導航:首頁 > 網路信號 > 陝西移動網路大數據優化

陝西移動網路大數據優化

發布時間:2022-09-26 21:54:38

① 大數據分析怎麼進行移動網路優化

靈活迅捷的解析方式http://www.finebi.com/

原生渲染技術,專為移動處理器加速優化,相比傳統解析方式,渲染的速度、交互操作的流暢度均有大幅提升。用戶可在自己的APP工程中導入SDK集成,通過URL調用原生報表。

炫酷智能的鑽取聯動、准確及時的消息推送、隨心批註分享等

② 大數據時代電信運營商應該採用的運營策略

大數據時代電信運營商應該採用的運營策略

最近幾年,大數據在人們視野中出現的頻率越來越高,繼而也引起人們的關注。國際著名咨詢公司IDC、麥肯錫相繼發布了有關大數據的研究報告,將其比喻為「未來的金礦」,國內不少互聯網公司也開始著手部署各自的大數據戰略,作為通信行業的主要參與者和推動者,電信運營商在大數據的時代下開始試點了大數據系統的建設與應用,以充分挖掘企業的數據資產價值,創造新的利潤點。

大數據是什麼?

關於大數據的定義業界並沒有給出一個准確的定位,研究機構Gartner把大數據定義為是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產;維基百將大數據定義為無法在可承受的時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合;《著雲台》的分析師團隊認為,「大數據」通常用來形容一個公司創造的大量非結構化數據和半結構化數據,這些數據在下載到關系型資料庫用於分析時會花費過多時間和金錢。

大數據時代電信運營商應該採用的運營策略是什麼?

1、優化網路:利用大數據分析,可突破傳統的智能網優以CDT和MR數據為基礎,通過3G基站的流量大數據,可以分析出哪些區域是用戶數據流量高消耗區,在這些區域建設4G基站,就能做到既精準又有效;通過對MR大數據的分析,可以知道哪些區域移動網路小區信號覆蓋不好,通過關聯CRM中的客戶信息和套餐信息,便可排出網路優化的優先順序;通過LBS系統平台,對移動通信使用者的位置和運動軌跡進行分析,有效統計熱點地區的人群出現概率,並進行基站資源配置的優化,提高了資源使用效率。

2、精準營銷:中國電信利用大數據處理平台分析呼叫中心海量語音數據,建立呼叫中心測評體系和產品關聯分析,為保險公司等提供基於自動語音識別的大數據分析服務;根據使用不同移動終端的用戶的月均流量消耗,分析出在哪些移動終端上用戶的上網體驗最佳、DOU最大,根據該數據就可制定更為科學的終端補貼策略;通過對用戶手機的通話、簡訊和空間位置等信息進行處理,提取用戶通信行為的時空規則性和重復性,實現定向精確的終端營銷和個性化內容業務推薦。

3、深度擁抱大數據:大數據的時代已經來臨,因此電信運營商可以強化規劃引導、實現大數據建設全面統籌。電信運營商應針對不同的應用場景選取合適的技術進行大數據建設,在集團和省公司層面分別指定部門統一組織開展整個集團和省公司層面的大數據規劃,在規劃的指引下,實現大數據建設與應用的全面統籌,包括:清理分散在各部門中的數據資產,開展應用規劃,明確應用建設與運營分工,建設運營商集團和省公司層面統一的大數據基礎平台等。

4、精細運營:天津網站建設-文率科技建議電信可以使用Hadoop等大數據處理工具,通過分析用戶的興趣圖譜、關系圖譜、行為定向,再結合自身的業務推出量身定製的服務。如:針對出差較多的商務人士,向他們推薦漫遊套餐;對愛好移動上網的用戶,向他們提供流量包……這本身就屬於大數據應用的范疇,而且,運營商通過對業務資源和財務等數據的綜合分析,可以讓決策層進行快速的市場決策,從而有搶占市場的先機。

5、客戶維系:分析用戶的終端所支撐的系統,然後向客戶推薦比客戶目前使用系統更好的系統,如:客戶目前使用的終端是支撐的是3G,那麼我們可以向客戶推薦比3G更好的4G,繼而提升客戶體驗,降低用戶流失率;通過分析客戶通話對象結構轉移、使用量變化、上網行為漂移、套餐飽和度下降,分析出客戶離網傾向及繳費異常傾向,及時進行客戶維系與挽留。

在大數據的時代止步不前的話只能走向滅亡,天津西青網站建設http://www.xiangrisheng.net 發現在大數據的時代下中國聯通建立了用戶上網大數據分析系統,利用收集的用戶上網記錄解決用戶透明消費問題, 並使用其中的數據做客戶的精細化營銷;中國移動建立網路資源的大數據系統,改進對用戶專線提供的速度,建立微營銷大數據分析系統,實現定向精確營銷、差異化的合作夥伴後向能力保障和智慧城市管理。

以上是小編為大家分享的關於大數據時代電信運營商應該採用的運營策略的相關內容,更多信息可以關注環球青藤分享更多干貨

③ 陝西移動網dns選擇哪個最快

自動獲取的DNS就可以。
NS服務是網路參數必不少的一項,它是把域名解析出IP地址的一項服務,每個網站都有一個域名對應到一個IP地址,眾多的網站我們記域名很容易記,而記IP地址就非常費力了,有的DNS服務快,解析也就快,上網就快,有的解決慢上網就慢,還經常出現無法打開的情況。

④ 移動互聯網時代,大數據營銷怎麼玩

要應用大數據,肯定得先收集數據,然後再對數據進行分析,最好才是將分析的結果應用到營銷環節中去,而DMP(Data-Management Platform)數據管理平台,是把分散的第一、第三方數據進行整合納入統一的技術平台,並對這些數據進行標准化和細分,讓用戶可以把這些細分結果推向現有的互動營銷環境里。通過DMP平台的處理,最終進行應用。舉個具體一點的例子,Chinapex創略的APEX DMP,一個獨立、開放式、企業級數據管理平台,能幫助廣告主整合、細分、分析目標受眾,再結合他們的APEX LINK合作夥伴生態系統,可以更好的實現營銷的轉化。這樣你應該明白大數據是如何實現它的價值的。

⑤ 大數據在網路優化中大有可為

大數據在網路優化中大有可為

網路優化是確保網路質量,提升網路資源利用率的有效手段。近年來,隨著網路容量的不斷提升、網路用戶數的不斷增加、網路設備的多樣化,用新技術和新方法替代傳統網路優化手段成為一種趨勢,尤其是在大數據分析技術的興起下,其在網路優化中的作用日漸突出。

網路優化的傳統手段

網路優化是通過對現已投入運營的網路進行話務數據分析、現場測試數據採集、參數分析、硬體檢查等,找出影響網路質量的原因,並且通過參數的修改、網路結構的調整、設備配置的調整和採取某些技術手段,確保系統高質量的運行,使現有網路資源獲得最佳效益,以最經濟的投入獲得最大的收益。一般而言,傳統的網路優化有以下幾種方法:

一、話務統計分析法:通過話務統計報告中的各項指標,可以了解和分析基站的話務分布及變化情況,分析出網路邏輯或物理參數設置的不合理、網路結構的不合理、話務量不均、頻率干擾及硬體故障等問題。

二、DT&CQT測試法:從用戶的角度,藉助測試儀表對網路進行驅車和定點測試。可分析空中介面的信令、覆蓋服務、基站分布、呼叫失敗、干擾、掉話等現象,定位異常事件的原因,為制定網路優化方案和實施網路優化提供依據。

三、用戶投訴:通過用戶投訴了解網路質量。即通過無處不在的用戶通話發現的問題,進一步了解網路服務狀況。

四、信令分析法:主要針對A介面、Abis等介面的數據進行跟蹤分析。發現和定位切換局數據不全、信令負荷、硬體故障及話務量不均以及上、下行鏈路路徑損耗過大的問題,還可以發現小區覆蓋、一些無線干擾及隱性硬體故障等問題。

五、資料庫核查與參數分析:對網路規劃數據和現網配置參數、網路結構數據進行核查,找出網路數據中明顯的數據錯誤,對參數設置策略進行合理性分析和總結。

六、網路設備告警的排查處理:硬體故障告警一般具有突發性,為了減小對用戶的影響,需要快速的響應和處理。通過告警檢查處理設備問題,保障設備的可用性,避免因設備告警導致網路性能問題。

在實際工作中,這幾種方法都是相輔相成、互為印證的關系。網路優化就是利用上述幾種方法,圍繞接通率、掉話率、擁塞率和切換成功率等指標,通過性能統計測試數據分析制定實施優化方案系統調整重新制定優化目標性能統計測試的螺旋式循環上升,達到網路質量明顯改善的目的。

網路優化亟待創新

當前,隨著用戶數的不斷增長,隨著網路容量的不斷增加,隨著網路復雜度的不斷提升,以及網路設備的多樣化,網路優化工作的難度正在不斷提升,網路優化的方法和手段亟待創新。

首先,網路優化是一項技術難度大、涉及范圍廣、人員素質要求較高的工作,涉及的技術領域有交換技術、無線技術、頻率配置、切換和和信令、話務統計分析等。傳統網路優化工作多依賴於技術人員的經驗,依賴人工進行統計分析。網路優化的自動化程度較低,優化過程需耗費大量的時間、人力、物力,造成了大量的資源浪費,影響網路問題解決的時效性。另外,優化工程師藉助於個人經驗對網路數據進行分析和對比,而非根據網路相關的數據綜合得出優化方案,存在一定的局限性。

其次,隨著我國移動通信事業迅速發展,我國移動互聯網發展已正式進入全民時代,截至2014年1月,我國手機網民規模已達5億。網路結構日益復雜,數據業務已經成為移動通信網路主要承載的業務,用戶通過智能終端的即時互聯通信行為,使移動網路成為大數據儲存和流動的載體。高速變化的數據業務速率和巨大的網路吞吐量以及覆蓋范圍的動態實時變化,在很大程度上改變了現有網路規劃和優化的模型,在網路優化工作中引入大數據是非常迫切和必要的。

最後,全球數據信息成為企業戰略資產,市場競爭和政策管制要求越來越多的數據被長期保存。對於運營商的網路優化來說,也需要保存各類數據,以便進行用戶行為分析和市場研究,通過大數據實踐應用提升網路優化質量並助力市場決策,實現精細化營銷策略,提升企業的核心競爭力。

面對上述挑戰,運營商正嘗試進行網路優化工作的創新,嘗試在網路優化中引入新技術和新方法。而正在全球興起的大數據分析技術,開始在網路優化中大顯身手。

網路優化擁抱大數據

大數據(Big Data),或稱巨量資料,指的是所涉及的資料量規模巨大到無法透過目前主流軟體工具,在合理時間內達到擷取、管理、處理、整理成為幫助企業經營決策目的的資訊。大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。大數據具有數據量巨大、數據種類繁多、價值密度低及處理速度快的特點,同時具備規模性、高速性、多樣性、價值性四大特徵。

一般而言,利用大數據技術進行網路優化的過程可分為三個階段:數據來源和獲取、數據存儲、數據分析。

數據來源和獲取—對於運營商而言,通過現有網路可以收集大量的網路優化相關信令資源(含電路域、分組域)、DT測試&CQT測試數據,這些數據大都以用戶的角度記錄了終端與網路的信令交互,內含大量有價值的信息。如終端類型、小區位置、LAC、imsi、tmsi、用戶業務使用行為、用戶位置信息、通話相關信息、業務或信令、信令中包含的各種參數值。

設備層包含基站、BSC、核心網、傳輸網等配置參數和網路性能統計指標(呼叫成功率、掉話率、切換成功率、擁塞率、交換系統接通率等)、客戶投訴數據等。

採集到的數據一般而言,經過IP骨幹網傳輸到數據中心,進行存儲。隨著雲計算技術的發展,未來數據中心將具備小型化、高性能、可靠性、可擴展性及綠色節能等特點。

數據存儲—網路優化中涉及巨大的數據存儲,包括信令層面的數據信息和設備存在的數據信息,這些數據只有妥善存儲和長期運營,才能進一步挖掘其價值。傳統數據倉庫難以滿足非結構化數據的處理需求。Google提出了GFS、BigTable、MapRece三項關鍵技術,推動了雲計算的發展和運用。

源於雲計算的虛擬資源池和並發計算能力,受到重視。2011年以來,中國移動、中國電信、中國聯通相繼推出「大雲計劃」、「天翼雲」和「互聯雲」,大大緩解了數據中心IT資源的存儲壓力。

數據分析—數據的核心是發現價值,而駕馭數據的核心是分析,分析是大數據實踐研究的最關鍵環節,尤其對於傳統難以應對的非結構化數據。運營商利用自身在運營網路平台的優勢,發展大數據在網路優化中的應用,可提高運營商在企業和個人用戶中的影響力。

電信級的大數據分析可實現如下功能:第一,了解網路現狀,包括網路的資源配置和使用情況,用戶行為分析,用戶分布等;第二,優化網路資源配置和使用,有針對性地進行網路維護優化和調整,提升網路運行質量,改善用戶感知;第三,實施網路建設規劃、網路優化性能預測,確保網路覆蓋和資源利用最大化。對用戶行為進行預測,提升用戶體驗,實現精細化網路運營。

網路優化相關的工具種類很多,針對不同的優化領域,常用的工具包括:路測數據分析軟體、頻率規劃與優化軟體、信令分析軟體、話統數據分析平台、話單分析處理軟體等。這些軟體給網路優化工作帶來了很大的便利,但往往只是針對網路優化過程中特定的領域,而網路優化是一個涉及全局的綜合過程,因此需要引入大數據分析平台對這些優化工具所反映出來的問題進行集合並綜合分析和判斷,輸出相關優化建議。

目前,大數據技術已經在網路優化工作中得到應用。中國電信就已經建設了引入大數據技術的網優平台,該平台可實現數據採集和獲取、數據存儲、數據分析,幫助中國電信利用分析結果優化網路質量並助力市場決策,實現精細化營銷策略。利用信令數據支撐終端、網路、業務平台關聯性分析,優化網路,實現網路價值的最大化。

總工點評

綜合全球來看,對大數據認識、研究和應用還都處於初期階段。中國三大電信運營商都在結合自身業務情況,積極推進大數據應用工作,目前還處於探索階段,在數據採集、處理、應用方面仍處於初級階段。電信運營商在國內擁有龐大的用戶群和市場,利用自身海量的數據資源優勢,探索以大數據為基礎的網路優化解決方案,是推動產業升級、實現效率提升、提升企業核心競爭力、應對激烈市場競爭的重要手段。利用大數據將無線網、數據網、核心網、業務網優化進行整合,可以完整地優化整個業務生命期的所有網元,改善用戶感知,是未來網路優化的趨勢。

以上是小編為大家分享的關於大數據在網路優化中大有可為的相關內容,更多信息可以關注環球青藤分享更多干貨

⑥ 移動互聯網和大數據的發展對供應鏈管理造成了哪些根本性的影響

首先從移動互聯網和大數據的特點入手,移動互聯網突破了時間和空間的限制,使得人們可以隨時隨地觸網,同時也表現出了碎片化。大數據是建立在大規模的數據上,有了大量的數據,就可以進行分析和歸類,從而精準地確定需求。大數據對供應鏈的影響如下:
1、庫存優化。比如,SAS獨有的功能強大的庫存優化模型可以實現在保持很高的客戶滿意度基礎上,把供應成本降到最低並提高供應鏈的反應速度。其庫存成本第一年就可下降15%~30%,預測未來的准確性則會上升20%,由此帶來的是其整體營收會上升7%~10%。當然還有一些其他的潛在好處,如提升市場份額等。此外,運用SAS系統,產品質量會得到顯著提升,次品率也會因此減少10%~20%。
2、創造經營效益,從供應鏈渠道,以及生產現場的儀器或感測器網路收集了大量數據。利用大數據對這些資料庫進行更緊密的整合與分析,可以幫助改善庫存管理、銷售與分銷流程的效率,以及對設備的連續監控。製造業要想發展,企業必須了解大數據可以產生的成本效益。對設備進行預測性維護,現在就具備採用大數據技術的條件。製造業將是大數據營業收入的主要來源。
3、B2B電商供應鏈整合。強大的電商將引領上游下游生產計劃-下游銷售對接,這種對接趨勢是上游製造業外包供應鏈管理Supply-Chain,只專注於生產Manufacturing,ProctionChain(R&D)。物流外包上升到供應鏈外包是一個巨大的飛躍,體現了電商的強大競爭力和整合能力,海量數據支持和跨平台、跨公司的對接成為可能。B-B供應鏈整合具有強大的市場空間,能夠改善我國產業布局、產業鏈優化、優化產能分配、降低庫存、降低供應鏈成本、提高供應鏈效率。
4、物流平台規模發展,B-C商業模式整合已經成為現實,但是物流執行平台的建設是拖後腿的瓶頸。多樣產品的銷售供應鏈的整合有很大的技術難題,如供貨周期、庫存周期、配送時效、物流操作要求等,這樣的物流中心難度很大,大數據平台建設將驅動整體銷售供應鏈整合;中國的還有的現實問題跨區域物流配送、城鄉差異等,政府的管制是一大難點/疑難雜症,大數據平台有助於政府職能調整到位。
5、產品協同設計,過去大家最關心的是產品設計。可是現在,在產品設計和開發過程中,相關人員相互協同,工廠與製造能力也在同步設計和開發中。當前的壓力在於向市場交付更具競爭力、更高配置、更低價格、更高質量的產品,而同時滿足所有這些要求,是製造和工程企業的下一個重大的價值所在。這也正是大數據的用武之地。

⑦ 移動互聯網如何讓大數據「落地」,有哪些產品實例

問題補充:「大數據」這件事大家提了很久,可是真正能用好的產品少之又少。移動互聯網使得更多、更廣的數據不斷產生,它是否能真正促使大數據「落地」,變成每個人真正能享受到的服務?下面是來自知乎小夥伴maggie的回答:雲計算出現之前,傳統的計算機無法處理大量的非結構化數據,雲計算使得海量數據的存儲和快速分析成為可能,而每個人都擁有的智能終端(手機、電腦、智能設備)以及帶寬不斷增加的移動通信網路,使得海量數據的收集成為可能。大數據的核心在於「預測」,而雲計算使數據從「小樣本」轉變成有機會對所有可能的數據進行分析,預測將基於 「數據之間的關聯性」 而非 「為什麼是這樣的因果性」,我們只需要按照預測出來的趨勢去響應,使用這些結果。比如預測機票價格的走勢,並給出可信度,幫助用戶來決定什麼時間購買機票最省錢。它不用關心為什麼機票會有差異,是因為季節性還是因為其他什麼原因,它僅僅是預測當前的機票未來一段時間會上漲還是下降。如果機票價格有上漲的趨勢,系統就系統用戶立即購買機票。而原始的數據可以從機票預訂資料庫或者行業網站上扒下來。這項預測技術可以用在類似的相關領域。比如賓館預訂,商品購買等。比如通過汽車引擎的散熱和振動來預測引擎是否會出現故障。亞馬遜的推薦系統是很好的例子:亞馬遜從每一個客戶身上捕獲了大量的數據,歷史購買了什麼,哪些商品只是瀏覽卻沒有購買,瀏覽停留的時間,哪些商品是合並購買的,它要做的是找到產品之間的關聯性,感興趣的可以去搜索亞馬遜推薦引擎的專利。在中國,淘寶、支付寶擁有大量的用戶數據,還記得 「淘寶時光機嗎「 ?通過數據分析,把畢業- 戀愛- 遷移城市-結婚- 買房- 生子- 買車的人生軌跡串起來,我不敢說有多准,但是的確感動了我們。從數據中挖掘出背後的故事,這是一個非常有意思的關聯性數據挖掘嘗試。想想也挺可怕的,淘寶是個擁有海量用戶數據的平台,每天還有源源不斷地從移動終端、電腦上不斷增加的數據,如果把這些數據利用起來,不止可以做商品購物推薦,同時還可以對可能的關聯性做預測。在零售行業,銷售數據的統計分析,可以讓供應商監控銷售速率、數量、以及存貨情況,可以知道什麼貨物和什麼貨物擺在一起,放在什麼位置銷量最好,特定的季節,什麼產品銷量最高。公共設施領域,不再是隨機的巡檢,而是針對設施上報的數據以及故障發生的歷史數據、環境數據進行分析和預測,集中人力和物力優先檢查最有可能出現問題的那些設施,減少整體平均的故障發生率。大數據革命首先要把這些可以獲得的數據收集上來,包括未來可能被利用的信息。比如很多應用不管是不是需要位置信息,通常都會問你要位置信息,為未來能做出更多的智能反應做數據儲備。保險公司通過車險投保人的歷史數據(時間、地點、實際行駛路程)來為車險定價。廣告公司可以根據人們的居住地點、要去的地方,提供定製廣告,信息匯集起來可能會揭示某種發展趨勢。交通服務公司可以通過手機的位置來預測交通情況,和某個地方目前聚集了多少人。最近的 」棱鏡計劃「 ,從音視頻、圖片、郵件、文檔以及連接信息中分析個人可能對國家安全造成威脅的行動。大數據可用的領域實在是很多,具體有什麼好點子,哪些產品有機會,我覺著還得多去想和研究。總結起來,首先是數據收集,除了利用現有的數據渠道之外,還可能需要改造一些產品形態,使得數據更好地被量化和可被學習。然後是通過雲計算來做數據相關性的分析,這裡面有大量的演算法工作要去做,所以未來演算法人才是最具有技術挑戰的工種。

⑧ 移動互聯時代 大數據的應用價值

移動互聯時代 大數據的應用價值
隨著大數據的發展,企業也越來越重視數據相關的開發和應用,從而獲取更多的市場機會。一方面,大數據能夠明顯提升企業數據的准確性和及時性;此外還能夠降低企業的交易摩擦成本;更為關鍵的是,大數據能夠幫助企業分析大量數據而進一步挖掘細分市場的機會,最終能夠縮短企業產品研發時間、提升企業在商業模式、產品和服務上的創新力,大幅提升企業的商業決策水平,降低了企業經營的風險。
一、大數據助企業挖掘市場機會探尋細分市場
大數據能夠幫助企業分析大量數據而進一步挖掘市場機會和細分市場,然後對每個群體量體裁衣般的採取獨特的行動。獲得好的產品概念和創意,關鍵在於我們到底如何去搜集消費者相關的信息,如何獲得趨勢,挖掘出人們頭腦中未來會可能消費的產品概念。用創新的方法解構消費者的生活方式,剖析消費者的生活密碼,才能讓吻合消費者未來生活方式的產品研發不再成為問題,如果你了解了消費者的密碼,就知道其潛藏在背後的真正需求。大數據分析是發現新客戶群體、確定最優供應商、創新產品、理解銷售季節性等問題的最好方法。
在數字革命的背景下,對企業營銷者的挑戰是從如何找到企業產品需求的人到如何找到這些人在不同時間和空間中的需求;從過去以單一或分散的方式去形成和這群人的溝通信息和溝通方式,到現在如何和這群人即時溝通、即時響應、即時解決他們的需求,同時在產品和消費者的買賣關系以外,建立更深層次的夥伴間的互信、雙贏和可信賴的關系。
大數據進行高密度分析,能夠明顯提升企業數據的准確性和及時性;大數據能夠幫助企業分析大量數據而進一步挖掘細分市場的機會,最終能夠縮短企業產品研發時間、提升企業在商業模式、產品和服務上的創新力,大幅提升企業的商業決策水平。因此,大數據有利於企業發掘和開拓新的市場機會;有利於企業將各種資源合理利用到目標市場;有利於制定精準的經銷策略;有利於調整市場的營銷策略,大大降低企業經營的風險。
企業利用用戶在互聯網上的訪問行為偏好能為每個用戶勾勒出一副「數字剪影」,為具有相似特徵的用戶組提供精確服務滿足用戶需求,甚至為每個客戶量身定製。這一變革將大大縮減企業產品與最終用戶的溝通成本。例如:一家航空公司對從未乘過飛機的人很感興趣(細分標準是顧客的體驗)。而從未乘過飛機的人又可以細分為害怕飛機的人,對乘飛機無所謂的人以及對乘飛機持肯定態度的人(細分標準是態度)。在持肯定態度的人中,又包括高收入有能力乘飛機的人(細分標準是收入能力)。於是這家航空公司就把力量集中在開拓那些對乘飛機持肯定態度,只是還沒有乘過飛機的高收入群體。通過對這些人進行量身定製、精準營銷取得了很好的效果。
二、大數據提高決策能力
當前,企業管理者還是更多依賴個人經驗和直覺做決策,而不是基於數據。在信息有限、獲取成本高昂,而且沒有被數字化的時代,讓身居高位的人做決策是情有可原的,但是大數據時代,就必須要讓數據說話。
大數據能夠有效的幫助各個行業用戶做出更為准確的商業決策,從而實現更大的商業價值,它從誕生開始就是站在決策的角度出發。雖然不同行業的業務不同,所產生的數據及其所支撐的管理形態也千差萬別,但從數據的獲取,數據的整合,數據的加工,數據的綜合應用,數據的服務和推廣,數據處理的生命線流程來分析,所有行業的模式是一致的。
這種基於大數據決策的特點是:一是量變到質變,由於數據被廣泛挖掘,決策所依據的信息完整性越來越高,有信息的理性決策在迅速擴大,拍腦袋的盲目決策在急劇縮小。二是決策技術含量、知識含量大幅度提高。由於雲計算出現,人類沒有被海量數據所淹沒,能夠高效率駕御海量數據,生產有價值的決策信息。三是大數據決策催生了很多過去難以想像的重大解決方案。如某些葯物的療效和毒副作用,無法通過技術和簡單樣本驗證,需要幾十年海量病歷數據分析得出結果;做宏觀經濟計量模型,需要獲得所有企業、居民以及政府的決策和行為海量數據,才能得出減稅政策最佳方案;反腐倡廉,人類幾千年歷史都沒解決,最近通過微博和人肉搜索,貪官在大數據的海洋中無處可藏,人們看到根治的希望等等。
如果在不同行業的業務和管理層之間,增加數據資源體系,通過數據資源體系的數據加工,把今天的數據和歷史數據對接,把現在的數據和領導和企業機構關心的指標關聯起來,把面向業務的數據轉換成面向管理的數據,輔助於領導層的決策,真正實現了從數據到知識的轉變,這樣的數據資源體系是非常適合管理和決策使用的。
在宏觀層面,大數據使經濟決策部門可以更敏銳地把握經濟走向,制定並實施科學的經濟政策;而在微觀方面,大數據可以提高企業經營決策水平和效率,推動創新,給企業、行業領域帶來價值。
三、大數據創新企業管理模式,挖掘管理潛力
當下,有多少企業還會要求員工像士兵一樣無條件服從上級的指示?還在通過大量的中層管理者來承擔管理下屬和傳遞信息的職責?還在禁止員工之間談論薪酬等信息?《華爾街日報》曾有一篇文章就說,NO。這一切已經過時了,嚴格控制,內部猜測和小道消息無疑更會降低企業效率。一個管理學者曾經將企業內部關系比喻為成本和消耗中心,如果內部都難以協作或者有效降低管理成本和消耗,你又如何指望在今天瞬息萬變的市場和競爭環境下生存、創新和發展呢?
我們試著想想,當購物、教育、醫療都已經要求在大數據、移動網路支持下的個性化的時代,創新已經成為企業的生命之源,我們還有什麼理由還要求企業員工遵循工業時代的規則,強調那種命令式集中管理、封閉的層級體系和決策體制嗎?當個體的人都可以通過佩戴各種感測器,搜集各種來自身體的信號來判斷健康狀態,那樣企業也同樣需要配備這樣的感測系統,來實時判斷其健康狀態的變化情況。
今天信息時代機器的性能,更多決定於晶元,大腦的存儲和處理能力,程序的有效性。因而管理從注重系統大小、完善和配合,到注重人,或者腦力的運用,信息流程和創造性,以及職工個性滿足、創造力的激發。
在企業管理的核心因素中,大數據技術與其高度契合。管理最核心的因素之一是信息搜集與傳遞,而大數據的內涵和實質在於大數據內部信息的關聯、挖掘,由此發現新知識、創造新價值。兩者在這一特徵上具有高度契合性,甚至可以標稱大數據就是企業管理的又一種工具。因為對於任何企業,信息即財富,從企業戰略著眼,利用大數據,充分發揮其輔助決策的潛力,可以更好地服務企業發展戰略。
大數據時代,數據在各行各業滲透著,並漸漸成為企業的戰略資產。數據分析挖掘不僅本身能幫企業降低成本:比如庫存或物流,改善產品和決策流程,尋找到並更好的維護客戶,還可以通過挖掘業務流程各環節的中間數據和結果數據,發現流程中的瓶頸因素,找到改善流程效率,降低成本的關鍵點,從而優化流程,提高服務水平。大數據成果在各相關部門傳遞分享,還可以提高整個管理鏈條和產業鏈條的投入回報率。
四、大數據變革商業模式催生產品和服務的創新
在大數據時代,以利用數據價值為核心,新型商業模式正在不斷涌現。能夠把握市場機遇、迅速實現大數據商業模式創新的企業,將在IT發展史上書寫出新的傳奇。
大數據讓企業能夠創造新產品和服務,改善現有產品和服務,以及發明全新的業務模式。回顧IT歷史,似乎每一輪IT概念和技術的變革,都伴隨著新商業模式的產生。如個人電腦時代微軟憑借操作系統獲取了巨大財富,互聯網時代谷歌抓住了互聯網廣告的機遇,移動互聯網時代蘋果則通過終端產品的銷售和應用商店獲取了高額利潤。
縱觀國內,以金融業務模式為例,阿里金融基於海量的客戶信用數據和行為數據,建立了網路數據模型和一套信用體系,打破了傳統的金融模式,使貸款不再需要抵押品和擔保,而僅依賴於數據,使企業能夠迅速獲得所需要的資金。阿里金融的大數據應用和業務創新,變革了傳統的商業模式,對傳統銀行業帶來了挑戰。
還有,大數據技術可以有效的幫助企業整合、挖掘、分析其所掌握的龐大數據信息,構建系統化的數據體系,從而完善企業自身的結構和管理機制;同時,伴隨消費者個性化需求的增長,大數據在各個領域的應用開始逐步顯現,已經開始並正在改變著大多數企業的發展途徑及商業模式。如大數據可以完善基於柔性製造技術的個性化定製生產路徑,推動製造業企業的升級改造;依託大數據技術可以建立現代物流體系,其效率遠超傳統物流企業;利用大數據技術可多維度評價企業信用,提高金融業資金使用率,改變傳統金融企業的運營模式等。
過去,小企業想把商品賣到國外要經過國內出口商、國外進口商、批發商、商場,最終才能到達用戶手中,而現在,通過大數據平台可以直接從工廠送達到用戶手中,交易成本只是過去的十分之一。以我們熟悉的網購平台淘寶為例,每天有數以萬計的交易在淘寶上進行,與此同時相應的交易時間、商品價格、購買數量會被記錄,更重要的是,這些信息可以與買方和賣方的年齡、性別、地址、甚至興趣愛好等個人特徵信息相匹配。運用匹配的數據,淘寶可以進行更優化的店鋪排名和用戶推薦;商家可以根據以往的銷售信息和淘寶指數進行指導產品供應、生產和設計,經營活動成本和收益實現了可視化,大大降低了風險,賺取更多的錢;而與此同時,更多的消費者也能以更優惠的價格買到了更心儀的產品。
維克托曾預言2020年,大數據時代就會真正來臨。在那個時候,最經常會用到的應用就是個性化生活所需要的,尤其是智能手機的應用。
五、大數據讓每個人更加有個性
對個體而言,大數據可以為個人提供個性化的醫療服務。比如,我們的身體功能可能會通過手機、移動網路進行監控,一旦有什麼感染,或身體有什麼不適,我們都可以通過手機得到警示,接著信息會和手機庫進行對接或者咨詢相關專家,從而獲得正確的用葯和其他治療。
過去我們去看病,醫生只能對我們的當下身體情況做出判斷,而在大數據的幫助下,將來的診療可以對一個患者的累計歷史數據進行分析,並結合遺傳變異、對特定疾病的易感性和對特殊葯物的反應等關系,實現個性化的醫療。還可以在患者發生疾病症狀前,提供早期的檢測和診斷。早期發現和治療可以顯著降低肺癌給衛生系統造成的負擔,因為早期的手術費用是後期治療費用的一半。
還有,在傳統的教育模式下,分數就是一切,一個班上幾十個人,使用同樣的教材,同一個老師上課,課後布置同樣的作業。然而,學生是千差萬別的,在這個模式下,不可能真正做到「因材施教」。
如一個學生考了90分,這個分數僅僅是一個數字,它能代表什麼呢?90分背後是家庭背景、努力程度、學習態度、智力水平等,把它們和90分聯系在一起,這就成了數據。大數據因其數據來源的廣度,有能力去關注每一個個體學生的微觀表現:如他在什麼時候開始看書,在什麼樣的講課方式下效果最好,在什麼時候學習什麼科目效果最好,在不同類型的題目上停留多久等等。當然,這些數據對其他個體都沒有意義,是高度個性化表現特徵的體現。同時,這些數據的產生完全是過程性的:課堂的過程,作業的情況,師生或同學的互動情景……而最有價值的是,這些數據完全是在學生不自知的情況下被觀察、收集的,只需要一定的觀測技術與設備的輔助,而不影響學生任何的日常學習與生活,因此它的採集也非常的自然、真實。
在大數據的支持下,教育將呈現另外的特徵:彈性學制、個性化輔導、社區和家庭學習、每個人的成功……大數據支撐下的教育,就是要根據每一個人的特點,釋放每一個人本來就有的學習能力和天分。
此外,維克托還建議中國政府要進一步補錄資料庫。政府以前提供財政補貼,現在可以提供資料庫,打造創意服務。在美國就有完全基於政府提供的資料庫,如為企業提供機場、高速公路的數據,提供航班可能發生延誤的概率,這種服務這可以幫助個人、消費者更好地預測行程,這種類型的創新,就得益於公共的大數據。
六、智慧驅動下的和諧社會
美國作為全球大數據領域的先行者,在運用大數據手段提升社會治理水平、維護社會和諧穩定方面已先行實踐並取得顯著成效。
近年來,在國內,「智慧城市」建設也在如火如荼的開展。截止去年底,我國的國家智慧城市試點已達193個,而公開宣布建設智慧城市的城市超過400個。智慧城市的概念包含了智能安防、智能電網、智慧交通、智慧醫療、智慧環保等多領域的應用,而這些都要依託於大數據,可以說大數據是「智慧」的源泉。
在治安領域,大數據已用於信息的監控管理與實時分析、犯罪模式分析與犯罪趨勢預測,北京、臨沂等市已經開始實踐利用大數據技術進行研判分析,打擊犯罪。
在交通領域,大數據可通過對公交地鐵刷卡、停車收費站、視頻攝像頭等信息的收集,分析預測出行交通規律,指導公交線路的設計、調整車輛派遣密度,進行車流指揮控制,及時做到梳理擁堵,合理緩解城市交通負擔。
在醫療領域,部分省市正在實施病歷檔案的數字化,配合臨床醫療數據與病人體征數據的收集分析,可以用於遠程診療、醫療研發,甚至可以結合保險數據分析用於商業及公共政策制定等等。
伴隨著智慧城市建設的火熱進行,政府大數據應用已進入實質性的建設階段,有效拉動了大數據的市場需求,帶動了當地大數據產業的發展,大數據在各個領域的應用價值已得到初顯。
七、大數據如何預言未來?
著名的瑪雅預言,盡管背後有著一定的天文知識基礎,但除催生了一部很火的電影《2012》外,其實很多人的生活尚未受到太大的影響。現在基於人類地球上的各種能源存量,以及大氣受污染、冰川融化的程度,我們獲取真的可以推算出按照目前這種工業生產、生活的方式,人類在地球上可以存活的年數。《第三次工業革命》中對這方面有很深入的解釋,基於精準預測,發現現有模式是死路一條後,人類就可以進行一些改變,這其實就是一種系統優化。
這種結合之前情景研究,不斷進行系統優化的過程,將賦予系統生命力,而大數據就是其中的血液和神經系統。通過對大數據的深入挖掘,我們將會了解系統的不同機體是如何相互協調運作的,同樣也可以通過對他們的了解去控制機體的下一個操作,甚至長遠的維護和優化。從這個角度講,基於網路的大數據可以看作是人類社會的神經中樞,因為有了網路和大數據人類社會才開始靈活起來,而不像以前那麼死板。基於大數據,個體之間相互連接有了基礎,相互的交互過程得到了簡化,各種交易的成本減少很多。廠家等服務提供方可以基於大數據研發出更符合消費者需求的服務,機構內部的管理也更為細致,有了血液和神經系統的社會才真的擁有生命活力。
結語
透過以上這些行業典型的大數據應用案例和場景,不難悟出大數據的典型的核心價值。大數據是看待現實的新角度,不僅改變了市場營銷、生產製造,同時也改變了商業模式。數據本身就是價值來源,這也就意味著新的商業機會,沒有哪一個行業能對大數據產生免疫能力,適應大數據才能在這場變革中繼續生存下去。
當下,正處於數據大爆發的時代,如何獲取這些數據並對這些數據進行有效分析就顯得尤為重要。各種企業機構之間的競爭非常殘酷。如何基於以往的運行數據,對未來的運行模式進行預測,從而提前進行准備或者加以利用、調整,對很多企業機構其實是一種生死存亡的問題。這樣一種情況同樣適用於國家級別。正因為這一點,目前無論是在企業級別還是國家級別都開始研究、部署大數據。
可見,大數據應用已經凸顯出了巨大的商業價值,觸角已延伸到零售、金融、教育、醫療、體育、製造、影視、政府等各行各業。你可能會問這些具體價值實現的推動者有哪些呢?就是所謂的大數據綜合服務提供商,從實踐情況看,主要包括大數據解決方案提供商、大數據處理服務提供商和數據資源提供商三個角色,分別向大數據的應用者提供大數據服務、解決方案和數據資源。
未來大數據還將徹底改變人類的思考模式、生活習慣和商業法則,將引發社會發展的深刻變革,同時也是未來最重要的國家戰略之一。

⑨ 運營商如何運用大數據轉型升級

首先是傳統運營商所提供的服務類型已經從單一的話音結合少量的數據通訊,向多媒體、iptv等多業務疊加模式演變;其次,是價值鏈的改變,運營商不得不面對為數眾多的、並且在逐步壯大的互聯網服務提供商和應用提供商,想自己直接經營顯然不太現實。但是,以騰訊、網路、新浪等為首的傳統互聯網巨頭認為,三大電信運營商並不會對傳統互聯網公司以及新興的移動互聯網企業構成威脅,通過合作,互聯網公司將與電信運營商實現共贏。如何處理與新興互聯網公司的關系?公司化運作、新的it技術的利用是否是其轉型的救命稻草?雲、管、端三線布局能否解決管道化的憂慮?這是移動互聯網時代,擺在中國移動、中國聯通、中國電信三大電信運營商面前的難題。
電信運營商必須深化戰略轉型,否則將難以應對移動互聯網時代的各項挑戰
據賽迪顧問數據顯示,2012年中國已有超過4億用戶嘗試用手機訪問互聯網,微信用戶突破3億,手機用戶上網的頻率全面提高。隨著未來以智能手機、平板電腦為代表的新式移動互聯網終端的不斷推出,人們對於移動互聯網業務的需求將呈現爆炸式增長趨勢。顯而易見,移動互聯網正在孕育著一個巨大的市場商機。移動互聯網產業生態價值鏈還在重塑過程中,但機遇大於挑戰,關鍵是如何調整商業模式、戰略、策略、渠道。
然而,當電信運營商從被動轉主動開始擁抱移動互聯網所造就的數據時代時,其最強勁的競爭對手互聯網巨頭已經成為近年來發展最為迅速、靈活、並且創意無限的角色。當前,即便是世界優秀的電信運營商也面臨著艱巨的業務轉型需要和巨大的發展瓶頸。在移動互聯網時代,運營商缺乏互聯網運營經驗、對終端掌控力度不足、業務創新能力落後、缺乏標准開發能力以及資源使用與管理運營支撐效率低已經成為了運營商全面增長的幾個主要的劣勢所在。從最新公布的中國移動、2013年一季度財報來看,利潤增長幾乎停滯,增長顯現出疲態。運營商的轉型之門若干年後又將重新打開,而不管是「流量經營」和「去電信化」等運營商轉型思路,賽迪顧問認為,面臨移動互聯網帶來的龐大的數據挑戰,電信運營商的轉型之路必須要圍繞海量數據所帶來的商機作深度挖掘和分析。
海量數據的出現、數據結構變化給運營商的數據管理及分析帶來高度挑戰
盡管移動互聯網時代給電信運營商帶來前所未有的機遇,然而正如硬幣的兩面,這個時代的到來同樣也給電信運營商帶來了無限的挑戰,特別是大數據的挑戰。這個挑戰主要表現在以下兩個方面:其一、傳統數據倉庫難以滿足日益增長的業務數據所帶來的存儲、計算需求。隨著業務發展數據量的增加,應用復雜導致的數據量增加,這些數據量導致了數據存儲和處理壓力; 數據倉庫無法線性擴容,管理難度加大,成本高擴容壓力大,效率下降等。其二、傳統數據倉庫難以滿足非結構化數據的處理要求。移動互聯網和物聯網業務帶來的非結構化數據、半結構化數據(如網頁、聊天記錄)對分析系統提出了不同以往的處理要求,如自然語言處理、網頁分類等。下圖描述了運營商針對不同業務所應具備的大數據處理模型特徵,是運營商急需提升的應用處理能力模型。
圖1 電信運營商大數據處理應用模型
從上圖看,准實時處理、非實時處理以及oltp/在線事務處理以及在線分析應用四個方向的能力將是電信運營商在主要大數據應用所應具備的能力,也是未來運營商大數據的重要競爭優勢的角逐。
利用大數據轉型,運營商在行動
其實,各大運營商在面向移動互聯時代已經做好了部分准備,而且在應對大數據挑戰上逐步提高了競爭意識。
中國電信很早就已經意識到移動互聯網時代的到來,並於2005年提出了戰略轉型的構想,主要目的就是為了應對移動互聯網時代的挑戰。而當前,中國電信已經提出了「智慧城市」發展戰略,其中很重要的技術結合點就是物聯網和大數據。基於以上戰略,中國電信定位成為智能管道的主導者、綜合平台的提供者、內容應用的參與者。而在「流量經營」方面,中國電信從「話務經營」向「流量經營」轉型。結合大數據技術,中國電信也將深入idc服務以及智慧城市建設,並發掘移動互聯與之結合的商機,重塑轉型之路。
中國移動數據部認為,在移動互聯網時代,電信運營商需要轉型,要以開放的姿態獲取更多的合作,而中國移動的閱讀、游戲、動漫、音樂等業務都將通過開放合作的方式來尋求發展。通過開放合作平台,中國移動從「移動通信專家」到「移動信息專家」的策略轉變,就是為順應移動互聯網時代潮流而做出的改變。這一戰略的發展基礎就是中國移動針對大數據和雲計算研究所獲得的應用發展方向。中國移動在大雲1.5平台上部署了分析型paas產品,利用bc-hadoop構建大數據處理平台,同時建設了並行數據挖掘系統(bc-pdm&etl)以及商務智能平台(bi-paas)等大數據應用平台,為將來在大數據應用和服務市場做了充分准備。
中國聯通對大數據的探索源自於2010年中國聯通數據大集中策略的提出。2009年,中國聯通3g業務正式商用,提出「統一品牌、統一業務、統一包裝、統一資費、統一終端政策、統一服務標准」的「六個統一」策略。這意味著中國聯通要走一條數據大集中的路線。2012年底,中國聯通就已經成功將大數據和hadoop技術引入到移動通信用戶上網記錄集中查詢與分析支撐系統。當前,中國聯通已經新增100億投資重慶大數據計劃,顯現了其發展大數據,轉型自身業務的決心。
總體來看,運營商利用大數據來推動業務轉型將是未來電信市場的一個重要方向。電信運營商如果能夠通過技術的進步,不斷釋放其管道中龐大數據的潛在力量,將會成為未來移動互聯時代中最大的贏家。

⑩ 移動大數據的四個發展趨勢

移動大數據的四個發展趨勢
如果我告訴你,你可以做到從海量數據來源(包括各種各樣的移動設備)中把數據提取到一個系統,然後只用少量的程序行數描述所需的信息就可以讓結果輕松呈現,還可以做到實時處理這些數據,並且保持系統同時運行,你相信嗎?
不用懷疑,你可以做到。
這首先要歸功於信息爆炸時代移動數據的飛速發展。移動應用不停地產生大量信息,比如用戶行為的信息(包括對話開始、事件發生、事務處理等),然後設備生成數據(崩潰數據、應用日誌、位置數據、網路日誌等)。這些數據的意義在於它們給大數據提供了源源不斷的信息源去識別和分析手機用戶一天的所見所聞。

不得不說,移動大數據時代是應運而生。而為了收集智能手機的數據,就不得不面臨數據收集、分析和運行的挑戰。毫無疑問,能夠利用移動數據的企業和移動設備開發者在市場競爭中更有競爭力和業務優勢。因為他們可以在一開始就准確地識別出影響用戶行為的因素,有效地將客戶需求分級,從而能夠既有創造力又有效率地實現客戶需求。
而在大數據實時分析的競爭中能否決勝的關鍵是內存資料庫。內存資料庫保證了大數據的動態分析——用指數級的速度處理以噴發狀態產生的大量數據,然後及時產生結果。內存資料庫能為以不同速度為移動設備進行實時和動態的內存數據處理,還可以導入其他數據來源例如汽車和家庭系統的數據。
大數據的分布式處理能夠在計算機上實現跨集群操作,擴展到成千上萬種設備上,比如Hadoop就用分布式處理方式完成了多項任務。然而對於這個高速運轉、信息不停噴發的移動時代來說,分散處理並不是最有效最經濟的方式。內存資料庫的產生無疑給企業提供了利用實時數據的新工具:盡可能快地在數據產生之初就進行分析,發現其趨勢並更快地做出反應,實現降低服務成本和提高收益的目標。那些企業級的流式資料庫,比如StreamBase和KDB,包括CEPs和混合式,內存資料庫開始利用新的演算法和可視化技術來填充實時處理技術的缺口。移動大數據的提供者正在試圖將內存資料庫、動態處理技術、演算法與可視化技術融為一體,讓企業能夠運用移動大數據,讓它成為一種業務驅動力。
移動應用團隊更能理解同步分析數據的重要性。為了留住用戶,開發者要能夠預見誤差,了解誤差對用戶行為的影響,衡量新產品的效益,識別用戶的參與趨勢,檢測客戶端,這樣才能趕在問題暴露在消極用戶面前之前消滅它。
下面是我們觀察到的移動大數據的四個發展趨勢:
1. 事務處理最重要
「移動」最關鍵的就是交互活動和對其的監控。用戶選擇應用是出於不同的目的:娛樂、購物、學習、分享等;而一旦有任何因素干擾或者減慢他們實現目的的體驗過程,用戶很容易就會產生消極情緒。利用應用軟體監控事務處理,讓企業能對用戶體驗進行評估和回應,盡量避免用戶卸載軟體或者給出差評。如今對事務性數據和功能性數據的監控都很重要,也不能沒有一個適應移動發展時代的戰略了。
2. 三駕馬車,三個「V」
Business Insider的最新報道指出,大數據有三個特點:大量(volume)、多樣(variety)、高速(velocity),我們把它們概括成三個「V」。數據本身的產生非常快,而且形式多樣,大小不一,數量還很大。更別提移動數據了,數量都是成倍地增長。而Cisco最近的報告表明,有數以百萬計的人只通過移動設備連接互聯網,很明顯,這些設備產生了大量的數據。KashRangan說,有很多互動被忽略了沒有得到分析,而這些就是被忽視的機會。更有趣的是,數據的多樣性恰恰是由移動設備造成的。從用戶跟蹤到崩潰報告,有各種各樣五花八門詳細的應用數據,包括商業貿易、情感反應、心跳測量、住宿記錄,甚至包括風象報告。移動應用越來越多地影響了人們的生活方式,結果是數據增長的速度也在不斷上升。只要想想一個手機用戶比如你我每天都被手機牢牢套住的情況就可以理解了。
3. 測度是關鍵
面對大數據用戶的一個挑戰是考慮經營的影響因素。如果定位不好、收益不好,大數據可能反而會成為一種牽絆。如何鑒別哪種信息能夠幫助更好地進行經營決策,而哪種信息卻毫無用處呢?在企業投身移動數據的熱潮之前,必須要弄清楚他們的關鍵度量指標是什麼,不然就會被困在一堆派不上用場的數據里,進退兩難。
4. 先監控,再提問
這聽來好像跟我們的直覺不一樣,但實際上企業都應該採用這種策略,先對應用進行監控並收集數據,然後回答關鍵的業務問題,再去探索從數據里發現的新的發展機會。去了解應用發展的情況是能否駕馭大數據的決定性的一步。在基本了解以後,企業和開發者們就可以深入研究關鍵性因素了。移動大數據提供者也讓各種規模的公司有了讓移動數據為他們所用的能力,無論是獨立經營者還是大企業都是一樣。現在,內存資料庫已經有了,移動大數據提供者們又開始為下一個目標努力:通過最大化地提升數據的收集和傳輸效率來優化移動方面的東西,同時關注新的挑戰,例如電池消耗、3G數據使用、連接速度慢、隱私問題和局部存儲器的問題,還要擴展通信量並控制可預見的通信量激增。這場競賽的關鍵已經不再是誰的移動設備革新速度快,而是誰對移動設備所產生數據的反應速度更快。

閱讀全文

與陝西移動網路大數據優化相關的資料

熱點內容
網路共享中心沒有網卡 瀏覽:527
電腦無法檢測到網路代理 瀏覽:1376
筆記本電腦一天會用多少流量 瀏覽:592
蘋果電腦整機轉移新機 瀏覽:1380
突然無法連接工作網路 瀏覽:1074
聯通網路怎麼設置才好 瀏覽:1230
小區網路電腦怎麼連接路由器 瀏覽:1052
p1108列印機網路共享 瀏覽:1215
怎麼調節台式電腦護眼 瀏覽:714
深圳天虹蘋果電腦 瀏覽:950
網路總是異常斷開 瀏覽:617
中級配置台式電腦 瀏覽:1010
中國網路安全的戰士 瀏覽:637
同志網站在哪裡 瀏覽:1420
版觀看完整完結免費手機在線 瀏覽:1464
怎樣切換默認數據網路設置 瀏覽:1113
肯德基無線網無法訪問網路 瀏覽:1290
光纖貓怎麼連接不上網路 瀏覽:1494
神武3手游網路連接 瀏覽:969
局網列印機網路共享 瀏覽:1005