導航:首頁 > 異常信息 > 神經網路異常值判別

神經網路異常值判別

發布時間:2022-05-13 07:49:00

❶ 神經網路異常檢測方法和機器學習異常檢測方法對於入侵檢測的應用

神經網路異常檢測方法

神經網路入侵檢測方法是通過訓練神經網路連續的信息單元來進行異常檢測,信息單元指的是命令。網路的輸入為用戶當前輸入的命令和已執行過的W個命令;用戶執行過的命令被神經網路用來預測用戶輸入的下一個命令,如下圖。若神經網路被訓練成預測用戶輸入命令的序列集合,則神經網路就構成用戶的輪郭框架。當用這個神經網路預測不出某用戶正確的後繼命令,即在某種程度上表明了用戶行為與其輪廓框架的偏離,這時表明有異常事件發生,以此就能作異常入侵檢測。


上面式子用來分類識別,檢測異常序列。實驗結果表明這種方法檢測迅速,而且誤警率底。然而,此方法對於用戶動態行為變化以及單獨異常檢測還有待改善。復雜的相似度量和先驗知識加入到檢測中可能會提高系統的准確性,但需要做進一步工作。

❷ 異常檢測有哪些主要的分析方法

1. 概率統計方法
在基於異常檢測技術的IDS中應用最早也是最多的一種方法。
首先要對系統或用戶的行為按照一定的時間間隔進行采樣,樣本的內容包括每個會話的登錄、退出情況,CPU和內存的佔用情況,硬碟等存儲介質的使用情況等。
將每次採集到的樣本進行計算,得出一系列的參數變數對這些行為進行描述,從而產生行為輪廓,將每次采樣後得到的行為輪廓與已有輪廓進行合並,最終得到系統和用戶的正常行為輪廓。IDS通過將當前採集到的行為輪廓與正常行為輪廓相比較,來檢測是否存在網路入侵行為。
2. 預測模式生成法
假設條件是事件序列不是隨機的而是遵循可辨別的模式。這種檢測方法的特點是考慮了事件的序列及其相互聯系,利用時間規則識別用戶行為正常模式的特徵。通過歸納學習產生這些規則集,並能動態地修改系統中的這些規則,使之具有較高的預測性、准確性。如果規則在大部分時間是正確的,並能夠成功地運用預測所觀察到的數據,那麼規則就具有高可信度。
3. 神經網路方法
基本思想是用一系列信息單元(命令)訓練神經單元,這樣在給定一組輸入後、就可能預測出輸出。與統計理論相比,神經網路更好地表達了變數間的非線性關系,並且能自動學習並更新。實驗表明UNIX系統管理員的行為幾乎全是可以預測的,對於一般用戶,不可預測的行為也只佔了很少的一部分。

❸ 數據挖掘 | 數據理解和預處理

數據挖掘 | 數據理解和預處理
小編遇到過很多人(咳咳,請不要對號入座),拿到數據後不管三七二十一,先丟到模型中去跑,管它具體什麼樣呢,反正「大數據」嘛,總能整出點東西來。
但就像上次說過的,「大數據」很有可能帶來「大錯誤」!所以在數據挖掘工作開始前,認真的理解數據、檢查數據,對數據進行預處理是至關重要的。
很多人說,數據准備工作真是個「體力活」,耗時耗力不說,還異常的枯燥無味。這點小編承認,建模之前的數據處理確實是平淡的,它往往不需要多高的智商,多牛的編程技巧,多麼高大上的統計模型。
但是,它卻能時時觸發你的興奮點,因為它需要足夠的耐心和細心,稍不留神就前功盡棄。
在這次的內容里,小編首先會從「數據理解」、「變數類型」和「質量檢查」三個方面進行闡述,然後會以一個自己做過的實際數據為例進行展示。
一、數據理解
拿到數據後要做的第一步就是理解數據。
什麼是理解數據呢?不是簡單看下有多少Excel表,有多少行,多少列,而是要結合自己的分析目標,帶著具體的業務需求去看。
首先,我們需要明確數據記錄的詳細程度,比方說某個網站的訪問量數據是以每小時為單位還是每天為單位;一份銷售數據記錄的是每家門店的銷售額還是每個地區的總銷售額。
其次,我們需要確定研究群體。研究群體的確定一定和業務目標是密切相關的。
比方說,如果我們想研究用戶對產品的滿意度與哪些因素有關,就應該把購買該產品的所有客戶作為研究群體;如果我們想研究用戶的購買行為受哪些因素影響,就應該同時考察購買人群和非購買人群,在兩類人群的對比中尋找關鍵因素。
研究群體的確定有時也和數據的詳細程度有關。
比如我們想研究「觀眾影評」對「電影票房」的影響,我們既可以把「每部電影」看成一個個體,研究「影評總數」對「電影總票房」的影響,也可以把「每部電影每天的票房」看成一個個體,研究「每天的影評數」對「每天的電影票房」的影響。
具體選擇哪一種取決於我們手上有什麼樣的數據,如果只有總票房和總影評數的數據,那我們只能選擇第一種;如果有更詳細的數據,那就可以考慮第二種方案。
需要注意的是,這兩種方案還會影響我們對於模型的選擇。
例如,如果研究「每天的影評數」對「每天電影票房」的影響,那每部電影又被細分為很多天,同一部電影不同時間的票房會有較高的相似性,這就形成了一種層次結構,可以考慮使用層次模型(hierarchical model)進行分析。
最後,當我們確定了研究目標和研究群體後,我們需要逐一理解每個變數的含義。有些變數和業務目標明顯無關,可以直接從研究中剔除。
有些變數雖然有意義,但是在全部樣本上取值都一樣,這樣的變數就是冗餘變數,也需要從研究中剔除。
還有一些變數具有重復的含義,如「省份名稱」和「省份簡稱」,這時只需要保留一個就可以了。
二、變數類型
所有變數按其測量尺度可以分成兩大類,一類是「分類變數」,一類是「數值變數」。不同類型的變數在處理方法和後期的模型選擇上會有顯著差別。
【分類變數】
分類變數又稱屬性變數或離散變數,它的取值往往用有限的幾個類別名稱就可以表示了,例如「性別」,「教育程度」,「收入水平」,「星期幾」等。細分的話,分類變數又可分為兩類,一類是「名義變數」,即各個類別間沒有順序和程度的差別,就像「手機系統」中ios和安卓並沒有明顯的好壞差別,「電影類型」中「動作片」和「科幻片」也都是一樣的,說不上哪個更好或更差。
另外一類是定序變數,即不同類別之間存在有意義的排序,如「空氣污染程度」可以用「差、良、優」來表示、「教育程度」可以用「小學、初中、高中、大學」來表示。
當研究的因變數是分類變數時,往往對應特定的分析方法,我們在後面的章節會陸續講到,這里暫且不談。
當研究中的自變數是分類變數時,也會限制模型選擇的范圍。有些數據挖掘模型可以直接處理分類自變數,如決策樹模型;但很多數據挖掘模型不能直接處理分類自變數,如線性回歸、神經網路等,因此需要將分類變數轉換成數值變數。
對於定序自變數,最常用的轉換方法就是按照類別程度將其直接轉換成數值自變數,例如將空氣污染程度 「差、良、優」轉換為「1,2,3」。
對於名義自變數,最常用的轉換方法就是構造0-1型啞變數。例如,對於「性別」,可以定義「1=男,0=女」。
當某個名義變數有K個類別取值時,則需要構造K-1個啞變數。例如教育程度「小學,初中,高中,大學及以上」,可以構造三個啞變數分別為:x1:1=小學,0=其它;x2:1=初中,0=其它;x3:1=高中,0=其它。當x1,x2,x3三個啞變數取值都為0時,則對應著「大學及以上」。
需要注意的是,有時候名義變數的取值太多,會生成太多的啞變數,這很容易造成模型的過度擬合。
這時可以考慮只把觀測比較多的幾個類別單獨拿出來,而把剩下所有的類別都歸為「其它」。
例如,中國一共包含56個民族,如果每個民族都生成一個啞變數就會有55個,這時我們可以只考慮設置「是否為漢族」這一個0-1啞變數。
【數值變數】
我們再來看看數值變數。數值變數就是用數值描述,並且可以直接進行代數運算的變數,如「銷售收入」、「固定資本」、「評論總數」、「訪問量」、「學生成績」等等都是數值變數。
需要注意的是,用數值表示的變數不一定就是數值型變數,只有在代數運算下有意義的變數才是數值型變數。
例如財務報表的年份,上市時間等,雖然也是用數值表示的,但我們通常不將它們按照數值型變數來處理。
上面我們講到,分類變數通常要轉換成數值型變數,其實有些時候,數值型變數也需要轉換成分類變數,這就用到了「數據分箱」的方法。
為什麼要進行數據分箱呢?通常有以下幾個原因:
1. 數據的測量可能存在一定誤差,沒有那麼准確,因此按照取值范圍轉換成不同類別是一個有效的平滑方法;
2.有些演算法,如決策樹模型,雖然可以處理數值型變數,但是當該變數有大量不重復的取值時,使用大於、小於、等於這些運算符時會考慮很多的情況,因此效率會很低,數據分箱的方法能很好的提高演算法效率;
3.有些模型演算法只能處理分類型自變數(如關聯規則),因此也需要將數值變數進行分箱處理。
數據分箱後,可以使用每個分箱內的均值、中位數、臨界值等作為這個類別的代表值,也可以直接將不同取值范圍定義成不同的類別,如:將污染程度劃分後定義為「低、中、高」等。
那如何進行數據分箱呢?常用的數據分箱的方法有:等寬分箱(將變數的取值范圍劃分成等寬的幾個區間)、等頻分箱(按照變數取值的分位數進行劃分)、基於k均值聚類的分箱(將所有數據進行k均值聚類,所得的不同類別即為不同的分箱),還有一些有監督分箱方法,如:使分箱後的結果達到最小熵或最小描述長度等。這里不詳細介紹了,有興趣的童鞋可以自行網路。
三、質量檢查
對數據中的各個變數有了初步了解後,我們還需要對數據進行嚴格的質量檢查,如果數據質量不過關,還需要進行數據的清洗或修補工作。
一般來說,質量檢查包括檢查每個變數的缺失程度以及取值范圍的合理性。
【缺失檢查】
原始數據中經常會存在各種各樣的缺失現象。
有些指標的缺失是合理的,例如顧客只有使用過某個產品才能對這個產品的滿意度進行評價,一筆貸款的抵押物中只有存在房地產,才會記錄相應的房地產的價值情況等。
像這種允許缺失的變數是最難搞的,因為我們很難判斷它的缺失是合理的,還是由於漏報造成的。
但無論哪種情況,如果變數的缺失率過高,都會影響數據的整體質量,因為數據所反映的信息實在太少,很難從中挖掘到有用的東西。
對於不允許缺失的變數來說,如果存在缺失情況,就必須進行相應的處理。如果一個變數的缺失程度非常大,比方說達到了70%,那就考慮直接踢掉吧,估計沒救了。
如果缺失比例還可以接受的話,可以嘗試用缺失值插補的方法進行補救。
插補的目的是使插補值能最大可能的接近其真實的取值,所以如果可以從其他途徑得到變數的真實值,那一定優先選擇這種方法。
比如某個公司的財務信息中缺失了「最終控制人類型」和「是否國家控股」這兩個取值,這些可以通過網上的公開信息得到真實值;再比如缺失了「凈利潤率」這個指標的取值,但是卻有「凈利潤」和「總收入」的取值,那就可以通過變數間的關系得到相應的缺失值,即凈利潤率=凈利潤/總收入。
當然,更多的時候,我們無法得到缺失值的真實信息,這時就只能借用已有的數據來進行插補了。
對數值變數來說,可以用已觀測值的均值、中位數來插補缺失值;對分類型變數來說,可以用已觀測數據中出現比例最高的類別取值來進行插補。
這些方法操作起來非常簡單,但它們都是對所有缺失值賦予了相同的取值,所以當缺失比例較大時,可能會扭曲被插補變數與其餘變數的關系。
更復雜一點的,我們可以選擇模型插補方法,即針對被插補變數和其它自變數之間的關系建立統計模型(如回歸、決策樹等),將模型預測值作為插補值。
如何處理缺失值是一個很大的研究課題,我們這里只是介紹了最簡單可行的方法,有興趣的讀者可以參閱Little和Rubin 2002年的專著「Statistical Analysis with Missing Data」。
【變數取值合理性檢查】
除了缺失外,我們還要考察每個變數的取值合理性。每個變數都會有自己的取值范圍,比如「用戶訪問量」、「下載次數」一定是非負的,「投資收益率」一定在0~1之間。通過判斷變數的取值是否超出它應有的取值范圍,可以簡單的對異常值進行甄別。
除了根據變數的取值范圍來檢查變數質量外,還可以根據變數之間的相互關系進行判斷。例如一家公司的「凈利潤率」不應該大於「總利潤率」等。
只有通過了各個方面檢測的數據才是一份高質量的數據,才有可能帶來有價值的模型結果。
四、實例分析——電影票房分析
最後,我們給出一個實例分析。在這個例子中,我們的目標是研究電影哪些方面的特徵對電影票房有影響。
我們有兩方面的數據,一是描述電影特徵的數據,二是描述電影票房的數據。
由於我們關注的是北美的票房市場,所以描述電影特徵的數據可以從IMDB網站得到,它是一個關於演員、電影、電視節目、電視明星和電影製作的在線資料庫,裡面可以找到每部上映電影的眾多信息;電影每天的票房數據可以從美國權威的票房網站Box Office Mojo得到,上面記錄了每部電影上映期間內每天的票房數據。
我們將從IMDB得到的數據放到「movieinfor.csv」文件中,將從Box Office Mojo中得到的數據放到「boxoffice.csv」文件中。
這里,我們以2012年北美票房市場最高的前100部電影為例進行講解。下表給出了這兩個數據集中包含的所有變數以及相應的解釋。
在這兩個數據中,movieinfor.csv數據的記錄是精確到每部電影的,而boxoffice.csv數據精確到了每部電影中每天的票房數據,是精確到天的。上表中給出的變數中,除了電影名稱和ID外,「電影類型」「MPAA評級」(美國電影協會對電影的評級)和「星期幾」是分類型變數;「放映時長」、「製作預算」、「電影每天的票房」和「每天放映的影院數」是數值型變數。兩份數據都不存在缺失值。
我們首先對兩個數據集分別進行變數預處理,然後再根據電影ID將兩個數據整合到一起。下面給出了每個變數的處理方法:
【電影類型】
電影類型是一個分類變數。在這個變數中我們發現每部電影都不止一個類型,例如「The Dark Knight Rises」這部電影就有「Action」、「Crime」和「Thriller」三個類型,並且它們以「|」為分隔符寫在了一起。
同時,不同電影之間可能有相同的類型,也可能有不同的類型,例如票房排名第二的電影「Skyfall」,它的類型是「Action |Adventure |Thriller」。
因此,我們首先需要做的是把每部電影所屬的類型逐一取出來,然後將所有出現過的類型分別形成一個0-1啞變數,如果這部電影在某個類型上出現了,則相應變數的取值就是1,否則是0.
通過上面一步,我們知道這個數據集中出現過的所有電影類型一共有11個。
那是不是按照之前所講的,應該把它轉換為10個啞變數呢?這里需要注意的是,所有的電影類型之間並不是互斥的(即有了action,就不能有其他的類型),所以我們無需因為共線性的原因去掉其中一個。
也就是說,如果把每一個電影類型單獨作為一個獨立的變數,可以衍生出11個新的0-1變數,這完全沒有問題。但11個變數未免有點過多,所以我們根據不同電影類型的頻數分布情況,只把出現次數明顯較多的類型單獨拿出來,最終生成了6個0-1型變數,分別為Adventure,Fantasy,Comedy,Action,Animation,Others。
【MPAA評級】
對於這個分類型變數,我們首先可以看一下數據中它所包含的全部取值,發現一共有「PG」,「PG-13」和「R」三個。
和上面的電影類型(Genre)不同,對於一部電影而言,它只能有一個MPAA取值。因此,在MPAA變數中,我們需要選擇一個作為基準,將另外兩個構造成啞變數。
例如,我們以「PG」為基準,構造的兩個啞變數分別為PG13和R,如果這兩個啞變數的取值同時為0,那就相當於電影的MPAA評級是PG。
【放映當天是星期幾】
這個變數同MPAA評級一樣,每部電影只能有一個取值。
如果它在星期一到星期日上都有取值的話,我們可以衍生出6個0-1型啞變數。
因為這里我們更關注周末和非周末對電影票房的影響,而並不關注具體是哪一天,所以我們將其進一步概括成一個變數,即「是否是周末」。
【放映時長和製作預算】
放映時長和製作預算這兩個變數都是取值大於0的數值型變數,我們可以分別檢查它們的取值是否在合理的范圍內,然後直接保留它們的數值信息。
同時,對「製作預算」而言,假設我們這里關心的不是製作預算的具體數值,而是「小成本電影」和「大成本電影」的票房差異,那我們就可以將這個數值型變數進行分箱處理,轉換為一個0-1型的分類變數,即 「是否為小成本電影」。
在決定按照什麼標准來劃分是否為小成本電影時,我們根據之前文獻里的研究結果,將製作預算在100 million以下的電影看成是小成本電影。
上述所有變數的處理過程都可以使用R中最基本的語句(table,rep,which等)完成,由於篇幅限制,小編這里就不列出詳細的code了,大家感興趣的話,可以閱讀狗熊會的「R語千尋」系列(戳這里),相信會在R語言的學習上受到更多啟發。
最後,我們將所有新生成的變數按照電影ID整合到一起,就大功告成啦。
五、總結
最後總結一下,小編在這次內容中向大家介紹了拿到數據後的數據理解和預處理工作,內容雖然不難,但同樣需要我們認真對待。就好像生活一樣,只有踏踏實實走好前面的路,才有可能迎接後面的高潮迭起!

❹ 學校科研立項,關於神經網路的計算機模擬模擬,諸位大俠有沒有好一點的課題,不要太大,適合大二學生

神經網路,是個好東西,居然問到網路上來了,看來網路做的真成功,把各個領域的問題都吸引來了,哈哈。
神經網路的是模式識別的一種常用方法,它的數學本質是數據劃分。從數學的層面看並不難,但對於大二的學生確實蠻有些挑戰。
不知道你們的課題是側重理論還是應用。如果側重理論的話,就找一個簡單一些的應用背景,然後在神經網路的結構上下功夫,從基本的BP網路到徑向基神經網路在到其他的亂七八糟的網路,你可以根據應用背景適當搭配或變種。這種理論層面的東西其實很難,但由於國內有做假大空文章的傳統,所以理論文章在國內反倒容易做了。如果你真要做點產品出來,我不建議做理論研究,那是真正的數學家的事情。作為大二的學生,你們立項大約更側重實際應用,我推薦幾個項目給你,這些項目不是我一拍腦袋想起來的,你看過以後就知道了。
1、定量預測化工產品。化工生產中一般是N種原料經過反應爐生產出M種產品。N種原料不同比重的配方生產出的產品種類和數量也各不相同,其生產過程為復雜函數映射,適合用神經網路識別,此項目的難點在於生產數據的搜集,你需要用大量不同配方的投入產出數據做訓練。這個項目做好了,在化工行業有很強的實用價值。
2、電子中醫產品。需要一個電子脈搏感測器(人民幣約300-800元),依據脈搏數據特徵診斷病情。該項目需要與中醫合作,對不同病人進行脈搏信號採集,優勢是實驗成本很低,難點在於人體系統十分復雜,其數學映射的復雜程度遠高於化工生產。
3、語音識別。用神經網路判別語音的語義。這個蘋果、谷歌和微軟很多年前就在做了,也有成熟產品,例如微軟可以識別幾十種人的聲帶發出的指令,例如開關機之類,但是做的還不夠,最理想的產品是能正常聽懂人類的日常用語。這個實驗成本最低,但實驗規模並不比電子中醫小,你要做比脈診更多得多的實驗。
4、數據校正。根據相互關聯的幾組數據校正一組有嫌疑的數據,主要用在化工領域,比如生產線上某幾個指標如液位A、流量B等等,相互都用復雜的函數關聯,相互不獨立。你可以通過常規生產數據用神經網路擬合出大致的映射,然後在某些生產數據出現異常的時候,用神經網路給出這個數據在該工況下的參考值,以輔助檢修人員查看。
5、邏輯模擬。用神經網路模擬與非門組合邏輯的功能,機器人系統中大量用到,實驗很簡單。本項目的好處是不需要設計人員去苦心鑽研邏輯系統的設計與搭建,只要建立恰當的神經網路,自動訓練出邏輯即可。
6、函數曲線、曲面擬合。這是偏理論一些的項目,主要針對低維函數,這個不需要大量實驗,比較簡單些,適合對神經網路結構優化的理論研究。
神經網路演算法是十分有技術前途的演算法,祝你申請順利!

❺ 如何進行神經網路控制系統的穩定性判別與分析

輸入級每一個節點輸入一個特徵的值(或向量,向量時要復雜一點)。 輸出級輸出的是分類的結果,即屬於哪一類。以二分類問題為例輸出端只有一個節點輸出0或1。 中間的結構在進行測試時不用關心。 不過這僅限於BP等比較簡單的神經網路。

❻ 關於神經網路 需要學習python的哪些知識

最基礎的部分的話需要:線性代數,機器學習,微積分,優化等等。

幾乎所有操作都有矩陣運算,所以至少最基礎的線性代數需要掌握

建議從單一的感知機Perceptron出發,繼而認識到Decision Boundary(判別邊界),以及最簡單的一些「監督訓練」的概念等,有機器學習的基礎最好。就結果而言,諸如「過擬合」之類的概念,以及對應的解決方法比如L1 L2歸一,學習率等也都可以從單個感知機的概念開始入門。

從單層感知器推廣到普通的多層感知器MLP。然後推廣到簡單的神經網路(激活函數從階躍「軟化」為諸如tanh等類型的函數),然後引入特定類型的網路結構,比如最基本的全連接、前向傳播等等概念。進而學習訓練演算法,比如反向傳播,這需要微積分的知識(Chain rule),以及非線性優化的最基礎部分,比如梯度下降法。

其次至少需要具備一些適用於研究的編程語言的技能,例如python,matlab,(C++也可行)等,哪怕不自己實現最簡單的神經網路而是用API,也是需要一定計算機能力才能應用之。

❼ 神經網路ART1模型

一、ART1模型概述

自適應共振理論(Adaptive Resonance Theory)簡稱ART,是於1976年由美國Boston大學S.Grossberg提出來的。

這一理論的顯著特點是,充分利用了生物神經細胞之間自興奮與側抑制的動力學原理,讓輸入模式通過網路雙向連接權的識別與比較,最後達到共振來完成對自身的記憶,並以同樣的方法實現網路的回想。當提供給網路回想的是一個網路中記憶的、或是與已記憶的模式十分相似的模式時,網路將會把這個模式回想出來,提出正確的分類。如果提供給網路回想的是一個網路中不存在的模式,則網路將在不影響已有記憶的前提下,將這一模式記憶下來,並將分配一個新的分類單元作為這一記憶模式的分類標志。

S.Grossberg和G.A.Carpenter經過多年研究和不斷發展,至今已提出了ART1,ART2和ART3三種網路結構。

ART1網路處理雙極型(或二進制)數據,即觀察矢量的分量是二值的,它只取0或1。

二、ART1模型原理

ART1網路是兩層結構,分輸入層(比較層)和輸出層(識別層)。從輸入層到輸出層由前饋連接權連接,從輸出層到輸入層由反饋連接權連接。

設網路輸入層有N個神經元,網路輸出層有M個神經元,二值輸入模式和輸出向量分別為:Xp=(

,…,

),Yp=(

,…,

),p=1,2,…,P,其中P為輸入學習模式的個數。設前饋連接權和反饋連接權矩陣分別為W=(wnm)N×M,T=(tnm)N×M,n=1,2,…,N,m=1,2,…,M。

ART1網路的學習及工作過程,是通過反復地將輸入學習模式由輸入層向輸出層自下而上的識別和由輸出層向輸入層自上而下的比較過程來實現的。當這種自下而上的識別和自上而下的比較達到共振,即輸出向量可以正確反映輸入學習模式的分類,且網路原有記憶沒有受到不良影響時,網路對一個輸入學習模式的記憶分類則告完成。

ART1網路的學習及工作過程,可以分為初始化階段、識別階段、比較階段和探尋階段。

1.初始化階段

ART1網路需要初始化的參數主要有3個:

即W=(wnm)N×M,T=(tnm)N×M和ρ。

反饋連接權T=(tnm)N×M在網路的整個學習過程中取0或1二值形式。這一參數實際上反映了輸入層和輸出層之間反饋比較的范圍或強度。由於網路在初始化前沒有任何記憶,相當於一張白紙,即沒有選擇比較的余的。因此可將T的元素全部設置為1,即

tnm=1,n=1,2,…,N,m=1,2,…,M。(1)

這意味著網路在初始狀態時,輸入層和輸出層之間將進行全范圍比較,隨著學習過程的深入,再按一定規則選擇比較范圍。

前饋連接權W=(wnm)N×M在網路學習結束後,承擔著對學習模式的記憶任務。在對W初始化時,應該給所有學習模式提供一個平等競爭的機會,然後通過對輸入模式的競爭,按一定規則調整W。W的初始值按下式設置:

中國礦產資源評價新技術與評價新模型

ρ稱為網路的警戒參數,其取值范圍為0<ρ≤1。

2.識別階段

ART1網路的學習識別階段發生在輸入學習模式由輸入層向輸出層的傳遞過程中。在這一階段,首先將一個輸入學習模式Xp=(

,…,

)提供給網路的輸入層,然後把作為輸入學習模式的存儲媒介的前饋連接權W=(wnm)N×M與表示對這一輸入學習模式分類結果的輸出層的各個神經元進行比較,以尋找代表正確分類結果的神經元g。這一比較與尋找過程是通過尋找輸出層神經元最大加權輸入值,即神經元之間的競爭過程實現的,如下式所示:

中國礦產資源評價新技術與評價新模型

中國礦產資源評價新技術與評價新模型

中國礦產資源評價新技術與評價新模型

至此,網路的識別過程只是告一段落,並沒有最後結束。此時,神經元m=g是否真正有資格代表對輸入學習模式Xp的正確分類,還有待於下面的比較和尋找階段來進一步確定。一般情況下需要對代表同一輸入學習模式的分類結果的神經元進行反復識別。

3.比較階段

ART1網路的比較階段的主要職能是完成以下檢查任務,每當給已學習結束的網路提供一個供識別的輸入模式時,首先檢查一下這個模式是否是已學習過的模式,如果是,則讓網路回想出這個模式的分類結果;如果不是,則對這個模式加以記憶,並分配一個還沒有利用過的輸出層神經元來代表這個模式的分類結果。

具體過程如下:把由輸出層每個神經元反饋到輸入層的各個神經元的反饋連接權向量Tm=(t1m,t2m,…,tNm),m=1,2,…,M作為對已學習的輸入模式的一條條記錄,即讓向量Tm=(t1m,t2m,…,tNm)與輸出層第m個神經元所代表的某一學習輸入模式Xp=(

,…,

)完全相等。

當需要網路對某個輸入模式進行回想時,這個輸入模式經過識別階段,競爭到神經元g作為自己的分類結果後,要檢查神經元g反饋回來的向量Tg是否與輸入模式相等。如果相等,則說明這是一個已記憶過的模式,神經元g代表了這個模式的分類結果,識別與比較產生了共振,網路不需要再經過尋找階段,直接進入下一個輸入模式的識別階段;如果不相符,則放棄神經元g的分類結果,進入尋找階段。

在比較階段,當用向量Tg與輸入模式XP進行比較時,允許二者之間有一定的差距,差距的大小由警戒參數ρ決定。

首先計算

中國礦產資源評價新技術與評價新模型

Cg表示向量Tg與輸入模式XP的擬合度。

在式中,

(tng*xn)表示向量Tg=(t1g,t2g,…,tNg)與輸入模式Xp=(

,…,

)的邏輯「與」。

當Tg=XP時,Cg=1。

當Cg≥ρ時,說明擬合度大於要求,沒有超過警戒線。

以上兩種情況均可以承認識別結果。

當Cg≠1且Cg>ρ時,按式(6)式(7)將前饋連接權Wg=(w1g,w2g,…,wNg)和反饋連接權Tg=(t1g,t2g,…,tNg)向著與XP更接近的方向調整。

中國礦產資源評價新技術與評價新模型

tng(t+1)=tng(t)*xn,n=1,2,…,N。(7)

當Cg<ρ時,說明擬合度小於要求,超過警戒線,則拒絕識別結果,將神經元g重新復位為0,並將這個神經元排除在下次識別范圍之外,網路轉入尋找階段。

4.尋找階段

尋找階段是網路在比較階段拒絕識別結果之後轉入的一個反復探尋的階段,在這一階段中,網路將在餘下的輸出層神經元中搜索輸入模式Xp的恰當分類。只要在輸出向量Yp=(

,…

)中含有與這一輸入模式Xp相對應、或在警戒線以內相對應的分類單元,則網路可以得到與記憶模式相符的分類結果。如果在已記憶的分類結果中找不到與現在輸入的模式相對應的分類,但在輸出向量中還有未曾使用過的單元,則可以給這個輸入模式分配一個新的分類單元。在以上兩種情況下,網路的尋找過程總能獲得成功,也就是說共振終將發生。

三、總體演算法

設網路輸入層有N個神經元,網路輸出層有M個神經元,二值輸入模式和輸出向量分別為:Xp=(

,…,

),Yp=(

,…,

)p=1,2,…,p,其中p為輸入學習模式的個數。設前饋連接權和反饋連接權矩陣分別為W=(wnm)N×M,T=(tnm)N×M,n=1,2,…,N,m=1,2,…,M。

(1)網路初始化

tnm(0)=1,

中國礦產資源評價新技術與評價新模型

n=1,2,…,N,m=1,2,…,M。

0<ρ≤1。

(2)將輸入模式Xp=(

,…,

)提供給網路的輸入層

(3)計算輸出層各神經元輸入加權和

中國礦產資源評價新技術與評價新模型

(4)選擇XP的最佳分類結果

中國礦產資源評價新技術與評價新模型

令神經元g的輸出為1。

(5)計算

中國礦產資源評價新技術與評價新模型

中國礦產資源評價新技術與評價新模型

判斷

中國礦產資源評價新技術與評價新模型

當式(8)成立,轉到(7),否則,轉到(6)。

(6)取消識別結果,將輸出層神經元g的輸出值復位為0,並將這一神經元排除在下一次識別的范圍之外,返回步驟(4)。當所有已利用過的神經元都無法滿足式(8),則選擇一個新的神經元作為分類結果,轉到步驟(7)。

(7)承認識別結果,並按下式調整連接權

中國礦產資源評價新技術與評價新模型

tng(t+1)=tng(t)*xn,n=1,2,…,N。

(8)將步驟(6)復位的所有神經元重新加入識別范圍之內,返回步驟(2)對下一模式進行識別。

(9)輸出分類識別結果。

(10)結束。

四、實例

實例為ART1神經網路模型在柴北緣-東昆侖造山型金礦預測的應用。

1.建立綜合預測模型

柴北緣—東昆侖地區位於青海省的西部,是中央造山帶的西部成員——秦祁昆褶皺系的一部分,是典型的復合造山帶(殷鴻福等,1998)。根據柴北緣—東昆侖地區地質概括以及造山型金礦成礦特點,選擇與成礦相關密切的專題數據,建立柴北緣—東昆侖地區的綜合信息找礦模型:

1)金礦重砂異常數據是金礦的重要找礦標志。

2)金礦水化異常數據是金礦的重要找礦標志。

3)金礦的化探異常數據控制金礦床的分布。

4)金礦的空間分布與通過該區的深大斷裂有關。

5)研究區內斷裂密集程度控制金礦的產出。

6)重力構造的存在與否是金礦存在的一個標志。

7)磁力構造線的存在也是金礦存在的一個重要標志。

8)研究區地質復雜程度也對金礦的產出具有重要的作用。

9)研究區存在的礦(化)點是一個重要的標志。

2.劃分預測單元

預測工作是在單元上進行的,預測工作的結果是與單元有著較為直接的聯系,在找礦模型指導下,以最大限度地反映成礦信息和預測單元面積最小為原則,通過對研究區內地質、地球物理、地球化學等的綜合資料分析,對可能的成礦地段圈定了預測單元。採用網格化單元作為本次研究的預測單元,網格單元的大小是,40×40,將研究區劃分成774個預測單元。

3.變數選擇(表8-6)

4.ART1模型預測結果

ART1神經網路模型演算法中,給定不同的閾值,將改變預測分類的結果。本次實驗選取得閾值為ρ=0.41,系統根據此閾值進行計算獲得計算結果,並通過將不同的分類結果賦予不同的顏色,最終獲得ART模型預測單元的分類結果。分類的結果是形成29個類別。分類結果用不同的顏色表示,其具體結果地顯示見圖8-5。圖形中顏色只代表類別號,不代表分類的好壞。將礦點專題圖層疊加以後,可以看出,顏色為灰色的單元與礦的關系更為密切。

表8-6 預測變數標志的選擇表

圖8-5 東昆侖—柴北緣地區基於ARTL模型的金礦分類結果圖

❽ 如何用人工神經網路進行判別分析

經過幾十年的發展,神經網路理論在模式識別、自動控制、信號處理、輔助決策、人工智慧等眾多研究領域取得了廣泛的成功。
將人工神經網路應用至實際問題時,需先分析問題有哪些參量,如何抽象建立模型,最後選擇一種適當的神經網路模型,經過訓練即可映射該問題。
人工神經網路由於其獨特的模型結構和固有的非線性模擬能力,以及高度的自適應和容錯特性等突出特徵,在控制系統中獲得了廣泛的應用。其在各類控制器框架結構的基礎上,加入了非線性自適應學習機制,從而使控制器具有更好的性能。基本的控制結構有監督控制、直接逆模控制、模型參考控制、內模控制、預測控制、最優決策控制等。

❾ 神經網路BP模型

一、BP模型概述

誤差逆傳播(Error Back-Propagation)神經網路模型簡稱為BP(Back-Propagation)網路模型。

Pall Werbas博士於1974年在他的博士論文中提出了誤差逆傳播學習演算法。完整提出並被廣泛接受誤差逆傳播學習演算法的是以Rumelhart和McCelland為首的科學家小組。他們在1986年出版「Parallel Distributed Processing,Explorations in the Microstructure of Cognition」(《並行分布信息處理》)一書中,對誤差逆傳播學習演算法進行了詳盡的分析與介紹,並對這一演算法的潛在能力進行了深入探討。

BP網路是一種具有3層或3層以上的階層型神經網路。上、下層之間各神經元實現全連接,即下層的每一個神經元與上層的每一個神經元都實現權連接,而每一層各神經元之間無連接。網路按有教師示教的方式進行學習,當一對學習模式提供給網路後,神經元的激活值從輸入層經各隱含層向輸出層傳播,在輸出層的各神經元獲得網路的輸入響應。在這之後,按減小期望輸出與實際輸出的誤差的方向,從輸入層經各隱含層逐層修正各連接權,最後回到輸入層,故得名「誤差逆傳播學習演算法」。隨著這種誤差逆傳播修正的不斷進行,網路對輸入模式響應的正確率也不斷提高。

BP網路主要應用於以下幾個方面:

1)函數逼近:用輸入模式與相應的期望輸出模式學習一個網路逼近一個函數;

2)模式識別:用一個特定的期望輸出模式將它與輸入模式聯系起來;

3)分類:把輸入模式以所定義的合適方式進行分類;

4)數據壓縮:減少輸出矢量的維數以便於傳輸或存儲。

在人工神經網路的實際應用中,80%~90%的人工神經網路模型採用BP網路或它的變化形式,它也是前向網路的核心部分,體現了人工神經網路最精華的部分。

二、BP模型原理

下面以三層BP網路為例,說明學習和應用的原理。

1.數據定義

P對學習模式(xp,dp),p=1,2,…,P;

輸入模式矩陣X[N][P]=(x1,x2,…,xP);

目標模式矩陣d[M][P]=(d1,d2,…,dP)。

三層BP網路結構

輸入層神經元節點數S0=N,i=1,2,…,S0;

隱含層神經元節點數S1,j=1,2,…,S1;

神經元激活函數f1[S1];

權值矩陣W1[S1][S0];

偏差向量b1[S1]。

輸出層神經元節點數S2=M,k=1,2,…,S2;

神經元激活函數f2[S2];

權值矩陣W2[S2][S1];

偏差向量b2[S2]。

學習參數

目標誤差ϵ;

初始權更新值Δ0

最大權更新值Δmax

權更新值增大倍數η+

權更新值減小倍數η-

2.誤差函數定義

對第p個輸入模式的誤差的計算公式為

中國礦產資源評價新技術與評價新模型

y2kp為BP網的計算輸出。

3.BP網路學習公式推導

BP網路學習公式推導的指導思想是,對網路的權值W、偏差b修正,使誤差函數沿負梯度方向下降,直到網路輸出誤差精度達到目標精度要求,學習結束。

各層輸出計算公式

輸入層

y0i=xi,i=1,2,…,S0;

隱含層

中國礦產資源評價新技術與評價新模型

y1j=f1(z1j),

j=1,2,…,S1;

輸出層

中國礦產資源評價新技術與評價新模型

y2k=f2(z2k),

k=1,2,…,S2。

輸出節點的誤差公式

中國礦產資源評價新技術與評價新模型

對輸出層節點的梯度公式推導

中國礦產資源評價新技術與評價新模型

E是多個y2m的函數,但只有一個y2k與wkj有關,各y2m間相互獨立。

其中

中國礦產資源評價新技術與評價新模型

中國礦產資源評價新技術與評價新模型

設輸出層節點誤差為

δ2k=(dk-y2k)·f2′(z2k),

中國礦產資源評價新技術與評價新模型

同理可得

中國礦產資源評價新技術與評價新模型

對隱含層節點的梯度公式推導

中國礦產資源評價新技術與評價新模型

E是多個y2k的函數,針對某一個w1ji,對應一個y1j,它與所有的y2k有關。因此,上式只存在對k的求和,其中

中國礦產資源評價新技術與評價新模型

中國礦產資源評價新技術與評價新模型

設隱含層節點誤差為

中國礦產資源評價新技術與評價新模型

中國礦產資源評價新技術與評價新模型

同理可得

中國礦產資源評價新技術與評價新模型

4.採用彈性BP演算法(RPROP)計算權值W、偏差b的修正值ΔW,Δb

1993年德國 Martin Riedmiller和Heinrich Braun 在他們的論文「A Direct Adaptive Method for Faster Backpropagation Learning:The RPROP Algorithm」中,提出Resilient Backpropagation演算法——彈性BP演算法(RPROP)。這種方法試圖消除梯度的大小對權步的有害影響,因此,只有梯度的符號被認為表示權更新的方向。

權改變的大小僅僅由權專門的「更新值」

確定

中國礦產資源評價新技術與評價新模型

其中

表示在模式集的所有模式(批學習)上求和的梯度信息,(t)表示t時刻或第t次學習。

權更新遵循規則:如果導數是正(增加誤差),這個權由它的更新值減少。如果導數是負,更新值增加。

中國礦產資源評價新技術與評價新模型

RPROP演算法是根據局部梯度信息實現權步的直接修改。對於每個權,我們引入它的

各自的更新值

,它獨自確定權更新值的大小。這是基於符號相關的自適應過程,它基

於在誤差函數E上的局部梯度信息,按照以下的學習規則更新

中國礦產資源評價新技術與評價新模型

其中0<η-<1<η+

在每個時刻,如果目標函數的梯度改變它的符號,它表示最後的更新太大,更新值

應由權更新值減小倍數因子η-得到減少;如果目標函數的梯度保持它的符號,更新值應由權更新值增大倍數因子η+得到增大。

為了減少自由地可調參數的數目,增大倍數因子η+和減小倍數因子η被設置到固定值

η+=1.2,

η-=0.5,

這兩個值在大量的實踐中得到了很好的效果。

RPROP演算法採用了兩個參數:初始權更新值Δ0和最大權更新值Δmax

當學習開始時,所有的更新值被設置為初始值Δ0,因為它直接確定了前面權步的大小,它應該按照權自身的初值進行選擇,例如,Δ0=0.1(默認設置)。

為了使權不至於變得太大,設置最大權更新值限制Δmax,默認上界設置為

Δmax=50.0。

在很多實驗中,發現通過設置最大權更新值Δmax到相當小的值,例如

Δmax=1.0。

我們可能達到誤差減小的平滑性能。

5.計算修正權值W、偏差b

第t次學習,權值W、偏差b的的修正公式

W(t)=W(t-1)+ΔW(t)

b(t)=b(t-1)+Δb(t)

其中,t為學習次數。

6.BP網路學習成功結束條件每次學習累積誤差平方和

中國礦產資源評價新技術與評價新模型

每次學習平均誤差

中國礦產資源評價新技術與評價新模型

當平均誤差MSE<ε,BP網路學習成功結束。

7.BP網路應用預測

在應用BP網路時,提供網路輸入給輸入層,應用給定的BP網路及BP網路學習得到的權值W、偏差b,網路輸入經過從輸入層經各隱含層向輸出層的「順傳播」過程,計算出BP網的預測輸出。

8.神經元激活函數f

線性函數

f(x)=x,

f′(x)=1,

f(x)的輸入范圍(-∞,+∞),輸出范圍(-∞,+∞)。

一般用於輸出層,可使網路輸出任何值。

S型函數S(x)

中國礦產資源評價新技術與評價新模型

f(x)的輸入范圍(-∞,+∞),輸出范圍(0,1)。

f′(x)=f(x)[1-f(x)],

f′(x)的輸入范圍(-∞,+∞),輸出范圍(0,

]。

一般用於隱含層,可使范圍(-∞,+∞)的輸入,變成(0,1)的網路輸出,對較大的輸入,放大系數較小;而對較小的輸入,放大系數較大,所以可用來處理和逼近非線性的輸入/輸出關系。

在用於模式識別時,可用於輸出層,產生逼近於0或1的二值輸出。

雙曲正切S型函數

中國礦產資源評價新技術與評價新模型

f(x)的輸入范圍(-∞,+∞),輸出范圍(-1,1)。

f′(x)=1-f(x)·f(x),

f′(x)的輸入范圍(-∞,+∞),輸出范圍(0,1]。

一般用於隱含層,可使范圍(-∞,+∞)的輸入,變成(-1,1)的網路輸出,對較大的輸入,放大系數較小;而對較小的輸入,放大系數較大,所以可用來處理和逼近非線性的輸入/輸出關系。

階梯函數

類型1

中國礦產資源評價新技術與評價新模型

f(x)的輸入范圍(-∞,+∞),輸出范圍{0,1}。

f′(x)=0。

類型2

中國礦產資源評價新技術與評價新模型

f(x)的輸入范圍(-∞,+∞),輸出范圍{-1,1}。

f′(x)=0。

斜坡函數

類型1

中國礦產資源評價新技術與評價新模型

f(x)的輸入范圍(-∞,+∞),輸出范圍[0,1]。

中國礦產資源評價新技術與評價新模型

f′(x)的輸入范圍(-∞,+∞),輸出范圍{0,1}。

類型2

中國礦產資源評價新技術與評價新模型

f(x)的輸入范圍(-∞,+∞),輸出范圍[-1,1]。

中國礦產資源評價新技術與評價新模型

f′(x)的輸入范圍(-∞,+∞),輸出范圍{0,1}。

三、總體演算法

1.三層BP網路(含輸入層,隱含層,輸出層)權值W、偏差b初始化總體演算法

(1)輸入參數X[N][P],S0,S1,f1[S1],S2,f2[S2];

(2)計算輸入模式X[N][P]各個變數的最大值,最小值矩陣 Xmax[N],Xmin[N];

(3)隱含層的權值W1,偏差b1初始化。

情形1:隱含層激活函數f( )都是雙曲正切S型函數

1)計算輸入模式X[N][P]的每個變數的范圍向量Xrng[N];

2)計算輸入模式X的每個變數的范圍均值向量Xmid[N];

3)計算W,b的幅度因子Wmag

4)產生[-1,1]之間均勻分布的S0×1維隨機數矩陣Rand[S1];

5)產生均值為0,方差為1的正態分布的S1×S0維隨機數矩陣Randnr[S1][S0],隨機數范圍大致在[-1,1];

6)計算W[S1][S0],b[S1];

7)計算隱含層的初始化權值W1[S1][S0];

8)計算隱含層的初始化偏差b1[S1];

9))輸出W1[S1][S0],b1[S1]。

情形2:隱含層激活函數f( )都是S型函數

1)計算輸入模式X[N][P]的每個變數的范圍向量Xrng[N];

2)計算輸入模式X的每個變數的范圍均值向量Xmid[N];

3)計算W,b的幅度因子Wmag;

4)產生[-1,1]之間均勻分布的S0×1維隨機數矩陣Rand[S1];

5)產生均值為0,方差為1的正態分布的S1×S0維隨機數矩陣Randnr[S1][S0],隨機數范圍大致在[-1,1];

6)計算W[S1][S0],b[S1];

7)計算隱含層的初始化權值W1[S1][S0];

8)計算隱含層的初始化偏差b1[S1];

9)輸出W1[S1][S0],b1[S1]。

情形3:隱含層激活函數f( )為其他函數的情形

1)計算輸入模式X[N][P]的每個變數的范圍向量Xrng[N];

2)計算輸入模式X的每個變數的范圍均值向量Xmid[N];

3)計算W,b的幅度因子Wmag

4)產生[-1,1]之間均勻分布的S0×1維隨機數矩陣Rand[S1];

5)產生均值為0,方差為1的正態分布的S1×S0維隨機數矩陣Randnr[S1][S0],隨機數范圍大致在[-1,1];

6)計算W[S1][S0],b[S1];

7)計算隱含層的初始化權值W1[S1][S0];

8)計算隱含層的初始化偏差b1[S1];

9)輸出W1[S1][S0],b1[S1]。

(4)輸出層的權值W2,偏差b2初始化

1)產生[-1,1]之間均勻分布的S2×S1維隨機數矩陣W2[S2][S1];

2)產生[-1,1]之間均勻分布的S2×1維隨機數矩陣b2[S2];

3)輸出W2[S2][S1],b2[S2]。

2.應用彈性BP演算法(RPROP)學習三層BP網路(含輸入層,隱含層,輸出層)權值W、偏差b總體演算法

函數:Train3BP_RPROP(S0,X,P,S1,W1,b1,f1,S2,W2,b2,f2,d,TP)

(1)輸入參數

P對模式(xp,dp),p=1,2,…,P;

三層BP網路結構;

學習參數。

(2)學習初始化

1)

2)各層W,b的梯度值

初始化為零矩陣。

(3)由輸入模式X求第一次學習各層輸出y0,y1,y2及第一次學習平均誤差MSE

(4)進入學習循環

epoch=1

(5)判斷每次學習誤差是否達到目標誤差要求

如果MSE<ϵ,

則,跳出epoch循環,

轉到(12)。

(6)保存第epoch-1次學習產生的各層W,b的梯度值

(7)求第epoch次學習各層W,b的梯度值

1)求各層誤差反向傳播值δ;

2)求第p次各層W,b的梯度值

3)求p=1,2,…,P次模式產生的W,b的梯度值

的累加。

(8)如果epoch=1,則將第epoch-1次學習的各層W,b的梯度值

設為第epoch次學習產生的各層W,b的梯度值

(9)求各層W,b的更新

1)求權更新值Δij更新;

2)求W,b的權更新值

3)求第epoch次學習修正後的各層W,b。

(10)用修正後各層W、b,由X求第epoch次學習各層輸出y0,y1,y2及第epoch次學習誤差MSE

(11)epoch=epoch+1,

如果epoch≤MAX_EPOCH,轉到(5);

否則,轉到(12)。

(12)輸出處理

1)如果MSE<ε,

則學習達到目標誤差要求,輸出W1,b1,W2,b2

2)如果MSE≥ε,

則學習沒有達到目標誤差要求,再次學習。

(13)結束

3.三層BP網路(含輸入層,隱含層,輸出層)預測總體演算法

首先應用Train3lBP_RPROP( )學習三層BP網路(含輸入層,隱含層,輸出層)權值W、偏差b,然後應用三層BP網路(含輸入層,隱含層,輸出層)預測。

函數:Simu3lBP( )。

1)輸入參數:

P個需預測的輸入數據向量xp,p=1,2,…,P;

三層BP網路結構;

學習得到的各層權值W、偏差b。

2)計算P個需預測的輸入數據向量xp(p=1,2,…,P)的網路輸出 y2[S2][P],輸出預測結果y2[S2][P]。

四、總體演算法流程圖

BP網路總體演算法流程圖見附圖2。

五、數據流圖

BP網數據流圖見附圖1。

六、實例

實例一 全國銅礦化探異常數據BP 模型分類

1.全國銅礦化探異常數據准備

在全國銅礦化探數據上用穩健統計學方法選取銅異常下限值33.1,生成全國銅礦化探異常數據。

2.模型數據准備

根據全國銅礦化探異常數據,選取7類33個礦點的化探數據作為模型數據。這7類分別是岩漿岩型銅礦、斑岩型銅礦、矽卡岩型、海相火山型銅礦、陸相火山型銅礦、受變質型銅礦、海相沉積型銅礦,另添加了一類沒有銅異常的模型(表8-1)。

3.測試數據准備

全國化探數據作為測試數據集。

4.BP網路結構

隱層數2,輸入層到輸出層向量維數分別為14,9、5、1。學習率設置為0.9,系統誤差1e-5。沒有動量項。

表8-1 模型數據表

續表

5.計算結果圖

如圖8-2、圖8-3。

圖8-2

圖8-3 全國銅礦礦床類型BP模型分類示意圖

實例二 全國金礦礦石量品位數據BP 模型分類

1.模型數據准備

根據全國金礦儲量品位數據,選取4類34個礦床數據作為模型數據,這4類分別是綠岩型金礦、與中酸性浸入岩有關的熱液型金礦、微細浸染型型金礦、火山熱液型金礦(表8-2)。

2.測試數據准備

模型樣本點和部分金礦點金屬量、礦石量、品位數據作為測試數據集。

3.BP網路結構

輸入層為三維,隱層1層,隱層為三維,輸出層為四維,學習率設置為0.8,系統誤差1e-4,迭代次數5000。

表8-2 模型數據

4.計算結果

結果見表8-3、8-4。

表8-3 訓練學習結果

表8-4 預測結果(部分)

續表

❿ 神經網路輸出神經元個數如何確定

輸出神經元個數是按你的需要確定的,比如你需要模擬函數y=1/x,那麼你的輸入向量就是x,輸出就是y=1/x,也就是一個輸出。再比如你需要模擬水體中的cod,bod參數值,那麼你的輸出就是兩個。你的情況,比如說,你做符號識別的目的是將符號區分為正常符號和異常符號,那麼你的輸出就是2個,是由實際需要來的。

閱讀全文

與神經網路異常值判別相關的資料

熱點內容
網路共享中心沒有網卡 瀏覽:552
電腦無法檢測到網路代理 瀏覽:1410
筆記本電腦一天會用多少流量 瀏覽:713
蘋果電腦整機轉移新機 瀏覽:1403
突然無法連接工作網路 瀏覽:1163
聯通網路怎麼設置才好 瀏覽:1261
小區網路電腦怎麼連接路由器 瀏覽:1145
p1108列印機網路共享 瀏覽:1238
怎麼調節台式電腦護眼 瀏覽:797
深圳天虹蘋果電腦 瀏覽:1033
網路總是異常斷開 瀏覽:641
中級配置台式電腦 瀏覽:1097
中國網路安全的戰士 瀏覽:659
同志網站在哪裡 瀏覽:1458
版觀看完整完結免費手機在線 瀏覽:1484
怎樣切換默認數據網路設置 瀏覽:1145
肯德基無線網無法訪問網路 瀏覽:1342
光纖貓怎麼連接不上網路 瀏覽:1578
神武3手游網路連接 瀏覽:996
局網列印機網路共享 瀏覽:1024