到網路代理 瀏覽:1364
筆記本電腦一天會用多少流量 瀏覽:548
蘋果電腦整機轉移新機 瀏覽:1368
突然無法連接工作網路 瀏覽:1030
聯通網路怎麼設置才好 瀏覽:1213
小區網路電腦怎麼連接路由器 瀏覽:1006
p1108列印機網路共享 瀏覽:1203
怎麼調節台式電腦護眼 瀏覽:667
深圳天虹蘋果電腦 瀏覽:906
網路總是異常斷開 瀏覽:603
中級配置台式電腦 瀏覽:963
中國網路安全的戰士 瀏覽:623
同志網站在哪裡 瀏覽:1404
版觀看完整完結免費手機在線 瀏覽:1449
怎樣切換默認數據網路設置 瀏覽:1099
肯德基無線網無法訪問網路 瀏覽:1275
光纖貓怎麼連接不上網路 瀏覽:1445
神武3手游網路連接 瀏覽:956
局網列印機網路共享 瀏覽:991