導航:首頁 > 異常信息 > 情感分析之多層全連接神經網路

情感分析之多層全連接神經網路

發布時間:2023-08-02 22:17:49

❶ 理解神經網路卷積層、全連接層

https://zhuanlan.hu.com/p/32472241

卷積神經網路,這玩意兒乍一聽像是生物和數學再帶點計算機技術混合起來的奇怪東西。奇怪歸奇怪,不得不說,卷積神經網路是計算機視覺領域最有影響力的創造之一。

2012年是卷積神經網路崛起之年。這一年,Alex Krizhevsky帶著卷積神經網路參加了ImageNet競賽(其重要程度相當於奧運會)並一鳴驚人,將識別錯誤率從26%降到了15%,。從那開始,很多公司開始使用深度學習作為他們服務的核心。比如,Facebook在他們的自動標記演算法中使用了它,Google在照片搜索中使用了,Amazon在商品推薦中使用,Printerst應用於為他們的家庭飼養服務提供個性化定製,而Instagram應用於他們的搜索引擎。

然而,神經網路最開始也是最多的應用領域是圖像處理。那我們就挑這塊來聊聊,怎樣使用卷積神經網路(下面簡稱CNN)來進行圖像分類。

圖像分類是指,向機器輸入一張圖片,然後機器告訴我們這張圖片的類別(一隻貓,一條狗等等),或者如果它不確定的話,它會告訴我們屬於某個類別的可能性(很可能是條狗但是我不太確定)。對我們人類來說,這件事情簡單的不能再簡單了,從出生起,我們就可以很快地識別周圍的物體是什麼。當我們看到一個場景,我們總能快速地識別出所有物體,甚至是下意識的,沒有經過有意的思考。但這種能力,機器並不具有。所以我們更加要好好珍惜自己的大腦呀! (:зゝ∠)

電腦和人看到的圖片並不相同。當我們輸入一張圖片時,電腦得到的只是一個數組,記錄著像素的信息。數組的大小由圖像的清晰度和大小決定。假設我們有一張jpg格式的480 480大小的圖片,那麼表示它的數組便是480 480*3大小的。數組中所有數字都描述了在那個位置處的像素信息,大小在[0,255]之間。

這些數字對我們來說毫無意義,但這是電腦們可以得到的唯一的信息(也足夠了)。抽象而簡單的說,我們需要一個接受數組為輸入,輸出一個數組表示屬於各個類別概率的模型。

既然問題我們已經搞明白了,現在我們得想想辦法解決它。我們想讓電腦做的事情是找出不同圖片之間的差別,並可以識別狗狗(舉個例子)的特徵。

我們人類可以通過一些與眾不同的特徵來識別圖片,比如狗狗的爪子和狗有四條腿。同樣地,電腦也可以通過識別更低層次的特徵(曲線,直線)來進行圖像識別。電腦用卷積層識別這些特徵,並通過更多層卷積層結合在一起,就可以像人類一樣識別出爪子和腿之類的高層次特徵,從而完成任務。這正是CNN所做的事情的大概脈絡。下面,我們進行更具體的討論。

在正式開始之前,我們先來聊聊CNN的背景故事。當你第一次聽說卷積神經網路的時候,你可能就會聯想到一些與神經學或者生物學有關的東西,不得不說,卷積神經網路還真的與他們有某種關系。

CNN的靈感的確來自大腦中的視覺皮層。視覺皮層某些區域中的神經元只對特定視野區域敏感。1962年,在一個Hubel與Wiesel進行的試驗( 視頻 )中,這一想法被證實並且拓展了。他們發現,一些獨立的神經元只有在特定方向的邊界在視野中出現時才會興奮。比如,一些神經元在水平邊出現時興奮,而另一些只有垂直邊出現時才會。並且所有這種類型的神經元都在一個柱狀組織中,並且被認為有能力產生視覺。

在一個系統中,一些特定的組件發揮特定的作用(視覺皮層中的神經元尋找各自特定的特徵)。這一想法應用於很多機器中,並且也是CNN背後的基本原理。 (譯者註:作者沒有說清楚。類比到CNN中,應是不同的卷積核尋找圖像中不同的特徵)

回到主題。

更詳細的說,CNN的工作流程是這樣的:你把一張圖片傳遞給模型,經過一些卷積層,非線性化(激活函數),池化,以及全連層,最後得到結果。就像我們之前所說的那樣,輸出可以是單獨的一個類型,也可以是一組屬於不同類型的概率。現在,最不容易的部分來了:理解各個層的作用。

首先,你要搞清楚的是,什麼樣的數據輸入了卷積層。就像我們之前提到的那樣,輸入是一個32 × 32 × 3(打個比方)的記錄像素值的數組。現在,讓我來解釋卷積層是什麼。解釋卷積層最好的方法,是想像一個手電筒照在圖片的左上角。讓我們假設手電筒的光可以招到一個5 × 5的區域。現在,讓我們想像這個手電筒照過了圖片的所有區域。在機器學習術語中,這樣一個手電筒被稱為卷積核(或者說過濾器,神經元) (kernel, filter, neuron) 。而它照到的區域被稱為感知域 (receptive field) 。卷積核同樣也是一個數組(其中的數被稱為權重或者參數)。很重要的一點就是卷積核的深度和輸入圖像的深度是一樣的(這保證可它能正常工作),所以這里卷積核的大小是5 × 5 × 3。

現在,讓我們拿卷積核的初始位置作為例子,它應該在圖像的左上角。當卷積核掃描它的感知域(也就是這張圖左上角5 × 5 × 3的區域)的時候,它會將自己保存的權重與圖像中的像素值相乘(或者說,矩陣元素各自相乘,注意與矩陣乘法區分),所得的積會相加在一起(在這個位置,卷積核會得到5 × 5 × 3 = 75個積)。現在你得到了一個數字。然而,這個數字只表示了卷積核在圖像左上角的情況。現在,我們重復這一過程,讓卷積核掃描完整張圖片,(下一步應該往右移動一格,再下一步就再往右一格,以此類推),每一個不同的位置都產生了一個數字。當掃描完整張圖片以後,你會得到一組新的28 × 28 × 1的數。 (譯者註:(32 - 5 + 1) × (32 - 5 + 1) × 1) 。這組數,我們稱為激活圖或者特徵圖 (activation map or feature map) 。

如果增加卷積核的數目,比如,我們現在有兩個卷積核,那麼我們就會得到一個28 × 28 × 2的數組。通過使用更多的卷積核,我們可以更好的保留數據的空間尺寸。

在數學層面上說,這就是卷積層所做的事情。

讓我們來談談,從更高角度來說,卷積在做什麼。每一個卷積核都可以被看做特徵識別器。我所說的特徵,是指直線、簡單的顏色、曲線之類的東西。這些都是所有圖片共有的特點。拿一個7 × 7 × 3的卷積核作為例子,它的作用是識別一種曲線。(在這一章節,簡單起見,我們忽略卷積核的深度,只考慮第一層的情況)。作為一個曲線識別器,這個卷積核的結構中,曲線區域內的數字更大。(記住,卷積核是一個數組)

現在我們來直觀的看看這個。舉個例子,假設我們要把這張圖片分類。讓我們把我們手頭的這個卷積核放在圖片的左上角。

記住,我們要做的事情是把卷積核中的權重和輸入圖片中的像素值相乘。

(譯者註:圖中最下方應是由於很多都是0所以把0略過不寫了。)

基本上,如果輸入圖像中有與卷積核代表的形狀很相似的圖形,那麼所有乘積的和會很大。現在我們來看看,如果我們移動了卷積核呢?

可以看到,得到的值小多了!這是因為感知域中沒有與卷積核表示的相一致的形狀。還記得嗎,卷積層的輸出是一張激活圖。所以,在單卷積核卷積的簡單情況下,假設卷積核是一個曲線識別器,那麼所得的激活圖會顯示出哪些地方最有可能有曲線。在這個例子中,我們所得激活圖的左上角的值為6600。這樣大的數字表明很有可能這片區域中有一些曲線,從而導致了卷積核的激活 (譯者註:也就是產生了很大的數值。) 而激活圖中右上角的數值是0,因為那裡沒有曲線來讓卷積核激活(簡單來說就是輸入圖像的那片區域沒有曲線)。

但請記住,這只是一個卷積核的情況,只有一個找出向右彎曲的曲線的卷積核。我們可以添加其他卷積核,比如識別向左彎曲的曲線的。卷積核越多,激活圖的深度就越深,我們得到的關於輸入圖像的信息就越多。

在傳統的CNN結構中,還會有其他層穿插在卷積層之間。我強烈建議有興趣的人去閱覽並理解他們。但總的來說,他們提供了非線性化,保留了數據的維度,有助於提升網路的穩定度並且抑制過擬合。一個經典的CNN結構是這樣的:

網路的最後一層很重要,我們稍後會講到它。

現在,然我們回頭看看我們已經學到了什麼。

我們講到了第一層卷積層的卷積核的目的是識別特徵,他們識別像曲線和邊這樣的低層次特徵。但可以想像,如果想預測一個圖片的類別,必須讓網路有能力識別高層次的特徵,例如手、爪子或者耳朵。讓我們想想網路第一層的輸出是什麼。假設我們有5個5 × 5 × 3的卷積核,輸入圖像是32 × 32 × 3的,那麼我們會得到一個28 × 28 × 5的數組。來到第二層卷積層,第一層的輸出便成了第二層的輸入。這有些難以可視化。第一層的輸入是原始圖片,可第二層的輸入只是第一層產生的激活圖,激活圖的每一層都表示了低層次特徵的出現位置。如果用一些卷積核處理它,得到的會是表示高層次特徵出現的激活圖。這些特徵的類型可能是半圓(曲線和邊的組合)或者矩形(四條邊的組合)。隨著卷積層的增多,到最後,你可能會得到可以識別手寫字跡、粉色物體等等的卷積核。

如果,你想知道更多關於可視化卷積核的信息,可以看這篇 研究報告 ,以及這個 視頻 。

還有一件事情很有趣,當網路越來越深,卷積核會有越來越大的相對於輸入圖像的感知域。這意味著他們有能力考慮來自輸入圖像的更大范圍的信息(或者說,他們對一片更大的像素區域負責)。

到目前為止,我們已經識別出了那些高層次的特徵吧。網路最後的畫龍點睛之筆是全連層。

簡單地說,這一層接受輸入(來自卷積層,池化層或者激活函數都可以),並輸出一個N維向量,其中,N是所有有可能的類別的總數。例如,如果你想寫一個識別數字的程序,那麼N就是10,因為總共有10個數字。N維向量中的每一個數字都代表了屬於某個類別的概率。打個比方,如果你得到了[0 0.1 0.1 0.75 0 0 0 0 0 0.05],這代表著這張圖片是1的概率是10%,是2的概率是10%,是3的概率是75%,是9的概率5%(小貼士:你還有其他表示輸出的方法,但現在我只拿softmax (譯者註:一種常用於分類問題的激活函數) 來展示)。全連層的工作方式是根據上一層的輸出(也就是之前提到的可以用來表示特徵的激活圖)來決定這張圖片有可能屬於哪個類別。例如,如果程序需要預測哪些圖片是狗,那麼全連層在接收到一個包含類似於一個爪子和四條腿的激活圖時輸出一個很大的值。同樣的,如果要預測鳥,那麼全連層會對含有翅膀和喙的激活圖更感興趣。

基本上,全連層尋找那些最符合特定類別的特徵,並且具有相應的權重,來使你可以得到正確的概率。

現在讓我們來說說我之前有意沒有提到的神經網路的可能是最重要的一個方面。剛剛在你閱讀的時候,可能會有一大堆問題想問。第一層卷積層的卷積核們是怎麼知道自己該識別邊還是曲線的?全連層怎麼知道該找哪一種激活圖?每一層中的參數是怎麼確定的?機器確定參數(或者說權重)的方法叫做反向傳播演算法。

在講反向傳播之前,我們得回頭看看一個神經網路需要什麼才能工作。我們出生的時候並不知道一條狗或者一隻鳥長什麼樣。同樣的,在CNN開始之前,權重都是隨機生成的。卷積核並不知道要找邊還是曲線。更深的卷積層也不知道要找爪子還是喙。

等我們慢慢長大了,我們的老師和父母給我們看不同的圖片,並且告訴我們那是什麼(或者說,他們的類別)。這種輸入一幅圖像以及這幅圖像所屬的類別的想法,是CNN訓練的基本思路。在細細講反向傳播之前,我們先假設我們有一個包含上千張不同種類的動物以及他們所屬類別的訓練集。

反向傳播可以被分成四個不同的部分。前向傳播、損失函數、反向傳播和權重更新。

在前向傳播的階段,我們輸入一張訓練圖片,並讓它通過整個神經網路。對於第一個輸入圖像,由於所有權重都是隨機生成的,網路的輸出很有可能是類似於[.1 .1 .1 .1 .1 .1 .1 .1 .1 .1]的東西,一般來說並不對任一類別有偏好。具有當前權重的網路並沒有能力找出低層次的特徵並且總結出可能的類別。

下一步,是損失函數部分。注意,我們現在使用的是訓練數據。這些數據又有圖片又有類別。打個比方,第一張輸入的圖片是數字「3」。那麼它的標簽應該是[0 0 0 1 0 0 0 0 0 0]。一個損失函數可以有很多定義的方法,但比較常見的是MSE(均方誤差)。被定義為(實際−預測)22(實際−預測)22。

記變數L為損失函數的值。正如你想像的那樣,在第一組訓練圖片輸入的時候,損失函數的值可能非常非常高。來直觀地看看這個問題。我們想到達CNN的預測與數據標簽完全一樣的點(這意味著我們的網路預測的很對)。為了到達那裡,我們想要最小化誤差。如果把這個看成一個微積分問題,那我們只要找到哪些權重與網路的誤差關系最大。

這就相當於數學中的δLδWδLδW (譯者註:對L關於W求導) ,其中,W是某個層的權重。現在,我們要對網路進行 反向傳播 。這決定了哪些權重與誤差的關系最大,並且決定了怎樣調整他們來讓誤差減小。計算完這些導數以後,我們就來到了最後一步: 更新權重 。在這里,我們以與梯度相反的方向調整層中的權重。

學習率是一個有程序員決定的參數。一個很高的學習率意味著權重調整的幅度會很大,這可能會讓模型更快的擁有一組優秀的權重。然而,一個太高的學習率可能會讓調整的步伐過大,而不能精確地到達最佳點。

前向傳播、損失函數、反向傳播和更新權重,這四個過程是一次迭代。程序會對每一組訓練圖片重復這一過程(一組圖片通常稱為一個batch)。當對每一張圖片都訓練完之後,很有可能你的網路就已經訓練好了,權重已經被調整的很好。

最後,為了驗證CNN是否工作的很好,我們還有另一組特殊的數據。我們把這組數據中的圖片輸入到網路中,得到輸出並和標簽比較,這樣就能看出網路的表現如何了。

❷ 神經網路連接方式分為哪幾類每一類有哪些特點

神經網路模型的分類
人工神經網路的模型很多,可以按照不同的方法進行分類。其中,常見的兩種分類方法是,按照網路連接的拓樸結構分類和按照網路內部的信息流向分類。
1 按照網路拓樸結構分類
網路的拓樸結構,即神經元之間的連接方式。按此劃分,可將神經網路結構分為兩大類:層次型結構和互聯型結構。
層次型結構的神經網路將神經元按功能和順序的不同分為輸出層、中間層(隱層)、輸出層。輸出層各神經元負責接收來自外界的輸入信息,並傳給中間各隱層神經元;隱層是神經網路的內部信息處理層,負責信息變換。根據需要可設計為一層或多層;最後一個隱層將信息傳遞給輸出層神經元經進一步處理後向外界輸出信息處理結果。

而互連型網路結構中,任意兩個節點之間都可能存在連接路徑,因此可以根據網路中節點的連接程度將互連型網路細分為三種情況:全互連型、局部互連型和稀疏連接型
2 按照網路信息流向分類
從神經網路內部信息傳遞方向來看,可以分為兩種類型:前饋型網路和反饋型網路。
單純前饋網路的結構與分層網路結構相同,前饋是因網路信息處理的方向是從輸入層到各隱層再到輸出層逐層進行而得名的。前饋型網路中前一層的輸出是下一層的輸入,信息的處理具有逐層傳遞進行的方向性,一般不存在反饋環路。因此這類網路很容易串聯起來建立多層前饋網路。
反饋型網路的結構與單層全互連結構網路相同。在反饋型網路中的所有節點都具有信息處理功能,而且每個節點既可以從外界接受輸入,同時又可以向外界輸出。

❸ 一文看懂四種基本的神經網路架構

原文鏈接:
http://blackblog.tech/2018/02/23/Eight-Neural-Network/

更多干貨就在我的個人博客 http://blackblog.tech 歡迎關注

剛剛入門神經網路,往往會對眾多的神經網路架構感到困惑,神經網路看起來復雜多樣,但是這么多架構無非也就是三類,前饋神經網路,循環網路,對稱連接網路,本文將介紹四種常見的神經網路,分別是CNN,RNN,DBN,GAN。通過這四種基本的神經網路架構,我們來對神經網路進行一定的了解。

神經網路是機器學習中的一種模型,是一種模仿動物神經網路行為特徵,進行分布式並行信息處理的演算法數學模型。這種網路依靠系統的復雜程度,通過調整內部大量節點之間相互連接的關系,從而達到處理信息的目的。
一般來說,神經網路的架構可以分為三類:

前饋神經網路:
這是實際應用中最常見的神經網路類型。第一層是輸入,最後一層是輸出。如果有多個隱藏層,我們稱之為「深度」神經網路。他們計算出一系列改變樣本相似性的變換。各層神經元的活動是前一層活動的非線性函數。

循環網路:
循環網路在他們的連接圖中定向了循環,這意味著你可以按照箭頭回到你開始的地方。他們可以有復雜的動態,使其很難訓練。他們更具有生物真實性。
循環網路的目的使用來處理序列數據。在傳統的神經網路模型中,是從輸入層到隱含層再到輸出層,層與層之間是全連接的,每層之間的節點是無連接的。但是這種普通的神經網路對於很多問題卻無能無力。例如,你要預測句子的下一個單詞是什麼,一般需要用到前面的單詞,因為一個句子中前後單詞並不是獨立的。
循環神經網路,即一個序列當前的輸出與前面的輸出也有關。具體的表現形式為網路會對前面的信息進行記憶並應用於當前輸出的計算中,即隱藏層之間的節點不再無連接而是有連接的,並且隱藏層的輸入不僅包括輸入層的輸出還包括上一時刻隱藏層的輸出。

對稱連接網路:
對稱連接網路有點像循環網路,但是單元之間的連接是對稱的(它們在兩個方向上權重相同)。比起循環網路,對稱連接網路更容易分析。這個網路中有更多的限制,因為它們遵守能量函數定律。沒有隱藏單元的對稱連接網路被稱為「Hopfield 網路」。有隱藏單元的對稱連接的網路被稱為玻爾茲曼機。

其實之前的帖子講過一些關於感知機的內容,這里再復述一下。
首先還是這張圖
這是一個M-P神經元

一個神經元有n個輸入,每一個輸入對應一個權值w,神經元內會對輸入與權重做乘法後求和,求和的結果與偏置做差,最終將結果放入激活函數中,由激活函數給出最後的輸出,輸出往往是二進制的,0 狀態代表抑制,1 狀態代表激活。

可以把感知機看作是 n 維實例空間中的超平面決策面,對於超平面一側的樣本,感知器輸出 1,對於另一側的實例輸出 0,這個決策超平面方程是 w⋅x=0。 那些可以被某一個超平面分割的正反樣例集合稱為線性可分(linearly separable)樣例集合,它們就可以使用圖中的感知機表示。
與、或、非問題都是線性可分的問題,使用一個有兩輸入的感知機能容易地表示,而異或並不是一個線性可分的問題,所以使用單層感知機是不行的,這時候就要使用多層感知機來解決疑惑問題了。

如果我們要訓練一個感知機,應該怎麼辦呢?
我們會從隨機的權值開始,反復地應用這個感知機到每個訓練樣例,只要它誤分類樣例就修改感知機的權值。重復這個過程,直到感知機正確分類所有的樣例。每一步根據感知機訓練法則來修改權值,也就是修改與輸入 xi 對應的權 wi,法則如下:

這里 t 是當前訓練樣例的目標輸出,o 是感知機的輸出,η 是一個正的常數稱為學習速率。學習速率的作用是緩和每一步調整權的程度,它通常被設為一個小的數值(例如 0.1),而且有時會使其隨著權調整次數的增加而衰減。

多層感知機,或者說是多層神經網路無非就是在輸入層與輸出層之間加了多個隱藏層而已,後續的CNN,DBN等神經網路只不過是將重新設計了每一層的類型。感知機可以說是神經網路的基礎,後續更為復雜的神經網路都離不開最簡單的感知機的模型,

談到機器學習,我們往往還會跟上一個詞語,叫做模式識別,但是真實環境中的模式識別往往會出現各種問題。比如:
圖像分割:真實場景中總是摻雜著其它物體。很難判斷哪些部分屬於同一個對象。對象的某些部分可以隱藏在其他對象的後面。
物體光照:像素的強度被光照強烈影響。
圖像變形:物體可以以各種非仿射方式變形。例如,手寫也可以有一個大的圓圈或只是一個尖頭。
情景支持:物體所屬類別通常由它們的使用方式來定義。例如,椅子是為了讓人們坐在上面而設計的,因此它們具有各種各樣的物理形狀。
卷積神經網路與普通神經網路的區別在於,卷積神經網路包含了一個由卷積層和子采樣層構成的特徵抽取器。在卷積神經網路的卷積層中,一個神經元只與部分鄰層神經元連接。在CNN的一個卷積層中,通常包含若干個特徵平面(featureMap),每個特徵平面由一些矩形排列的的神經元組成,同一特徵平面的神經元共享權值,這里共享的權值就是卷積核。卷積核一般以隨機小數矩陣的形式初始化,在網路的訓練過程中卷積核將學習得到合理的權值。共享權值(卷積核)帶來的直接好處是減少網路各層之間的連接,同時又降低了過擬合的風險。子采樣也叫做池化(pooling),通常有均值子采樣(mean pooling)和最大值子采樣(max pooling)兩種形式。子采樣可以看作一種特殊的卷積過程。卷積和子采樣大大簡化了模型復雜度,減少了模型的參數。
卷積神經網路由三部分構成。第一部分是輸入層。第二部分由n個卷積層和池化層的組合組成。第三部分由一個全連結的多層感知機分類器構成。
這里舉AlexNet為例:

·輸入:224×224大小的圖片,3通道
·第一層卷積:11×11大小的卷積核96個,每個GPU上48個。
·第一層max-pooling:2×2的核。
·第二層卷積:5×5卷積核256個,每個GPU上128個。
·第二層max-pooling:2×2的核。
·第三層卷積:與上一層是全連接,3*3的卷積核384個。分到兩個GPU上個192個。
·第四層卷積:3×3的卷積核384個,兩個GPU各192個。該層與上一層連接沒有經過pooling層。
·第五層卷積:3×3的卷積核256個,兩個GPU上個128個。
·第五層max-pooling:2×2的核。
·第一層全連接:4096維,將第五層max-pooling的輸出連接成為一個一維向量,作為該層的輸入。
·第二層全連接:4096維
·Softmax層:輸出為1000,輸出的每一維都是圖片屬於該類別的概率。

卷積神經網路在模式識別領域有著重要應用,當然這里只是對卷積神經網路做了最簡單的講解,卷積神經網路中仍然有很多知識,比如局部感受野,權值共享,多卷積核等內容,後續有機會再進行講解。

傳統的神經網路對於很多問題難以處理,比如你要預測句子的下一個單詞是什麼,一般需要用到前面的單詞,因為一個句子中前後單詞並不是獨立的。RNN之所以稱為循環神經網路,即一個序列當前的輸出與前面的輸出也有關。具體的表現形式為網路會對前面的信息進行記憶並應用於當前輸出的計算中,即隱藏層之間的節點不再無連接而是有連接的,並且隱藏層的輸入不僅包括輸入層的輸出還包括上一時刻隱藏層的輸出。理論上,RNN能夠對任何長度的序列數據進行處理。
這是一個簡單的RNN的結構,可以看到隱藏層自己是可以跟自己進行連接的。

那麼RNN為什麼隱藏層能夠看到上一刻的隱藏層的輸出呢,其實我們把這個網路展開來開就很清晰了。

從上面的公式我們可以看出,循環層和全連接層的區別就是循環層多了一個權重矩陣 W。
如果反復把式2帶入到式1,我們將得到:

在講DBN之前,我們需要對DBN的基本組成單位有一定的了解,那就是RBM,受限玻爾茲曼機。
首先什麼是玻爾茲曼機?
[圖片上傳失敗...(image-d36b31-1519636788074)]
如圖所示為一個玻爾茲曼機,其藍色節點為隱層,白色節點為輸入層。
玻爾茲曼機和遞歸神經網路相比,區別體現在以下幾點:
1、遞歸神經網路本質是學習一個函數,因此有輸入和輸出層的概念,而玻爾茲曼機的用處在於學習一組數據的「內在表示」,因此其沒有輸出層的概念。
2、遞歸神經網路各節點鏈接為有向環,而玻爾茲曼機各節點連接成無向完全圖。

而受限玻爾茲曼機是什麼呢?
最簡單的來說就是加入了限制,這個限制就是將完全圖變成了二分圖。即由一個顯層和一個隱層構成,顯層與隱層的神經元之間為雙向全連接。

h表示隱藏層,v表示顯層
在RBM中,任意兩個相連的神經元之間有一個權值w表示其連接強度,每個神經元自身有一個偏置系數b(對顯層神經元)和c(對隱層神經元)來表示其自身權重。
具體的公式推導在這里就不展示了

DBN是一個概率生成模型,與傳統的判別模型的神經網路相對,生成模型是建立一個觀察數據和標簽之間的聯合分布,對P(Observation|Label)和 P(Label|Observation)都做了評估,而判別模型僅僅而已評估了後者,也就是P(Label|Observation)。
DBN由多個限制玻爾茲曼機(Restricted Boltzmann Machines)層組成,一個典型的神經網路類型如圖所示。這些網路被「限制」為一個可視層和一個隱層,層間存在連接,但層內的單元間不存在連接。隱層單元被訓練去捕捉在可視層表現出來的高階數據的相關性。

生成對抗網路其實在之前的帖子中做過講解,這里在說明一下。
生成對抗網路的目標在於生成,我們傳統的網路結構往往都是判別模型,即判斷一個樣本的真實性。而生成模型能夠根據所提供的樣本生成類似的新樣本,注意這些樣本是由計算機學習而來的。
GAN一般由兩個網路組成,生成模型網路,判別模型網路。
生成模型 G 捕捉樣本數據的分布,用服從某一分布(均勻分布,高斯分布等)的雜訊 z 生成一個類似真實訓練數據的樣本,追求效果是越像真實樣本越好;判別模型 D 是一個二分類器,估計一個樣本來自於訓練數據(而非生成數據)的概率,如果樣本來自於真實的訓練數據,D 輸出大概率,否則,D 輸出小概率。
舉個例子:生成網路 G 好比假幣製造團伙,專門製造假幣,判別網路 D 好比警察,專門檢測使用的貨幣是真幣還是假幣,G 的目標是想方設法生成和真幣一樣的貨幣,使得 D 判別不出來,D 的目標是想方設法檢測出來 G 生成的假幣。
傳統的判別網路:

生成對抗網路:

下面展示一個cDCGAN的例子(前面帖子中寫過的)
生成網路

判別網路

最終結果,使用MNIST作為初始樣本,通過學習後生成的數字,可以看到學習的效果還是不錯的。

本文非常簡單的介紹了四種神經網路的架構,CNN,RNN,DBN,GAN。當然也僅僅是簡單的介紹,並沒有深層次講解其內涵。這四種神經網路的架構十分常見,應用也十分廣泛。當然關於神經網路的知識,不可能幾篇帖子就講解完,這里知識講解一些基礎知識,幫助大家快速入(zhuang)門(bi)。後面的帖子將對深度自動編碼器,Hopfield 網路長短期記憶網路(LSTM)進行講解。

❹ 神經網路的全連接層

全連接層(fully connected layers,FC)在整個神經網路中起到「分類器」的作用。

如果說卷積層、池化層和激活函數層等操作是將原始數據映射到隱層特徵空間的話,全連接層將學到的「分布式特徵表示」映射到「樣本標記空間」。

在實際使用中,全連接層可由卷積操作實現:對前層是全連接的全連接層可以轉化為卷積核為1x1的卷積;而前層是卷積層的全連接層可以轉化為卷積核為h*w的全局卷積,h和w分別為前層卷積結果的高和寬。

由於全連接層的參數冗餘(僅全連接層參數就可占整個網路參數80%左右),有些性能優異的網路模型如ResNet和GoogLeNet等均用全局平均池化(global average pooling,GAP)取代全連接層,來融合學到的深度特徵,最後仍用softmax等損失函數作為網路目標函數來指導學習過程。

❺ 什麼是全連接神經網路,怎麼理解「全連接」

1、全連接神經網路解析:對n-1層和n層而言,n-1層的任意一個節點,都和第n層所有節點有連接。即第n層的每個節點在進行計算的時候,激活函數的輸入是n-1層所有節點的加權。

2、全連接的神經網路示意圖:


3、「全連接」是一種不錯的模式,但是網路很大的時候,訓練速度回很慢。部分連接就是認為的切斷某兩個節點直接的連接,這樣訓練時計算量大大減小。

❻ 神經網路:卷積神經網路(CNN)

神經網路 最早是由心理學家和神經學家提出的,旨在尋求開發和測試神經的計算模擬。

粗略地說, 神經網路 是一組連接的 輸入/輸出單元 ,其中每個連接都與一個 權 相關聯。在學習階段,通過調整權值,使得神經網路的預測准確性逐步提高。由於單元之間的連接,神經網路學習又稱 連接者學習。

神經網路是以模擬人腦神經元的數學模型為基礎而建立的,它由一系列神經元組成,單元之間彼此連接。從信息處理角度看,神經元可以看作是一個多輸入單輸出的信息處理單元,根據神經元的特性和功能,可以把神經元抽象成一個簡單的數學模型。

神經網路有三個要素: 拓撲結構、連接方式、學習規則

神經網路的拓撲結構 :神經網路的單元通常按照層次排列,根據網路的層次數,可以將神經網路分為單層神經網路、兩層神經網路、三層神經網路等。結構簡單的神經網路,在學習時收斂的速度快,但准確度低。

神經網路的層數和每層的單元數由問題的復雜程度而定。問題越復雜,神經網路的層數就越多。例如,兩層神經網路常用來解決線性問題,而多層網路就可以解決多元非線性問題

神經網路的連接 :包括層次之間的連接和每一層內部的連接,連接的強度用權來表示。

根據層次之間的連接方式,分為:

1)前饋式網路:連接是單向的,上層單元的輸出是下層單元的輸入,如反向傳播網路,Kohonen網路

2)反饋式網路:除了單項的連接外,還把最後一層單元的輸出作為第一層單元的輸入,如Hopfield網路

根據連接的范圍,分為:

1)全連接神經網路:每個單元和相鄰層上的所有單元相連

2)局部連接網路:每個單元只和相鄰層上的部分單元相連

神經網路的學習

根據學習方法分:

感知器:有監督的學習方法,訓練樣本的類別是已知的,並在學習的過程中指導模型的訓練

認知器:無監督的學習方法,訓練樣本類別未知,各單元通過競爭學習。

根據學習時間分:

離線網路:學習過程和使用過程是獨立的

在線網路:學習過程和使用過程是同時進行的

根據學習規則分:

相關學習網路:根據連接間的激活水平改變權系數

糾錯學習網路:根據輸出單元的外部反饋改變權系數

自組織學習網路:對輸入進行自適應地學習

摘自《數學之美》對人工神經網路的通俗理解:

神經網路種類很多,常用的有如下四種:

1)Hopfield網路,典型的反饋網路,結構單層,有相同的單元組成

2)反向傳播網路,前饋網路,結構多層,採用最小均方差的糾錯學習規則,常用於語言識別和分類等問題

3)Kohonen網路:典型的自組織網路,由輸入層和輸出層構成,全連接

4)ART網路:自組織網路

深度神經網路:

Convolutional Neural Networks(CNN)卷積神經網路

Recurrent neural Network(RNN)循環神經網路

Deep Belief Networks(DBN)深度信念網路

深度學習是指多層神經網路上運用各種機器學習演算法解決圖像,文本等各種問題的演算法集合。深度學習從大類上可以歸入神經網路,不過在具體實現上有許多變化。

深度學習的核心是特徵學習,旨在通過分層網路獲取分層次的特徵信息,從而解決以往需要人工設計特徵的重要難題。

Machine Learning vs. Deep Learning 

神經網路(主要是感知器)經常用於 分類

神經網路的分類知識體現在網路連接上,被隱式地存儲在連接的權值中。

神經網路的學習就是通過迭代演算法,對權值逐步修改的優化過程,學習的目標就是通過改變權值使訓練集的樣本都能被正確分類。

神經網路特別適用於下列情況的分類問題:

1) 數據量比較小,缺少足夠的樣本建立模型

2) 數據的結構難以用傳統的統計方法來描述

3) 分類模型難以表示為傳統的統計模型

缺點:

1) 需要很長的訓練時間,因而對於有足夠長訓練時間的應用更合適。

2) 需要大量的參數,這些通常主要靠經驗確定,如網路拓撲或「結構」。

3)  可解釋性差 。該特點使得神經網路在數據挖掘的初期並不看好。

優點:

1) 分類的准確度高

2)並行分布處理能力強

3)分布存儲及學習能力高

4)對噪音數據有很強的魯棒性和容錯能力

最流行的基於神經網路的分類演算法是80年代提出的 後向傳播演算法 。後向傳播演算法在多路前饋神經網路上學習。 

定義網路拓撲

在開始訓練之前,用戶必須說明輸入層的單元數、隱藏層數(如果多於一層)、每一隱藏層的單元數和輸出層的單元數,以確定網路拓撲。

對訓練樣本中每個屬性的值進行規格化將有助於加快學習過程。通常,對輸入值規格化,使得它們落入0.0和1.0之間。

離散值屬性可以重新編碼,使得每個域值一個輸入單元。例如,如果屬性A的定義域為(a0,a1,a2),則可以分配三個輸入單元表示A。即,我們可以用I0 ,I1 ,I2作為輸入單元。每個單元初始化為0。如果A = a0,則I0置為1;如果A = a1,I1置1;如此下去。

一個輸出單元可以用來表示兩個類(值1代表一個類,而值0代表另一個)。如果多於兩個類,則每個類使用一個輸出單元。

隱藏層單元數設多少個「最好」 ,沒有明確的規則。

網路設計是一個實驗過程,並可能影響准確性。權的初值也可能影響准確性。如果某個經過訓練的網路的准確率太低,則通常需要採用不同的網路拓撲或使用不同的初始權值,重復進行訓練。

後向傳播演算法學習過程:

迭代地處理一組訓練樣本,將每個樣本的網路預測與實際的類標號比較。

每次迭代後,修改權值,使得網路預測和實際類之間的均方差最小。

這種修改「後向」進行。即,由輸出層,經由每個隱藏層,到第一個隱藏層(因此稱作後向傳播)。盡管不能保證,一般地,權將最終收斂,學習過程停止。

演算法終止條件:訓練集中被正確分類的樣本達到一定的比例,或者權系數趨近穩定。

後向傳播演算法分為如下幾步:

1) 初始化權

網路的權通常被初始化為很小的隨機數(例如,范圍從-1.0到1.0,或從-0.5到0.5)。

每個單元都設有一個偏置(bias),偏置也被初始化為小隨機數。

2) 向前傳播輸入

對於每一個樣本X,重復下面兩步:

向前傳播輸入,向後傳播誤差

計算各層每個單元的輸入和輸出。輸入層:輸出=輸入=樣本X的屬性;即,對於單元j,Oj = Ij = Xj。隱藏層和輸出層:輸入=前一層的輸出的線性組合,即,對於單元j, Ij =wij Oi + θj,輸出=

3) 向後傳播誤差

計算各層每個單元的誤差。

輸出層單元j,誤差:

Oj是單元j的實際輸出,而Tj是j的真正輸出。

隱藏層單元j,誤差:

wjk是由j到下一層中單元k的連接的權,Errk是單元k的誤差

更新 權 和 偏差 ,以反映傳播的誤差。

權由下式更新:

 其中,△wij是權wij的改變。l是學習率,通常取0和1之間的值。

 偏置由下式更新:

  其中,△θj是偏置θj的改變。

Example

人類視覺原理:

深度學習的許多研究成果,離不開對大腦認知原理的研究,尤其是視覺原理的研究。1981 年的諾貝爾醫學獎,頒發給了 David Hubel(出生於加拿大的美國神經生物學家) 和Torsten Wiesel,以及Roger Sperry。前兩位的主要貢獻,是「發現了視覺系統的信息處理」, 可視皮層是分級的 。

人類的視覺原理如下:從原始信號攝入開始(瞳孔攝入像素Pixels),接著做初步處理(大腦皮層某些細胞發現邊緣和方向),然後抽象(大腦判定,眼前的物體的形狀,是圓形的),然後進一步抽象(大腦進一步判定該物體是只氣球)。

對於不同的物體,人類視覺也是通過這樣逐層分級,來進行認知的:

在最底層特徵基本上是類似的,就是各種邊緣,越往上,越能提取出此類物體的一些特徵(輪子、眼睛、軀乾等),到最上層,不同的高級特徵最終組合成相應的圖像,從而能夠讓人類准確的區分不同的物體。

可以很自然的想到:可以不可以模仿人類大腦的這個特點,構造多層的神經網路,較低層的識別初級的圖像特徵,若干底層特徵組成更上一層特徵,最終通過多個層級的組合,最終在頂層做出分類呢?答案是肯定的,這也是許多深度學習演算法(包括CNN)的靈感來源。

卷積神經網路是一種多層神經網路,擅長處理圖像特別是大圖像的相關機器學習問題。卷積網路通過一系列方法,成功將數據量龐大的圖像識別問題不斷降維,最終使其能夠被訓練。

CNN最早由Yann LeCun提出並應用在手寫字體識別上。LeCun提出的網路稱為LeNet,其網路結構如下:

這是一個最典型的卷積網路,由 卷積層、池化層、全連接層 組成。其中卷積層與池化層配合,組成多個卷積組,逐層提取特徵,最終通過若干個全連接層完成分類。

CNN通過卷積來模擬特徵區分,並且通過卷積的權值共享及池化,來降低網路參數的數量級,最後通過傳統神經網路完成分類等任務。

降低參數量級:如果使用傳統神經網路方式,對一張圖片進行分類,那麼,把圖片的每個像素都連接到隱藏層節點上,對於一張1000x1000像素的圖片,如果有1M隱藏層單元,一共有10^12個參數,這顯然是不能接受的。

但是在CNN里,可以大大減少參數個數,基於以下兩個假設:

1)最底層特徵都是局部性的,也就是說,用10x10這樣大小的過濾器就能表示邊緣等底層特徵

2)圖像上不同小片段,以及不同圖像上的小片段的特徵是類似的,也就是說,能用同樣的一組分類器來描述各種各樣不同的圖像

基於以上兩個假設,就能把第一層網路結構簡化

用100個10x10的小過濾器,就能夠描述整幅圖片上的底層特徵。

卷積運算的定義如下圖所示:

如上圖所示,一個5x5的圖像,用一個3x3的 卷積核 :

   101

   010

   101

來對圖像進行卷積操作(可以理解為有一個滑動窗口,把卷積核與對應的圖像像素做乘積然後求和),得到了3x3的卷積結果。

這個過程可以理解為使用一個過濾器(卷積核)來過濾圖像的各個小區域,從而得到這些小區域的特徵值。在實際訓練過程中, 卷積核的值是在學習過程中學到的。

在具體應用中,往往有多個卷積核,可以認為, 每個卷積核代表了一種圖像模式 ,如果某個圖像塊與此卷積核卷積出的值大,則認為此圖像塊十分接近於此卷積核。如果設計了6個卷積核,可以理解為這個圖像上有6種底層紋理模式,也就是用6種基礎模式就能描繪出一副圖像。以下就是24種不同的卷積核的示例:

池化 的過程如下圖所示:

可以看到,原始圖片是20x20的,對其進行采樣,采樣窗口為10x10,最終將其采樣成為一個2x2大小的特徵圖。

之所以這么做,是因為即使做完了卷積,圖像仍然很大(因為卷積核比較小),所以為了降低數據維度,就進行采樣。

即使減少了許多數據,特徵的統計屬性仍能夠描述圖像,而且由於降低了數據維度,有效地避免了過擬合。

在實際應用中,分為最大值采樣(Max-Pooling)與平均值采樣(Mean-Pooling)。

LeNet網路結構:

注意,上圖中S2與C3的連接方式並不是全連接,而是部分連接。最後,通過全連接層C5、F6得到10個輸出,對應10個數字的概率。

卷積神經網路的訓練過程與傳統神經網路類似,也是參照了反向傳播演算法

第一階段,向前傳播階段:

a)從樣本集中取一個樣本(X,Yp),將X輸入網路;

b)計算相應的實際輸出Op

第二階段,向後傳播階段

a)計算實際輸出Op與相應的理想輸出Yp的差;

b)按極小化誤差的方法反向傳播調整權矩陣。

閱讀全文

與情感分析之多層全連接神經網路相關的資料

熱點內容
網路共享中心沒有網卡 瀏覽:512
電腦無法檢測到網路代理 瀏覽:1363
筆記本電腦一天會用多少流量 瀏覽:535
蘋果電腦整機轉移新機 瀏覽:1367
突然無法連接工作網路 瀏覽:1017
聯通網路怎麼設置才好 瀏覽:1212
小區網路電腦怎麼連接路由器 瀏覽:992
p1108列印機網路共享 瀏覽:1201
怎麼調節台式電腦護眼 瀏覽:653
深圳天虹蘋果電腦 瀏覽:892
網路總是異常斷開 瀏覽:602
中級配置台式電腦 瀏覽:950
中國網路安全的戰士 瀏覽:622
同志網站在哪裡 瀏覽:1402
版觀看完整完結免費手機在線 瀏覽:1448
怎樣切換默認數據網路設置 瀏覽:1098
肯德基無線網無法訪問網路 瀏覽:1274
光纖貓怎麼連接不上網路 瀏覽:1430
神武3手游網路連接 瀏覽:955
局網列印機網路共享 瀏覽:990