『壹』 手機網路制式的發展
1G(first generation)表示第一代移動通訊技術。代表為現已淘汰的模擬移動網。
2G(second generation)表示第二代移動通訊技術。代表為GSM。以數字語音傳輸技術為核心。
2.5G是基於2G與3G之間的過渡類型。比2G在速度、帶寬上有所提高。可使現有GSM網路輕易地實現與高速數據分組的簡便接入。
已經進行商業應用的2.5G(Generation)移動通信技術是從2G邁向3G的銜接性技術,突破了2G電路交換技術對數據傳輸速率的制約,引入了分組交換技術,從而使數據傳輸速率有了質的突破,是一種介於2G與3G之間的過渡技術。2.5G的出現主要是由於3G是個相當浩大的工程,所牽扯的層面較多且復雜,要從2G一下邁向3G是不可能馬上實現的。代表為:GPRS, HSCSD、WAP、EDGE、藍牙(Bluetooth)、EPOC等技術。
3G是英文3rd Generation的縮寫,指第三代移動通信技術。我們國家主要有三種3G標准,分別是TD-SCDMA,WCDMA和CDMA2000,這三種3G的標准分別由移動、聯通和電信來運營。相對第一代模擬制式手機(1G)和第二代GSM、TDMA等數字手機(2G),第三代手機一般是指將無線通信與國際互聯網等多媒體通信結合的新一代移動通信系統。它能夠方便、快捷的處理圖像、音樂、視頻流等多種媒體形式,提供包括網頁瀏覽、電話會議、電子商務等多種信息服務。為手機融入多媒體元素提供強大的支持。但為了提供這種服務,無線網路必須能夠支持不同的數據傳輸速度,也就是說在任何環境中能夠分別支持至少2Mbps(兆位元組/每秒)、384kbps(千位元組/每秒)以及144kbps的傳輸速度。2G網路提供的帶寬是9.6Kbps。2.5G增加到56Kbps。 3G將具有更寬的帶寬,其傳輸速度將達到100-300Kbps,不僅能傳輸話音,還能傳輸數據,從而提供快捷、方便的無線應用。
4G移動系統網路結構可分為三層:物理網路層、中間環境層、應用網路層。物理網路層提供接入和路由選擇功能,它們由無線和核心網的結合格式完成。中間環境層的功能有QoS映射、地址變換和完全性管理等。物理網路層與中間環境層及其應用環境之間的介面是開放的,它使發展和提供新的應用及服務變得更為容易,提供無縫高數據率的無線服務,並運行於多個頻帶。這一服務能自適應多個無線標准及多模終端能力,跨越多個運營者和服務,提供大范圍服務。第四代移動通信系統的關鍵技術包括信道傳輸;抗干擾性強的高速接入技術、調制和信息傳輸技術;高性能、小型化和低成本的自適應陣列智能天線;大容量、低成本的無線介面和光介面;系統管理資源;軟體無線電、網路結構協議等。第四代移動通信系統主要是以正交頻分復用(OFDM)為技術核心。OFDM技術的特點是網路結構高度可擴展,具有良好的抗雜訊性能和抗多信道干擾能力,可以提供比無線數據技術質量更高(速率高、時延小)的服務和更好的性能價格比,能為4G無線網提供更好的方案。例如無線區域環路(WLL)、數字音訊廣播(DAB)等,都將採用OFDM技術。4G移動通信對加速增長的廣帶無線連接的要求提供技術上的回應,對跨越公眾的和專用的、室內和室外的多種無線系統和網路保證提供無縫的服務。通過對最適合的可用網路提供用戶所需求的最佳服務,能應付基於網際網路通信所期望的增長,增添新的頻段,使頻譜資源大擴展,提供不同類型的通信介面,運用路由技術為主的網路架構,以傅利葉變換來發展硬體架構實現第四代網路架構。移動通信將向數據化,高速化、寬頻化、頻段更高化方向發展,移動數據、移動IP將成為未來移動網的主流業務。
註:2008年,我國開始應用3G手機,稱為「3G」元年。
『貳』 移動互聯網的發展現狀及趨勢
我國移動互聯網的技術應用與別國不同,採用的是WAP協議。我國使用手機上網的用戶多數採用WAP接入的方式。根據CNNIC的調查,截至2007年3月底,我國WAP活躍用戶數約為3900萬人,具有獨立域名的WAP站點數量約為6.5萬個,WAP網頁數量約為2.6億個。根據用戶規模、網站數量以及用戶特徵等方面綜合判斷,目前WAP在我國已經進入快速增長期,相當於傳統互聯網2000~2001年間的發展水平。
與別國的移動互聯網業務的使用狀況相比,我國移動互聯網用戶最感興趣的還是手機圖鈴業務、音樂和游戲業務。而2003年前後,別國移動互聯網用戶最感興趣的業務是圖片、音樂和游戲,別國的音樂和游戲類業務也在移動互聯網開始起步後的2~3年左右最受用戶歡迎。目前別國用戶的興趣點已經從圖片和音樂下載類業務逐漸向具備Web 2.0特徵、體現移動和固定互聯網融合的業務轉移。預計在今後的1~2年內,隨著我國移動網路帶寬的增加,用戶對業務的需求也會發生一定的變化,從信息量少的內容獲取類業務向視頻類業務、體現移動網和互聯網融合的業務轉變。為了適應未來客戶需求可能發生的變化,我們認為移動UGC、內容共享/下載、移動游戲等移動互聯網業務將有良好的發展前景。
發展趨勢分析
1實現技術多樣化
移動互聯網是電信、互聯網、媒體、娛樂等產業融合的匯聚點,各種寬頻無線通信、移動通信和互聯網技術都在移動互聯網業務上得到了很好的應用。從長遠來看,移動互聯網的實現技術多樣化是一個重要趨勢。
(1)網路接入技術多元化
目前能夠支撐移動互聯網的無線接入技術大致分成三類:無線區域網接入技術Wi-Fi,無線城域網接入技術WiMAX和傳統3G加強版的技術,如HSDPA等。不同的接入技術適用於不同的場所,使用戶在不同的場合和環境下接入相應的網路,這勢必要求終端具有多種接入能力,也就是多模終端。
(2)移動終端解決方案多樣化
終端的支持是業務推廣的生命線,隨著移動互聯網業務逐漸升溫,移動終端解決方案也不斷增多。移動互聯網設備中最為大家熟悉的就是手機,也是目前使用移動互聯網最常用的設備。2007年11月初美國亞馬遜公司發布了電子書閱讀終端——Kindle,使得用戶可以通過無線網路從亞馬遜網站下載電子書、訂閱報紙及博客。
『叄』 手機網路的發展歷程
移動通信歷史 |全球和中國移動通信發展史發展過程移動通信可以說從無線電通信發明之日就產生了。1897年,M.G.馬可尼所完成的無線通信試驗就是在固定站與一艘拖船之間進行的,距離為18海里。現代移動通信技術的發展始於本世紀20年代,大致經歷了五個發展階段。第一階段從本世紀20年代至40年代,為早期發展階段。在這期間,首先在短波幾個頻段上開發出專用移動通信系統,其代表是美國底特律市警察使用的車載無線電系統。該系統工作頻率為2MHz,到40年代提高到30~40MHz可以認為這個階段是現代移動通信的起步階段,特點是專用系統開發,工作頻率較低。第二階段從40年代中期至60年代初期。在此期間內,公用移動通信業務開始問世。1946年,根據美國聯邦通信委員會(FCC)的計劃,貝爾系統在聖路易斯城建立了世界上第一個公用汽車電話網,稱為「城市系統」。當時使用三個頻道,間隔為120kHz,通信方式為單工,隨後,西德(1950年)、法國(1956年)、英國(1959年)等國相繼研製了公用行動電話系統。美國貝爾實驗室完成了人工交換系統的接續問題。這一階段的特點是從專用移動網向公用移動網過渡,接續方式為人工,網的容量較小。第三階段從60年代中期至70年代中期。在此期間,美國推出了改進型行動電話系統(1MTS),使用150MHz和450MHz頻段,採用大區制、中小容量,實現了無線頻道自動選擇並能夠自動接續到公用電話網。德國也推出了具有相同技術水平的B網。可以說,這一階段是移動通信系統改進與完善的階段,其特點是採用大區制、中小容量,使用450MHz頻段,實現了自動選頻與自動接續。第四階段從70年代中期至80年代中期。這是移動通信蓬勃發展時期。1978年底,美國貝爾試驗室研製成功先進行動電話系統(AMPS),建成了蜂窩狀移動通信網,大大提高了系統容量。1983年,首次在芝加哥投入商用。同年12月,在華盛頓也開始啟用。之後,服務區域在美國逐漸擴大。到1985年3月已擴展到47個地區,約10萬移動用戶。其它工業化國家也相繼開發出蜂窩式公用移動通信網。日本於1979年推出800MHz汽車電話系統(HAMTS),在東京、大膠、神戶等地投入商用。西德於1984年完成C網,頻段為450MHz。英國在1985年開發出全地址通信系統(TACS),首先在倫敦投入使用,以後覆蓋了全國,頻段為900MHz。法國開發出450系統。加拿大推出450MHz行動電話系統MTS。瑞典等北歐四國於1980年開發出NMT—450移動通信網,並投入使用,頻段為450MHz。這一階段的特點是蜂窩狀移動通信網成為實用系統,並在世界各地迅速發展。移動通信大發展的原因,除了用戶要求迅猛增加這一主要推動力之外,還有幾方面技術進展所提供的條件。首先,微電子技術在這一時期得到長足發展,這使得通信設備的小型化、微型化有了可能性,各種輕便電台被不斷地推出。其次,提出並形成了移動通信新體制。隨著用戶數量增加,大區制所能提供的容量很快飽和,這就必須探索新體制。在這方面最重要的突破是貝爾試驗室在70年代提出的蜂窩網的概念。蜂窩網,即所謂小區制,由於實現了頻率再用,大大提高了系統容量。可以說,蜂窩概念真正解決了公用移動通信系統要求容量大與頻率資源有限的矛盾。第三方面進展是隨著大規模集成電路的發展而出現的微處理器技術日趨成熟以及計算機技術的迅猛發展,從而為大型通信網的管理與控制提供了技術手段。第五階段從80年代中期開始。這是數字移動通信系統發展和成熟時期。以AMPS和TACS為代表的第一代蜂窩移動通信網是模擬系統。模擬蜂窩網雖然取得了很大成功,但也暴露了一些問題。例如,頻譜利用率低,移動設備復雜,費用較貴,業務種類受限制以及通話易被竊聽等,最主要的問題是其容量已不能滿足日益增長的移動用戶需求。解決這些問題的方法是開發新一代數字蜂窩移動通信系統。數字無線傳輸的頻譜利用率高,可大大提高系統容量。另外,數字網能提供語音、數據多種業務服務,並與ISDN等兼容。實際上,早在70年代末期,當模擬蜂窩系統還處於開發階段時,一些發達國家就著手數字蜂窩移動通信系統的研究。到80年代中期,歐洲首先推出了泛歐數字移動通信網(GSM)的體系。隨後,美國和日本也制定了各自的數字移動通信體制。泛歐網GSM已於1991年7月開始投入商用,預計1995年將覆蓋歐洲主要城市、機場和公路。可以說,在未來十多年內數字蜂窩移動通信將處於一個大發展時期,及有可能成為陸地公用移動通信的主要系統。與其它現代技術的發展一樣,移動通信技術的發展也呈現加快趨勢,目前,當數字蜂窩網剛剛進入實用階段,正方興末艾之時,關於未來移動通信的討論已如火如菜地展開。各種方案紛紛出台,其中最熱門的是所謂個人移動通信網。關於這種系統的概念和結構,各家解釋並末一致。但有一點是肯定的,即未來移動通信系統將提供全球性優質服務,真正實現在任何時間、任何地點、向任何人提供通信服務這一移動通信的最高目標。移動通信史上的十件大事一、上帝創造了何等奇跡!——電報的發明二、「沃森特先生,快來幫我啊」——電話的發明三、無形的信使——電磁波的發現四、「要是我能指揮電磁波,就可飛越整個世界」——無線電報的發明五、載著聲音飛翔的電波——無線電通信的發明六、個人通信的發源地——傳呼的誕生七、實現個人電話的夢想 ——蜂窩式行動電話的誕生八、讓手機走近每一個人——GSM手機的出現九、輝煌的失敗 ——全球「銥」星系統十、山雨欲來風滿樓——新一代手機的誕生
『肆』 移動互聯網發展歷史和移動互聯網發展趨勢如何
現在社會的發展日新月異,互聯網成為人們日常生活中必不可少的事物,隨著我國互聯網+計劃的開展,彰示著互聯網的飛速發展,相對應的,計算機人才需求量也進一步擴大。許多IT行業人才月薪都達到了萬元以上。但是我國長期以來對計算機人才的培養卻嚴重不足。再加上今年特殊情況的影響,以後互聯網會發展的更快,互聯網行業需要的人才也會更多。
『伍』 簡述當代移動通信的四個階段
當代移動通信發展四個階段:
第一代移動通信技術(1G)是指最初的模擬、僅限語音的蜂窩電話標准,制定於上世紀80年代。其容量有限、制式太多、互不兼容、保密性差、通話質量不高、不能提供數據業務和不能提供自動漫遊等。
第二代手機通信技術以數字語音傳輸技術為核心。一般無法直接傳送如電子郵件、軟體等信息;只具有通話和一些如時間日期等傳送的手機通信技術規格。
第三代移動通信技術是在第二代移動通信技術基礎上發展以寬頻CDMA技術為主,並能同時提供話音和數據業務的移動通信系統,是一代有能力徹底解決第一二代移動通信系統主要弊端的先進的移動通信系統。其目標是提供包括語音、數據、視頻等豐富內容的移動多媒體業務。
第四代(4G)移動通信技術是集3G與WLAN於一體4G網路技術,能夠快速傳輸數據、高質量、音頻、視頻和圖像,包括TD-LTE和FDD-LTE兩種制式的移動通信技術。
當前移動通信正處於第四代(4G)移動通信技術發展階段。
『陸』 現代移動通信技術的發展趨勢
1.1無線數據——生機無限
當前移動數據通信發展迅速,被認為是移動通信發展的一個主要方向。近年來出現的
移動數據通信主要有兩種,一種是電路交換型的移動數據業務,如TACS、AMPS和GSM中的
承載數據業務以及GSM系統的HSCSD,另外一種是分組交換型的移動數據業務,比較著名的
有摩托羅拉的DataTAC、愛立信的Mobitex和GSM系統的GPRS。
目前,無線數據業務只佔GSM網路全部業務量中的很小一部分,但是在未來的兩年中
這種狀況將開始扭轉,並大大改變。1999年以後,隨著HSCSD、GPRS等新的高速數據解決
方案顯露崢嶸,並成為數據應用的新的焦點,無線數據將成為運營商經營計劃中越來越重
要的部分,它預示著未來大量的商業機遇。
應用驅動市場
無線數據業務的主要驅動力在於用戶的應用。話音是單一的、容易理解、應用的市場。
然而無線數據則不同,無線數據最初的應用重點放在象運輸管理這樣的專業市場。近期無
線數據業務的目標市場是銷售人員或現場工程師這樣的用戶群。從這些先發目標的應用中
積累無線數據的經驗,並從中受益。隨著速率的增長,其他更通用的應用將會出現,無線
數據業務將開始影響大眾市場。
在過去的十年裡,傳統的生活方式已經在迅速改變,人們更經常性地移動,職業和個
人生活之間的分界變得模糊,人們需要不分時間、地點訪問很重要的信息。發生在用戶身
上的這種生活方式的改變將成為驅動無線數據業務發展的重要因素。
網際網路的影響
和通信的其他領域一樣,無線數據業務的一個最重要的驅動力來自Internet。根據最
近的研究,未來兩年歐洲的網際網路用戶數量將翻一番。在我國,網際網路用戶的年增長率將
高達300%。顯然用戶在運動中接入網際網路的需求將會增長。
為了滿足接人網際網路的需求,一個全球性的開放協議——無線應用協議(WAP)應運
而生。WAP為將Internet的信息內容以及增值業務傳送到移動終端提供了一種開放的通用
標准,實現了IP與GSM網路的橋接,是一個為廠商提供加速市場增長、避免網路割接、保
護運營商投資的標准,WM確保任何與WAP兼容的GSM手機都能工作。WAP是實現無線數據市
場快速發展的工具。
數據速率的發展
GSM承載業務所提供的GSM數據速率最高只能達到9.6kb/s。國際上1998年引入的高速
電路交換數據(HSCSD)技術將實現57kb/s的數據速率,對要求連續比特率和傳輸時延小
的應用是理想的,如會議電視、電子郵件、遠程接入企業的區域網和無線圖象。1999年商
用化的GPRS是第一個GSM分組數據應用,將實現超過100kb/s的數據速率。對較短的「突發」
類型業務是理想的,如信用卡認證、遠程測量和遠程事務處理。EDGE(增強數據速率GSM改
進模式)使用修改過的GSM調制方式來實現超過300kb/S的數據速率。EDGE會讓GSM運營商
特別受益,他們不但可以贏得第三代移動通信的經營執照,還可以提供有競爭力的寬頻數
據業務。
1.2個人多媒體通信——網路演進的方向
對隨時隨地話音通信的追求使早期移動通信走向成功。移動通信的商業價值和用戶市
場得到了證明,全球移動市場以超凡的速度增長。移動通信演進的下一階段是向無線數據
乃至個人移動多媒體轉移,這一進展已經開始,並將成為未來重要的增長點。
個人移動多媒體通信將根據地點為人們提供無法想像的、完善的個人業務和無線信息,
將對人們工作和生活的各個方面產生影響。在個人多媒體世界裡,話音郵件和電子郵件被
傳送到移動多媒體信箱中;簡訊將成為帶有照片和視頻內容的電子明信片;話直呼叫將與
實時圖象相結合,產生大量的可視行動電話。還將實現移動網際網路和萬維網瀏覽。象無線
會議電視這樣的應用將隨處可見,電子商務將蓬勃開展。對於運動中的用戶還有隨時隨地
的各種信箱和娛樂服務。
2網路技術的寬頻化
在電信業歷史上,移動通信可能是技術和市場發展最快的領域。業務、技術、市場三
者之間是一種互動的關系,伴隨著用戶對數據、多媒體業務需求的增加,網路業務向數據
化、分組化發展,移動網路必然走向寬頻化。
通過使用電話交換技術和蜂窩無線電技術,70年代末誕生了第一代模擬行動電話。AM
PS(北美蜂窩系統)、NMT(北歐行動電話)和TACS(全向通信系統)是三種主要的窄帶模
擬標准。第一代無線網路技術的一大成就就是去掉了將電話連接到網路的用戶線。用戶第
一次能夠在他們所在的任何地方無線接收和撥打電話。
第二代系統引入了數字無線電技術,它提供更高的網路容量,改善了話音質量和保密
性,並為用戶引入了無縫的國際漫遊。今天世界市場的第二代數字無線標准,包括GSM、D
-AMPS、PDC(日本數字蜂窩系統)和IS-95CDMA等,均仍為窄帶系統。
第三代移動系統,即IMT-2000,是一種真正的寬頻多媒體系統,它能夠提供高質量寬
帶綜合業務並實現全球無縫覆蓋。2000年以後,雖然窄帶行動電話業務需求將依然很大,
但隨著Internet等高速數據通信及多媒體通信需求的驅動,寬頻多媒體綜合業務將逐步增
長,而且就未來信息高速公路建設的無縫覆蓋而言,寬頻多媒體綜合業務將逐步增長,而
且就未來信息高速公路建設的無縫覆蓋而言,寬頻移動通信作為整個移動市場份額的子集
將顯得愈來愈重要。第三代系統預計在2002年投入商用。
從第二代到第三代系統的變化並不象從第一代模擬網路到第二代數字網路那樣存在重
大的技術變遷。從目前的技術發展現狀和趨勢來講,第二代系統將逐步平滑過渡到第三代
系統,在此演進過程中,移動網路所能實現的數據速率逐步升級;GSM承載業務所能提供的
數據速率為9.6Kb/s,1998年商用的HSCSD技術實現了57kb/s的數據速率,1999年引人的GP
RS將實現超過100WS的數據速率,將在2000年引入的EDGE技術可實現超過300kb/s的數據速
率。2001年後投入商用的第三代系統將能夠在廣域網上實現384kb/s的數據速率,在辦公
室和家中還可以達到2Mkb/s。
3網路技術的智能化
移動通信需求的不斷增長以及新技術在移動通信中的廣泛應用,促使移動網路得到了
迅速發展。移動網路由單純地傳遞和交換信息,逐步向存儲和處理信息的智能化發展,移
動智能網由此而生。移動智能網是在移動網路中引入智能網功能實體,以完成對移動呼叫
的智能控制的一種網路,是一種開放性的智能平台,它使電信業務經營者能夠方便、快速、
經濟、有效地提供客戶所需的各類電信新業務,使客戶對網路有更強的控制功能,能夠方
便靈活地獲得所需的信息。移動智能網通過把交換與業務分離,建立集中的業務控制點和
資料庫,進而進一步建立集中的業務管理系統和業務生成環境來達到上述目標。通過智能
網,運營公司可以最優地利用其網路,加快新業務的生成;可以根據客戶的需求來設計業
務,向其他業務提供者開放網路,增加效益。
關於移動智能網的研究,早在1995年就已開始,剛開始時並沒有具體的標准協議出現,
各廠商各自製定了自己的標准,並且據此進行了不少的研究工作,如Alcatel、Nortel、
Ericsson等都先後推出了自己的初期產品。這些工作為最終移動智能網標準的形成積累了
經驗。
1997年末,美國蜂窩電信工業協會(CTIA)制定了移動智能網的第一個標准協議——
IS-41D協議。1998年1月,歐洲電信標准研究所(ETSI)在GSM phase2+階段引入了CAMEL
協議(移動通信高級邏輯的客戶化應用程序),當時的版本是phase1。1998年4月,ITU-T
在新推出的智能網能力集一2標准中描述了移動接入的功能實體,稱為CAMELphase2標准。
伴隨著移動網路向第三代系統的演進,網路的智能化程度也在不斷地提升。智能網及
其智能業務是構成未來個人通信的基本條件。
4更高的頻段
從第一代的模擬行動電話,到第二代的數字移動網路,再到將來的第三代移動通信系
統,網路使用的無線頻段遵循一種由低到高的發展趨勢。
1981年誕生的第一個具有國際漫遊功能的模擬系統NMT的使用頻段為450MHz,1986年
NMT變遷到900MHz頻段。我國目前的模擬TACS系統的使用頻段也為900MHz。在第二代網路
中,GSM系統的開始使用頻段為900MHz,IS-95CDMA系統為800MHz。為了從根本上提高GSM
系統的容量,1997年出現了1800MHz系統,GSM900/1800雙頻網路迅速普及。2000年將投入
商用的第三代系統IMT-2000則定在2GMHz頻段。
5更有效利用頻率
無線電頻率是一種寶貴資源。隨著移動通信的飛速發展,頻譜資源有限和移動用戶急
劇增加的矛盾越來越尖銳,出現了「頻率嚴重短缺」的現象。解決頻率擁擠問題的出路是
採用各種頻率有效利用技術和開發新頻段。
模擬制的早期蜂窩移動通信系統採用頻分多址方式,主要通過多信道共用、頻率復用
和波道窄帶化等技術實現頻率的有效利用。隨著業務的發展,模擬系統已遠不能滿足用戶
發展的需求。數字移動通信比模擬移動通信具有更大的容量。同樣的頻分多址技術,數字
系統要求的載干比較小,因而頻率復用距離可以小一些,系統的容量可以大一些。而且,
數字移動通信還可採用時分多址或碼分多址技術,它比模擬的頻分多址制在系統容量上大
4-20倍。
CSM作為最具代表性和最為成熟的數字移動通信系統,其發展歷程就是一部頻率有效利
用技術的演進史。GSM採用時分多址制式,其對頻率的有效利用主要是通過頻率復用技術的
不斷升級實現的。從傳統的4×3方式,到3×3、1×3、MRP、2×6等新的復用技術,頻率復
用的密集度逐步提升,頻譜效率快速提高,GSM系統的容量得到逐步釋放。
1995年開始投入商用的IS-95CDMA(窄帶)系統,以無線技術的先進性和大容量等特
點著稱。它以擴頻技術為基礎,不同用戶的信號靠不同的編碼序列來區分,如果從頻域或
時域來觀察,多個CDMA信號是相互重疊的,故理論上CDMA系統的頻譜利用率比GSM系統更高,
網路容量更大。同時CDMA系統具有一定的過載能力,即系統具備較容量。
作為未來第三代移動通信系統主流無線接入技術的WCDMA(寬頻碼分多址)能夠更高效
地利用無線電頻率。它利用分層小區結構、自適應天線陣和相平解調(雙向)等技術,網
絡容量可得到大幅提高,可以更好地滿足未來移動通信的發展要求。
6網路趨於融合,走向統一
6.1第三代移動通信系統的結構
第三代系統的主要目標是將包括衛星在內的所有網路融合為可以替代眾多網路功能的
統一系統,它能夠提供寬頻業務並實現全球無縫覆蓋。為了保護運營公司在現有網路設施
上的投資,第二代系統向第三代系統的演進遵循平滑過渡的原則,現有的GSM、D-AMPS、
IS-136等第二代系統均將演變成為第三代系統的核心網路,從而形成一個核心網家族,
核心網家族的不同成員之間通過NNI介面聯結起來,成為一個整體,從而實現全球漫遊。在
核心網路家族的外圍,形成一個龐大的無線接入家族,現有的幾乎所有的無線接入技術及
WCDMA等第三代無線接入技術均成為其成員。第三代系統充分顯示了未來電信網路的融合特
征。
6.2未來的網路構架
技術的發展和市場需求的變化、市場競爭的加劇以及市場管理政策的放鬆將使計算機
網、電信網、電視網等加快融合為一體,寬頻IP技術成為三網融合的支撐和結合點。未來
的網路將向寬頻化、智能化、個人化方向發展,形成統一的綜合寬頻通信網,並逐步演進
為由核心骨幹層和接入層組成、業務與網路分離的構架。