導航:首頁 > 異常信息 > 網路層的連接

網路層的連接

發布時間:2022-06-11 08:35:03

1. 網路互連可以在那些層次實現

物理層

物理層是OSI的第一層,它雖然處於最底層,卻是整個開放系統的基礎。物理層為設備之間的數據通信提供傳輸媒體及互連設備,為數據傳輸提供可靠的環境。

媒體和互連設備
物理層的媒體包括架空明線、平衡電纜、光纖、無線信道等。通信用的互連設備指DTE和DCE間的互連設備。DTE既數據終端設備,又稱物理設備,如計算機、終端等都包括在內。而DCE則是數據通信設備或電路連接設備,如數據機等。數據傳輸通常是經過DTE——DCE,再經過DCE——DTE的路徑。互連設備指將DTE、DCE連接起來的裝置,如各種插頭、插座。LAN中的各種粗、細同軸電纜、T型接、插頭,接收器,發送器,中繼器等都屬物理層的媒體和連接器。
物理層的主要功能

為數據端設備提供傳送數據的通路,數據通路可以是一個物理媒體,也可以是多個物理媒體連接而成.一次完整的數據傳輸,包括激活物理連接,傳送數據,終止物理連接.所謂激活,就是不管有多少物理媒體參與,都要在通信的兩個數據終端設備間連接起來,形成一條通路.
傳輸數據.物理層要形成適合數據傳輸需要的實體,為數據傳送服務.一是要保證數據能在其上正確通過,二是要提供足夠的帶寬(帶寬是指每秒鍾內能通過的比特(BIT)數),以減少信道上的擁塞.傳輸數據的方式能滿足點到點,一點到多點,串列或並行,半雙工或全雙工,同步或非同步傳輸的需要.
完成物理層的一些管理工作.
物理層的一些重要標准
物理層的一些標准和協議早在OSI/TC97/C16 分技術委員會成立之前就已制定並在應用了,OSI也制定了一些標准並採用了一些已有的成果.下面將一些重要的標准列出,以便讀者查閱.ISO2110:稱為"數據通信----25芯DTE/DCE介面連接器和插針分配".它與EIA(美國電子工
業協會)的"RS-232-C"基本兼容。ISO2593:稱為"數據通信----34芯DTE/DCE----介面連接器和插針分配"。ISO4092:稱為"數據通信----37芯DTE/DEC----介面連接器和插針分配".與EIARS-449兼容。CCITT V.24:稱為"數據終端設備(DTE)和數據電路終接設備之間的介面電路定義表".其功能與EIARS-232-C及RS-449兼容於100序列線上.

數據鏈路層

數據鏈路可以粗略地理解為數據通道。物理層要為終端設備間的數據通信提供傳輸媒體及其連接.媒體是長期的,連接是有生存期的.在連接生存期內,收發兩端可以進行不等的一次或多次數據通信.每次通信都要經過建立通信聯絡和拆除通信聯絡兩過程.這種建立起來的數據收發關
系就叫作數據鏈路.而在物理媒體上傳輸的數據難免受到各種不可靠因素的影響而產生差錯,為了彌補物理層上的不足,為上層提供無差錯的數據傳輸,就要能對數據進行檢錯和糾錯.數據鏈路的建立,拆除,對數據的檢錯,糾錯是數據鏈路層的基本任務。

鏈路層的主要功能
鏈路層是為網路層提供數據傳送服務的,這種服務要依靠本層具備的功能來實現。鏈路層應具備如下功能:

鏈路連接的建立,拆除,分離。
幀定界和幀同步。鏈路層的數據傳輸單元是幀,協議不同,幀的長短和界面也有差別,但無論如何必須對幀進行定界。
順序控制,指對幀的收發順序的控制。
差錯檢測和恢復。還有鏈路標識,流量控制等等.差錯檢測多用方陣碼校驗和循環碼校驗來檢測信道上數據的誤碼,而幀丟失等用序號檢測.各種錯誤的恢復則常靠反饋重發技術來完成。
數據鏈路層的主要協議
數據鏈路層協議是為發對等實體間保持一致而制定的,也為了順利完成對網路層的服務。主要協議如下:

ISO1745--1975:"數據通信系統的基本型控制規程".這是一種面向字元的標准,利用10個控制字元完成鏈路的建立,拆除及數據交換.對幀的收發情況及差錯恢復也是靠這些字元來完成.ISO1155, ISO1177, ISO2626, ISO2629等標準的配合使用可形成多種鏈路控制和數據傳輸方式.
ISO3309--1984:稱為"HDLC 幀結構".ISO4335--1984:稱為"HDLC 規程要素 ".ISO7809--1984:稱為"HDLC 規程類型匯編".這3個標准都是為面向比特的數據傳輸控制而制定的.有人習慣上把這3個標准組合稱為高級鏈路控制規程.
ISO7776:稱為"DTE數據鏈路層規程".與CCITT X.25LAB"平衡型鏈路訪問規程"相兼容.
鏈路層產品
獨立的鏈路產品中最常見的當屬網卡,網橋也是鏈路產品。MODEM的某些功能有人認為屬於鏈路層,對些還有爭議.數據鏈路層將本質上不可靠的傳輸媒體變成可靠的傳輸通路提供給網路層。在IEEE802.3情況下,數據鏈路層分成了兩個子層,一個是邏輯鏈路控制,另一個是媒體訪問控制。下圖所示為IEEE802.3LAN體系結構。

AUI=連接單元介面 PMA=物理媒體連接
MAU=媒體連接單元 PLS=物理信令
MDI=媒體相關介面

網路層

網路層的產生也是網路發展的結果.在聯機系統和線路交換的環境中,網路層的功能沒有太大意義.當數據終端增多時.它們之間有中繼設備相連.此時會出現一台終端要求不只是與唯一的一台而是能和多台終端通信的情況,這就是產生了把任意兩台數據終端設備的數據鏈接起來的問題,也就是路由或者叫尋徑.另外,當一條物理信道建立之後,被一對用戶使用,往往有許多空閑時間被浪費掉.人們自然會希望讓多對用戶共用一條鏈路,為解決這一問題就出現了邏輯信道技術和虛擬電路技術.

網路層主要功能
網路層為建立網路連接和為上層提供服務,應具備以下主要功能:

路由選擇和中繼
激活,終止網路連接
在一條數據鏈路上復用多條網路連接,多採取分時復用技術
差錯檢測與恢復
排序,流量控制
服務選擇
網路管理
網路層標准簡介
網路層的一些主要標准如下:

ISO.DIS8208:稱為"DTE用的X.25分組級協議"
ISO.DIS8348:稱為"CO 網路服務定義"(面向連接)
ISO.DIS8349:稱為"CL 網路服務定義"(面向無連接)
ISO.DIS8473:稱為"CL 網路協議"
ISO.DIS8348:稱為"網路層定址"
除上述標准外,還有許多標准。這些標准都只是解決網路層的部分功能,所以往往需要在網路層中同時使用幾個標准才能完成整個網路層的功能.由於面對的網路不同,網路層將會採用不同的標准組合.
在具有開放特性的網路中的數據終端設備,都要配置網路層的功能.現在市場上銷售的網路硬設備主要有網關和路由器.

傳輸層

傳輸層是兩台計算機經過網路進行數據通信時,第一個端到端的層次,具有緩沖作用。當網路層服務質量不能滿足要求時,它將服務加以提高,以滿足高層的要求;當網路層服務質量較好時,它只用很少的工作。傳輸層還可進行復用,即在一個網路連接上創建多個邏輯連接。 傳輸層也稱為運輸層.傳輸層只存在於端開放系統中,是介於低3層通信子網系統和高3層之間的一層,但是很重要的一層.因為它是源端到目的端對數據傳送進行控制從低到高的最後一層.

有一個既存事實,即世界上各種通信子網在性能上存在著很大差異.例如電話交換網,分組交換網,公用數據交換網,區域網等通信子網都可互連,但它們提供的吞吐量,傳輸速率,數據延遲通信費用各不相同.對於會話層來說,卻要求有一性能恆定的界面.傳輸層就承擔了這一功能.它採用分流/合流,復用/介復用技術來調節上述通信子網的差異,使會話層感受不到.

此外傳輸層還要具備差錯恢復,流量控制等功能,以此對會話層屏蔽通信子網在這些方面的細節與差異.傳輸層面對的數據對象已不是網路地址和主機地址,而是和會話層的界面埠.上述功能的最終目的是為會話提供可靠的,無誤的數據傳輸.傳輸層的服務一般要經歷傳輸連接建立階段,數據傳送階段,傳輸連接釋放階段3個階段才算完成一個完整的服務過程.而在數據傳送階段又分為一般數據傳送和加速數據傳送兩種。傳輸層服務分成5種類型.基本可以滿足對傳送質量,傳送速度,傳送費用的各種不同需要.傳輸層的協議標准有以下幾種:

ISO8072:稱為"面向連接的傳輸服務定義"
ISO8072:稱為"面向連接的傳輸協議規范

會話層

會話層提供的服務可使應用建立和維持會話,並能使會話獲得同步。會話層使用校驗點可使通信會話在通信失效時從校驗點繼續恢復通信。這種能力對於傳送大的文件極為重要。會話層,表示層,應用層構成開放系統的高3層,面對應用進程提供分布處理,對話管理,信息表示,恢復最後的差錯等. 會話層同樣要擔負應用進程服務要求,而運輸層不能完成的那部分工作,給運輸層功能差距以彌補.主要的功能是對話管理,數據流同步和重新同步。要完成這些功能,需要由大量的服務單元功能組合,已經制定的功能單元已有幾十種.現將會話層主要功能介紹如下.

為會話實體間建立連接。為給兩個對等會話服務用戶建立一個會話連接,應該做如下幾項工作:

將會話地址映射為運輸地址
選擇需要的運輸服務質量參數(QOS)
對會話參數進行協商
識別各個會話連接
傳送有限的透明用戶數據
數據傳輸階段
這個階段是在兩個會話用戶之間實現有組織的,同步的數據傳輸.用戶數據單元為SSDU,而協議數據單元為SPDU.會話用戶之間的數據傳送過程是將SSDU轉變成SPDU進行的.
連接釋放
連接釋放是通過"有序釋放","廢棄","有限量透明用戶數據傳送"等功能單元來釋放會話連接的.會話層標准為了使會話連接建立階段能進行功能協商,也為了便於其它國際標准參考和引用,定義了12種功能單元.各個系統可根據自身情況和需要,以核心功能服務單元為基礎,選配其他功能單元組成合理的會話服務子集.會話層的主要標准有"DIS8236:會話服務定義"和"DIS8237:會話協議規范".

2. 網路中的端到端連接,和點到點連接都指什麼

點到點是物理拓撲,如光纖,就必須是點到點連接,DDN專線也是,即兩頭各一個機器中間不能有機器。

點到點是網路層的,你傳輸層只認為我的數據是從a直接到e的,但實際不是這樣的,打個比方,傳輸層好象領導,他發布命令:要干什麼什麼事,但真正乾的不是他,真正乾的是員工,也許領導認為很簡單一句話就可以干好的事,在員工眼裡卻是難於登天,手續極其煩瑣,所以傳輸層是發布命令的領導,他說的是命令,也就是最終的目的,所以他只看到最初的地址和最終的地址,既一個任務的兩個端點,網路層就相當於員工,領導的任務我要一步一步的作完,先從a到b,在從b到c...,所以他看到的只是整個任務的一個階段,a到b,b到c...這就是點到點。

端到端是網路連接。網路要通信,必須建立連接,不管有多遠,中間有多少機器,都必須在兩頭(源和目的)間建立連接,一旦連接建立起來,就說已經是端到端連接了,即端到端是邏輯鏈路,這條路可能經過了很復雜的物理路線,但兩端主機不管,只認為是有兩端的連接,而且一旦通信完成,這個連接就釋放了,物理線路可能又被別的應用用來建立連接了。TCP就是用來建立這種端到端連接的一個具體協議,SPX也是。

端到端是傳輸層的,你比如你要將數據從A傳送到E,中間可能經過A->B->C->D->E,對於傳輸層來說他並不知道b,c,d的存在,他只認為我的報文數據是從a直接到e的,這就叫做端到端。
總之,一句話概括就是端到端是由無數的點到點實現和組成的。

3. 請列舉工作在物理層,數據鏈路層和網路層的各種網路連接和互連設備

物理層的主要設備:中繼器、集線器。
數據鏈路層主要設備:二層交換機、網橋
網路層主要設備:路由器

傳統交換機從網橋發展而來,屬於OSI第二層即數據鏈路層設備。它根據MAC 地址定址,通過站表選擇路由,站表的建立和維護由交換機自動進行。路由器屬於OSI第三層即網路層設備,它根據 IP 地址進行定址,通過路由表路由協議產生。交換機最大的好處是快速,由於交換機只須識別幀中MAC 地址,直接根據MAC 地址產生選擇轉發埠演算法簡單,便於ASIC實現,因此轉發速度極高。但交換機的工作機制也帶來一些問題。

從過濾網路流量的角度來看,路由器(在網路層實現互連的設備)的作用與交換機和網橋非常相似。但是與工作在網路物理層、從物理上劃分網段的交換機不同,路由器使用專門的軟體協議從邏輯上對整個網路進行劃分。

網橋工作在數據鏈路層,將兩個 LAN 連起來,根據 MAC 地址來轉發幀,可以看作一個「低層的路由器」(路由器工作在網路層,根據網路地址如IP 地址進行轉發)。遠程網橋通過一個通常較慢的鏈路(如電話線)連接兩個遠程LAN,對本地網橋而言,性能比較重要,而對遠程網橋而言,在長距離上可正常運行是更重要的。

網橋與路由器的比較:網橋並不了解其轉發幀中高層協議的信息,這使它可以同時以同種方式處理 IP、IPX等協議,它還提供了將無路由協議的網路(如NetBEUI)分段的功能。由於路由器處理網路層的數據,因此它們更容易互連不同的數據鏈路層,如令牌環網段和乙太網段。網橋通常比路由器難控制。像IP等協議有復雜的路由協議,使網管易於管理路由;IP等協議還提供了較多的網路如何分段的信息(即使其地址也提供了此類信息)。而網橋則只用 MAC 地址和物理拓撲進行工作。因此網橋一般適於小型較簡單的網路。

網橋不同於中繼器和集線器:網橋是通過邏輯判斷而確定如何傳輸幀。這個邏輯是基於乙太網的協議的,符合 OSI的第二層規范。所以網橋可以被看作是第二層的設備。

中繼器(Repeater )是連接網路線路的一種裝置,常用於兩個網路節點之間物理信號的雙向轉發工作。中繼器工作於OSI的物理層,是最簡單的網路互聯設備,主要完成物理層的功能,負責在兩個節點的物理層上按位傳遞信息,完成信號的復制、調整和放大功能,以此來延長網路的長度。由於存在損耗,在線路上傳輸的信號功率會逐漸衰減,衰減到一定程度時將造成信號失真,因此會導致接收錯誤。中繼器就是為解決這一問題而設計的。它完成物理線路的連接,對衰減的信號進行放大,保持與原數據相同。一般情況下,中繼器用於完全相同的兩類網路的互連。

集線器(HUB)屬於數據通信系統中的基礎設備,它和雙絞線等傳輸介質一樣,是一種不需任何軟體支持或只需很少管理軟體管理的硬體設備。它被廣泛應用到各種場合。集線器工作在區域網(LAN)環境,像網卡一樣,應用於OSI參考模型第一層,因此又被稱為物理層設備。集線器內部採用了電器互聯,當維護LAN 的環境是邏輯匯流排或環型結構時,完全可以用集線器建立一個物理上的星型或樹型網路結構。在這方面,集線器所起的作用相當於多埠的中繼器。其實,集線器實際上就是中繼器的一種,其區別僅在於集線器能夠提供更多的埠服務,所以集線器又叫多口中繼器。

自己整理的,希望能對你有點幫助:)

4. 計算機網路連接原理是什麼(越詳細越好)

連接原理是TCP/IP原理..
我目前也正在學.

TCP/IP的通訊協議

這部分簡要介紹一下TCP/IP的內部結構,為討論與互聯網有關的安全問題打下基礎。TCP/IP協議組之所以流行,部分原因是因為它可以用在各種各樣的信道和底層協議(例如T1和X.25、乙太網以及RS-232串列介面)之上。確切地說,TCP/IP協議是一組包括TCP協議和IP協議,UDP(User Datagram Protocol)協議、ICMP(Internet Control Message Protocol)協議和其他一些協議的協議組。

TCP/IP整體構架概述

TCP/IP協議並不完全符合OSI的七層參考模型。傳統的開放式系統互連參考模型,是一種通信協議的7層抽象的參考模型,其中每一層執行某一特定任務。該模型的目的是使各種硬體在相同的層次上相互通信。這7層是:物理層、數據鏈路層、網路層、傳輸層、話路層、表示層和應用層。而TCP/IP通訊協議採用了4層的層級結構,每一層都呼叫它的下一層所提供的網路來完成自己的需求。這4層分別為:

應用層:應用程序間溝通的層,如簡單電子郵件傳輸(SMTP)、文件傳輸協議(FTP)、網路遠程訪問協議(Telnet)等。

傳輸層:在此層中,它提供了節點間的數據傳送服務,如傳輸控制協議(TCP)、用戶數據報協議(UDP)等,TCP和UDP給數據包加入傳輸數據並把它傳輸到下一層中,這一層負責傳送數據,並且確定數據已被送達並接收。

互連網路層:負責提供基本的數據封包傳送功能,讓每一塊數據包都能夠到達目的主機(但不檢查是否被正確接收),如網際協議(IP)。

網路介面層:對實際的網路媒體的管理,定義如何使用實際網路(如Ethernet、Serial Line等)來傳送數據。

TCP/IP中的協議

以下簡單介紹TCP/IP中的協議都具備什麼樣的功能,都是如何工作的:

1. IP

網際協議IP是TCP/IP的心臟,也是網路層中最重要的協議。

IP層接收由更低層(網路介面層例如乙太網設備驅動程序)發來的數據包,並把該數據包發送到更高層---TCP或UDP層;相反,IP層也把從TCP或UDP層接收來的數據包傳送到更低層。IP數據包是不可靠的,因為IP並沒有做任何事情來確認數據包是按順序發送的或者沒有被破壞。IP數據包中含有發送它的主機的地址(源地址)和接收它的主機的地址(目的地址)。

高層的TCP和UDP服務在接收數據包時,通常假設包中的源地址是有效的。也可以這樣說,IP地址形成了許多服務的認證基礎,這些服務相信數據包是從一個有效的主機發送來的。IP確認包含一個選項,叫作IP source routing,可以用來指定一條源地址和目的地址之間的直接路徑。對於一些TCP和UDP的服務來說,使用了該選項的IP包好象是從路徑上的最後一個系統傳遞過來的,而不是來自於它的真實地點。這個選項是為了測試而存在的,說明了它可以被用來欺騙系統來進行平常是被禁止的連接。那麼,許多依靠IP源地址做確認的服務將產生問題並且會被非法入侵。

2. TCP

如果IP數據包中有已經封好的TCP數據包,那麼IP將把它們向『上』傳送到TCP層。TCP將包排序並進行錯誤檢查,同時實現虛電路間的連接。TCP數據包中包括序號和確認,所以未按照順序收到的包可以被排序,而損壞的包可以被重傳。

TCP將它的信息送到更高層的應用程序,例如Telnet的服務程序和客戶程序。應用程序輪流將信息送回TCP層,TCP層便將它們向下傳送到IP層,設備驅動程序和物理介質,最後到接收方。

面向連接的服務(例如Telnet、FTP、rlogin、X Windows和SMTP)需要高度的可靠性,所以它們使用了TCP。DNS在某些情況下使用TCP(發送和接收域名資料庫),但使用UDP傳送有關單個主機的信息。

3.UDP

UDP與TCP位於同一層,但對於數據包的順序錯誤或重發。因此,UDP不被應用於那些使用虛電路的面向連接的服務,UDP主要用於那些面向查詢---應答的服務,例如NFS。相對於FTP或Telnet,這些服務需要交換的信息量較小。使用UDP的服務包括NTP(網落時間協議)和DNS(DNS也使用TCP)。

欺騙UDP包比欺騙TCP包更容易,因為UDP沒有建立初始化連接(也可以稱為握手)(因為在兩個系統間沒有虛電路),也就是說,與UDP相關的服務面臨著更大的危險。

4.ICMP

ICMP與IP位於同一層,它被用來傳送IP的的控制信息。它主要是用來提供有關通向目的地址的路徑信息。ICMP的『Redirect』信息通知主機通向其他系統的更准確的路徑,而『Unreachable』信息則指出路徑有問題。另外,如果路徑不可用了,ICMP可以使TCP連接『體面地』終止。PING是最常用的基於ICMP的服務。

5. TCP和UDP的埠結構

TCP和UDP服務通常有一個客戶/伺服器的關系,例如,一個Telnet服務進程開始在系統上處於空閑狀態,等待著連接。用戶使用Telnet客戶程序與服務進程建立一個連接。客戶程序向服務進程寫入信息,服務進程讀出信息並發出響應,客戶程序讀出響應並向用戶報告。因而,這個連接是雙工的,可以用來進行讀寫。

兩個系統間的多重Telnet連接是如何相互確認並協調一致呢?TCP或UDP連接唯一地使用每個信息中的如下四項進行確認:

源IP地址 發送包的IP地址。

目的IP地址 接收包的IP地址。

源埠 源系統上的連接的埠。

目的埠 目的系統上的連接的埠。

埠是一個軟體結構,被客戶程序或服務進程用來發送和接收信息。一個埠對應一個16比特的數。服務進程通常使用一個固定的埠,例如,SMTP使用25、Xwindows使用6000。這些埠號是『廣為人知』的,因為在建立與特定的主機或服務的連接時,需要這些地址和目的地址進行通訊。

5. 網路層的功能有沒有建立連接

是啊,建立連接好像是傳輸層的事。

6. 網路層的互連設備是什麼

  1. 如果說由於微型計算機的普及,導致了若乾颱微機相互連接,從而產生了區域網的話,那麼由於網路的普遍應用,為了在更大范圍內實現相互通信和資源共享,網路之間的互聯便成為一種信息快速傳達的最好方式。

  2. 網路互聯時,必須解決如下問題:在物理上如何把兩種網路連接起來。一種網路如何與另一種網路實現互訪與通信,如何解決它們之間協議方面的差別,如何處理速率與帶寬的差別,解決這些問題,協調,轉換機制的部件就是中繼器,網橋,路由器,接入設備和網關等。

7. 網路互連分為哪幾個層次各有什麼不同

OSI(Open System Interconnect)開放式系統互聯。
一般都叫OSI參考模型
是ISO(國際標准化組織)組織在1985年研究的網路互聯模型。
最早的時候網路剛剛出現的時候,很多大型的公司都擁有了網路技術,公司內部計算機可以相互連接。可以卻不能與其它公司連接。因為沒有一個統一的規范。計算機之間相互傳輸的信息對方不能理解。所以不能互聯。
ISO為了更好的使網路應用更為普及,就推出了OSI參考模型。其含義就是推薦所有公司使用這個規范來控制網路。這樣所有公司都有相同的規范,就能互聯了。
其內容如下:
第7層應用層—直接對應用程序提供服務,應用程序可以
變化,但要包括電子消息傳輸
第6層表示層—格式化數據,以便為應用程序提供通用接
口。這可以包括加密服務
第5層會話層—在兩個節點之間建立端連接。此服務包括
建立連接是以全雙工還是以半雙工的方式進行設
置,盡管可以在層4中處理雙工方式
第4層傳輸層—常規數據遞送-面向連接或無連接。包括
全雙工或半雙工、流控制和錯誤恢復服務
第3層網路層—本層通過定址來建立兩個節點之間的連接,
它包括通過互連網路來路由和中繼數據
第2層數據鏈路層—在此層將數據分幀,並處理流控制。本層
指定拓撲結構並提供硬體定址
第1層物理層—原始比特流的傳輸,電子信號傳輸和硬體介面
數據發送時,從第七層傳到第一層,接受方則相反。
上三層總稱應用層,用來控制軟體方面。
下四層總稱數據流層,用來管理硬體。
數據在發至數據流層的時候將被拆分。
在傳輸層的數據叫段 網路層叫包 數據鏈路層叫幀 物理層叫比特流 這樣的叫法叫PDU (協議數據單元)
OSI中每一層都有每一層的作用。比如網路層就要管理本機的IP的目的地的IP。數據鏈路層就要管理MAC地址(介質訪問控制)等等,所以在每層拆分數據後要進行封裝,以完成接受方與本機相互聯系通信的作用。
如以此規定。
OSI模型用途相當廣泛。
比如交換機、集線器、路由器等很多網路設備的設計都是參照OSI模型設計的。
知道道這么多就可以了。至少CCNA就考這么多。

8. 請問如何實現不同神經網路層之間的連接

輸出的數量取決於你的target怎麼設置,比如你的輸入是一個5行n列的數據,輸出是一個4行n列的數據,你用這個數據初始化並且訓練神經網路,得到的當然是5個輸入值4個輸出值的神經網路。
函數怎麼寫的話,去看matlab 幫助,搜索newff,你就能看到用法了。

9. 管理網路節點間的連接是OSI模型中哪一層的功能

ISO/OSI參考模型各層功能:

1、物理層功能:物理層是OSI參考模型的最低層,它利用傳輸介質為數據鏈路層提供物理連接。

2、數據鏈路層:數據鏈路層是為網路層提供服務的,解決兩個相鄰結點之間的通信問題。

3、網路層:網路層是為傳輸層提供服務的,傳送的協議數據單元稱為數據包或分組。

4、傳輸層:傳輸層的作用是為上層協議提供端到端的可靠和透明的數據傳輸服務,包括處理差錯控制和流量控制等問題。

5、會話層:會話層主要功能是管理和協調不同主機上各種進程之間的通信(對話),即負責建立、管理和終止應用程序之間的會話。

6、表示層:表示層處理流經結點的數據編碼的表示方式問題,以保證一個系統應用層發出的信息可被另一系統的應用層讀出。。

7、應用層:應用層是OSI參考模型的最高層,是用戶與網路的介面。

(9)網路層的連接擴展閱讀:

ISO/OSI參考模型各層的劃分原則:

ISO為了更好的使網路應用更為普及,就推出了OSI參考模型。其含義就是推薦所有公司使用這個規范來控制網路。根據分而治之的原則,ISO將整個通信功能劃分為七個層次,劃分原則是:

網路中各節點都有相同的層次;不同節點的同等層具有相同的功能;同一節點內相鄰層之間通過介面通信;每一層使用下層提供的服務,並向其上層提供服務;

不同節點的同等層按照協議實現對等層之間的通信;根據功能需要進行分層,每層應當實現定義明確的功能;向應用程序提供服務。

10. 在進行網路互連時,若層次不同需要哪些互連設備

需要一種中繼設備的互聯,按中繼系統屬於OSI的層次來劃分可分為:

轉發器:物理層中繼系統。

網 橋:數據鏈接層中繼系統。

路由器:網路層中繼系統。

網 關:網路層以上的中繼系統。

(10)網路層的連接擴展閱讀

中繼設備路由器——

路由器通常位於網路層,因而路由技術也是與網路層相關的一門技術, 路由器與早期的網橋相比有很多的變化和不同。 通常而言,網橋的局限性比較大,它只能夠連通數據鏈路層相同或者類似的網路,不能夠連接數據鏈路層之間有著較大差異的網路。

但是路由器卻不同,它打破了這個局限,能夠連接任意的兩種不同的網路,但是這兩種不同的網路之間要遵守一個原則,就是使用相同的網路層協議,這樣才能夠被路由器連接。 路由技術簡單來說就是對網路上眾多的信息進行轉發與交換的一門技術。

閱讀全文

與網路層的連接相關的資料

熱點內容
網路共享中心沒有網卡 瀏覽:547
電腦無法檢測到網路代理 瀏覽:1403
筆記本電腦一天會用多少流量 瀏覽:697
蘋果電腦整機轉移新機 瀏覽:1400
突然無法連接工作網路 瀏覽:1158
聯通網路怎麼設置才好 瀏覽:1257
小區網路電腦怎麼連接路由器 瀏覽:1139
p1108列印機網路共享 瀏覽:1236
怎麼調節台式電腦護眼 瀏覽:791
深圳天虹蘋果電腦 瀏覽:1026
網路總是異常斷開 瀏覽:639
中級配置台式電腦 瀏覽:1092
中國網路安全的戰士 瀏覽:656
同志網站在哪裡 瀏覽:1450
版觀看完整完結免費手機在線 瀏覽:1482
怎樣切換默認數據網路設置 瀏覽:1141
肯德基無線網無法訪問網路 瀏覽:1328
光纖貓怎麼連接不上網路 瀏覽:1570
神武3手游網路連接 瀏覽:991
局網列印機網路共享 瀏覽:1021