導航:首頁 > 網路設置 > 遞歸神經網路具有設置

遞歸神經網路具有設置

發布時間:2022-08-14 21:35:06

A. 怎樣使用PyTorch實現遞歸神經網路

1. 將單詞放入緩沖區。
2. 從緩沖區的前部彈出「The」,將其推送(push)到堆棧上層,緊接著是「church」。
3. 彈出前 2 個堆棧值,應用於 Rece,然後將結果推送回堆棧。
4. 從緩沖區彈出「has」,然後推送到堆棧,然後是「cracks」,然後是「in」,然後是「the」,然後是「ceiling」。
5. 重復四次:彈出 2 個堆棧值,應用於 Rece,然後推送結果。
6. 從緩沖區彈出「.」,然後推送到堆棧上層。
7. 重復兩次:彈出 2 個堆棧值,應用於 Rece,然後推送結果。
8. 彈出剩餘的堆棧值,並將其作為句子編碼返回。

B. 遞歸神經網路用於特徵提取需要fit嗎

BP神經網路、離散Hopfield網路、LVQ神經網路等等都可以。

  1. BP(Back Propagation)神經網路是1986年由Rumelhart和McCelland為首的科學家小組提出,是一種按誤差逆傳播演算法訓練的多層前饋網路,是目前應用最廣泛的神經網路模型之一。BP網路能學習和存貯大量的輸入-輸出模式映射關系,而無需事前揭示描述這種映射關系的數學方程。它的學習規則是使用最速下降法,通過反向傳播來不斷調整網路的權值和閾值,使網路的誤差平方和最小。BP神經網路模型拓撲結構包括輸入層(input)、隱層(hidden layer)和輸出層(output layer)。

  2. 2.Hopfiled神經網路是一種遞歸神經網路,由約翰·霍普菲爾德在1982年發明。Hopfield網路是一種結合存儲系統和二元系統的神經網路。它保證了向局部極小的收斂,但收斂到錯誤的局部極小值(local minimum),而非全局極小(global minimum)的情況也可能發生。Hopfiled網路也提供了模擬人類記憶的模型。

  3. 3.LVQ神經網路由三層組成,即輸入層、隱含層和輸出層,網路在輸入層與隱含層間為完全連接,而在隱含層與輸出層間為部分連接,每個輸出層神經元與隱含層神經元的不同組相連接。隱含層和輸出層神經元之間的連接權值固定為1。輸入層和隱含層神經元間連接的權值建立參考矢量的分量(對每個隱含神經元指定一個參考矢量)。在網路訓練過程中,這些權值被修改。隱含層神經元(又稱為Kohnen神經元)和輸出神經元都具有二進制輸出值。當某個輸入模式被送至網路時,參考矢量最接近輸入模式的隱含神經元因獲得激發而贏得競爭,因而允許它產生一個「1」,而其它隱含層神經元都被迫產生「0」。與包含獲勝神經元的隱含層神經元組相連接的輸出神經元也發出「1」,而其它輸出神經元均發出「0」。產生「1」的輸出神經元給出輸入模式的類,由此可見,每個輸出神經元被用於表示不同的類。

C. 人工神經網路概念梳理與實例演示

人工神經網路概念梳理與實例演示
神經網路是一種模仿生物神經元的機器學習模型,數據從輸入層進入並流經激活閾值的多個節點。
遞歸性神經網路一種能夠對之前輸入數據進行內部存儲記憶的神經網路,所以他們能夠學習到數據流中的時間依賴結構。
如今機器學習已經被應用到很多的產品中去了,例如,siri、Google Now等智能助手,推薦引擎——亞馬遜網站用於推薦商品的推薦引擎,Google和Facebook使用的廣告排名系統。最近,深度學習的一些進步將機器學習帶入公眾視野:AlphaGo 打敗圍棋大師李世石事件以及一些圖片識別和機器翻譯等新產品的出現。
在這部分中,我們將介紹一些強大並被普遍使用的機器學習技術。這當然包括一些深度學習以及一些滿足現代業務需求傳統方法。讀完這一系列的文章之後,你就掌握了必要的知識,便可以將具體的機器學習實驗應用到你所在的領域當中。
隨著深層神經網路的精度的提高,語音和圖像識別技術的應用吸引了大眾的注意力,關於AI和深度學習的研究也變得更加普遍了。但是怎麼能夠讓它進一步擴大影響力,更受歡迎仍然是一個問題。這篇文章的主要內容是:簡述前饋神經網路和遞歸神經網路、怎樣搭建一個遞歸神經網路對時間系列數據進行異常檢測。為了讓我們的討論更加具體化,我們將演示一下怎麼用Deeplearning4j搭建神經網路。
一、什麼是神經網路?
人工神經網路演算法的最初構思是模仿生物神經元。但是這個類比很不可靠。人工神經網路的每一個特徵都是對生物神經元的一種折射:每一個節點與激活閾值、觸發的連接。
連接人工神經元系統建立起來之後,我們就能夠對這些系統進行訓練,從而讓他們學習到數據中的一些模式,學到之後就能執行回歸、分類、聚類、預測等功能。
人工神經網路可以看作是計算節點的集合。數據通過這些節點進入神經網路的輸入層,再通過神經網路的隱藏層直到關於數據的一個結論或者結果出現,這個過程才會停止。神經網路產出的結果會跟預期的結果進行比較,神經網路得出的結果與正確結果的不同點會被用來更正神經網路節點的激活閾值。隨著這個過程的不斷重復,神經網路的輸出結果就會無限靠近預期結果。
二、訓練過程
在搭建一個神經網路系統之前,你必須先了解訓練的過程以及網路輸出結果是怎麼產生的。然而我們並不想過度深入的了解這些方程式,下面是一個簡短的介紹。
網路的輸入節點收到一個數值數組(或許是叫做張量多維度數組)就代表輸入數據。例如, 圖像中的每個像素可以表示為一個標量,然後將像素傳遞給一個節點。輸入數據將會與神經網路的參數相乘,這個輸入數據被擴大還是減小取決於它的重要性,換句話說,取決於這個像素就不會影響神經網路關於整個輸入數據的結論。
起初這些參數都是隨機的,也就是說神經網路在建立初期根本就不了解數據的結構。每個節點的激活函數決定了每個輸入節點的輸出結果。所以每個節點是否能夠被激活取決於它是否接受到足夠的刺激強度,即是否輸入數據和參數的結果超出了激活閾值的界限。
在所謂的密集或完全連接層中,每個節點的輸出值都會傳遞給後續層的節點,在通過所有隱藏層後最終到達輸出層,也就是產生輸入結果的地方。在輸出層, 神經網路得到的最終結論將會跟預期結論進行比較(例如,圖片中的這些像素代表一隻貓還是狗?)。神經網路猜測的結果與正確結果的計算誤差都會被納入到一個測試集中,神經網路又會利用這些計算誤差來不斷更新參數,以此來改變圖片中不同像素的重要程度。整個過程的目的就是降低輸出結果與預期結果的誤差,正確地標注出這個圖像到底是不是一條狗。
深度學習是一個復雜的過程,由於大量的矩陣系數需要被修改所以它就涉及到矩陣代數、衍生品、概率和密集的硬體使用問題,但是用戶不需要全部了解這些復雜性。
但是,你也應該知道一些基本參數,這將幫助你理解神經網路函數。這其中包括激活函數、優化演算法和目標函數(也稱為損失、成本或誤差函數)。
激活函數決定了信號是否以及在多大程度上應該被發送到連接節點。階梯函數是最常用的激活函數, 如果其輸入小於某個閾值就是0,如果其輸入大於閾值就是1。節點都會通過階梯激活函數向連接節點發送一個0或1。優化演算法決定了神經網路怎麼樣學習,以及測試完誤差後,權重怎麼樣被更准確地調整。最常見的優化演算法是隨機梯度下降法。最後, 成本函數常用來衡量誤差,通過對比一個給定訓練樣本中得出的結果與預期結果的不同來評定神經網路的執行效果。
Keras、Deeplearning4j 等開源框架讓創建神經網路變得簡單。創建神經網路結構時,需要考慮的是怎樣將你的數據類型匹配到一個已知的被解決的問題,並且根據你的實際需求來修改現有結構。
三、神經網路的類型以及應用
神經網路已經被了解和應用了數十年了,但是最近的一些技術趨勢才使得深度神經網路變得更加高效。
GPUs使得矩陣操作速度更快;分布式計算結構讓計算能力大大增強;多個超參數的組合也讓迭代的速度提升。所有這些都讓訓練的速度大大加快,迅速找到適合的結構。
隨著更大數據集的產生,類似於ImageNet 的大型高質量的標簽數據集應運而生。機器學習演算法訓練的數據越大,那麼它的准確性就會越高。
最後,隨著我們理解能力以及神經網路演算法的不斷提升,神經網路的准確性在語音識別、機器翻譯以及一些機器感知和面向目標的一些任務等方面不斷刷新記錄。
盡管神經網路架構非常的大,但是主要用到的神經網路種類也就是下面的幾種。
3.1前饋神經網路
前饋神經網路包括一個輸入層、一個輸出層以及一個或多個的隱藏層。前饋神經網路可以做出很好的通用逼近器,並且能夠被用來創建通用模型。
這種類型的神經網路可用於分類和回歸。例如,當使用前饋網路進行分類時,輸出層神經元的個數等於類的數量。從概念上講, 激活了的輸出神經元決定了神經網路所預測的類。更准確地說, 每個輸出神經元返回一個記錄與分類相匹配的概率數,其中概率最高的分類將被選為模型的輸出分類。
前饋神經網路的優勢是簡單易用,與其他類型的神經網路相比更簡單,並且有一大堆的應用實例。
3.2卷積神經網路
卷積神經網路和前饋神經網路是非常相似的,至少是數據的傳輸方式類似。他們結構大致上是模仿了視覺皮層。卷積神經網路通過許多的過濾器。這些過濾器主要集中在一個圖像子集、補丁、圖塊的特徵識別上。每一個過濾器都在尋找不同模式的視覺數據,例如,有的可能是找水平線,有的是找對角線,有的是找垂直的。這些線條都被看作是特徵,當過濾器經過圖像時,他們就會構造出特徵圖譜來定位各類線是出現在圖像的哪些地方。圖像中的不同物體,像貓、747s、榨汁機等都會有不同的圖像特徵,這些圖像特徵就能使圖像完成分類。卷積神經網路在圖像識別和語音識別方面是非常的有效的。
卷積神經網路與前饋神經網路在圖像識別方面的異同比較。雖然這兩種網路類型都能夠進行圖像識別,但是方式卻不同。卷積神經網路是通過識別圖像的重疊部分,然後學習識別不同部分的特徵進行訓練;然而,前饋神經網路是在整張圖片上進行訓練。前饋神經網路總是在圖片的某一特殊部分或者方向進行訓練,所以當圖片的特徵出現在其他地方時就不會被識別到,然而卷積神經網路卻能夠很好的避免這一點。
卷積神經網路主要是用於圖像、視頻、語音、聲音識別以及無人駕駛的任務。盡管這篇文章主要是討論遞歸神經網路的,但是卷積神經網路在圖像識別方面也是非常有效的,所以很有必要了解。
3.3遞歸神經網路
與前饋神經網路不同的是,遞歸神經網路的隱藏層的節點里有內部記憶存儲功能,隨著輸入數據的改變而內部記憶內容不斷被更新。遞歸神經網路的結論都是基於當前的輸入和之前存儲的數據而得出的。遞歸神經網路能夠充分利用這種內部記憶存儲狀態處理任意序列的數據,例如時間序列。
遞歸神經網路經常用於手寫識別、語音識別、日誌分析、欺詐檢測和網路安全
遞歸神經網路是處理時間維度數據集的最好方法,它可以處理以下數據:網路日誌和伺服器活動、硬體或者是醫療設備的感測器數據、金融交易、電話記錄。想要追蹤數據在不同階段的依賴和關聯關系需要你了解當前和之前的一些數據狀態。盡管我們通過前饋神經網路也可以獲取事件,隨著時間的推移移動到另外一個事件,這將使我們限制在對事件的依賴中,所以這種方式很不靈活。
追蹤在時間維度上有長期依賴的數據的更好方法是用內存來儲存重要事件,以使近期事件能夠被理解和分類。遞歸神經網路最好的一點就是在它的隱藏層裡面有「內存」可以學習到時間依賴特徵的重要性。
接下來我們將討論遞歸神經網路在字元生成器和網路異常檢測中的應用。遞歸神經網路可以檢測出不同時間段的依賴特徵的能力使得它可以進行時間序列數據的異常檢測。
遞歸神經網路的應用
網路上有很多使用RNNs生成文本的例子,遞歸神經網路經過語料庫的訓練之後,只要輸入一個字元,就可以預測下一個字元。下面讓我們通過一些實用例子發現更多RNNs的特徵。
應用一、RNNs用於字元生成
遞歸神經網路經過訓練之後可以把英文字元當做成一系列的時間依賴事件。經過訓練後它會學習到一個字元經常跟著另外一個字元(「e」經常跟在「h」後面,像在「the、he、she」中)。由於它能預測下一個字元是什麼,所以它能有效地減少文本的輸入錯誤。
Java是個很有趣的例子,因為它的結構包括很多嵌套結構,有一個開的圓括弧必然後面就會有一個閉的,花括弧也是同理。他們之間的依賴關系並不會在位置上表現的很明顯,因為多個事件之間的關系不是靠所在位置的距離確定的。但是就算是不明確告訴遞歸神經網路Java中各個事件的依賴關系,它也能自己學習了解到。
在異常檢測當中,我們要求神經網路能夠檢測出數據中相似、隱藏的或許是並不明顯的模式。就像是一個字元生成器在充分地了解數據的結構後就會生成一個數據的擬像,遞歸神經網路的異常檢測就是在其充分了解數據結構後來判斷輸入的數據是不是正常。
字元生成的例子表明遞歸神經網路有在不同時間范圍內學習到時間依賴關系的能力,它的這種能力還可以用來檢測網路活動日誌的異常。
異常檢測能夠使文本中的語法錯誤浮出水面,這是因為我們所寫的東西是由語法結構所決定的。同理,網路行為也是有結構的,它也有一個能夠被學習的可預測模式。經過在正常網路活動中訓練的遞歸神經網路可以監測到入侵行為,因為這些入侵行為的出現就像是一個句子沒有標點符號一樣異常。
應用二、一個網路異常檢測項目的示例
假設我們想要了解的網路異常檢測就是能夠得到硬體故障、應用程序失敗、以及入侵的一些信息。
模型將會向我們展示什麼呢?
隨著大量的網路活動日誌被輸入到遞歸神經網路中去,神經網路就能學習到正常的網路活動應該是什麼樣子的。當這個被訓練的網路被輸入新的數據時,它就能偶判斷出哪些是正常的活動,哪些是被期待的,哪些是異常的。
訓練一個神經網路來識別預期行為是有好處的,因為異常數據不多,或者是不能夠准確的將異常行為進行分類。我們在正常的數據里進行訓練,它就能夠在未來的某個時間點提醒我們非正常活動的出現。
說句題外話,訓練的神經網路並不一定非得識別到特定事情發生的特定時間點(例如,它不知道那個特殊的日子就是周日),但是它一定會發現一些值得我們注意的一些更明顯的時間模式和一些可能並不明顯的事件之間的聯系。
我們將概述一下怎麼用 Deeplearning4j(一個在JVM上被廣泛應用的深度學習開源資料庫)來解決這個問題。Deeplearning4j在模型開發過程中提供了很多有用的工具:DataVec是一款為ETL(提取-轉化-載入)任務准備模型訓練數據的集成工具。正如Sqoop為Hadoop載入數據,DataVec將數據進行清洗、預處理、規范化與標准化之後將數據載入到神經網路。這跟Trifacta』s Wrangler也相似,只不過它更關注二進制數據。
開始階段
第一階段包括典型的大數據任務和ETL:我們需要收集、移動、儲存、准備、規范化、矢量話日誌。時間跨度的長短是必須被規定好的。數據的轉化需要花費一些功夫,這是由於JSON日誌、文本日誌、還有一些非連續標注模式都必須被識別並且轉化為數值數組。DataVec能夠幫助進行轉化和規范化數據。在開發機器學習訓練模型時,數據需要分為訓練集和測試集。
訓練神經網路
神經網路的初始訓練需要在訓練數據集中進行。
在第一次訓練的時候,你需要調整一些超參數以使模型能夠實現在數據中學習。這個過程需要控制在合理的時間內。關於超參數我們將在之後進行討論。在模型訓練的過程中,你應該以降低錯誤為目標。
但是這可能會出現神經網路模型過度擬合的風險。有過度擬合現象出現的模型往往會在訓練集中的很高的分數,但是在遇到新的數據時就會得出錯誤結論。用機器學習的語言來說就是它不夠通用化。Deeplearning4J提供正則化的工具和「過早停止」來避免訓練過程中的過度擬合。
神經網路的訓練是最花費時間和耗費硬體的一步。在GPUs上訓練能夠有效的減少訓練時間,尤其是做圖像識別的時候。但是額外的硬體設施就帶來多餘的花銷,所以你的深度學習的框架必須能夠有效的利用硬體設施。Azure和亞馬遜等雲服務提供了基於GPU的實例,神經網路還可以在異構集群上進行訓練。
創建模型
Deeplearning4J提供ModelSerializer來保存訓練模型。訓練模型可以被保存或者是在之後的訓練中被使用或更新。
在執行異常檢測的過程中,日誌文件的格式需要與訓練模型一致,基於神經網路的輸出結果,你將會得到是否當前的活動符合正常網路行為預期的結論。
代碼示例
遞歸神經網路的結構應該是這樣子的:
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder(
.seed(123)
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT).iterations(1)
.weightInit(WeightInit.XAVIER)
.updater(Updater.NESTEROVS).momentum(0.9)
.learningRate(0.005)
.gradientNormalization(GradientNormalization.ClipElementWiseAbsoluteValue)
.(0.5)
.list()
.layer(0, new GravesLSTM.Builder().activation("tanh").nIn(1).nOut(10).build())
.layer(1, new RnnOutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
.activation("softmax").nIn(10).nOut(numLabelClasses).build())
.pretrain(false).backprop(true).build();
MultiLayerNetwork net = new MultiLayerNetwork(conf);
net.init();
下面解釋一下幾行重要的代碼:
.seed(123)
隨機設置一個種子值對神經網路的權值進行初始化,以此獲得一個有復驗性的結果。系數通常都是被隨機的初始化的,以使我們在調整其他超參數時仍獲得一致的結果。我們需要設定一個種子值,讓我們在調整和測試的時候能夠用這個隨機的權值。
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT).iterations(1)
決定使用哪個最優演算法(在這個例子中是隨機梯度下降法)來調整權值以提高誤差分數。你可能不需要對這個進行修改。
.learningRate(0.005)
當我們使用隨機梯度下降法的時候,誤差梯度就被計算出來了。在我們試圖將誤差值減到最小的過程中,權值也隨之變化。SGD給我們一個讓誤差更小的方向,這個學習效率就決定了我們該在這個方向上邁多大的梯度。如果學習效率太高,你可能是超過了誤差最小值;如果太低,你的訓練可能將會永遠進行。這是一個你需要調整的超參數。

D. 有哪些深度神經網路模型

卷積神經元(Convolutional cells)和前饋神經元非常相似,除了它們只跟前一神經細胞層的部分神經元有連接。因為它們不是和某些神經元隨機連接的,而是與特定范圍內的神經元相連接,通常用來保存空間信息。這讓它們對於那些擁有大量局部信息,比如圖像數據、語音數據(但多數情況下是圖像數據),會非常實用。

解卷積神經元恰好相反:它們是通過跟下一神經細胞層的連接來解碼空間信息。這兩種神經元都有很多副本,它們都是獨立訓練的;每個副本都有自己的權重,但連接方式卻完全相同。可以認為,這些副本是被放在了具備相同結構的不同的神經網路中。這兩種神經元本質上都是一般意義上的神經元,但是,它們的使用方式卻不同。

池化神經元和插值神經元(Pooling and interpolating cells)經常和卷積神經元結合起來使用。它們不是真正意義上的神經元,只能進行一些簡單的操作。

池化神經元接受到來自其它神經元的輸出過後,決定哪些值可以通過,哪些值不能通過。在圖像領域,可以理解成是把一個圖像縮小了(在查看圖片的時候,一般軟體都有一個放大、縮小的功能;這里的圖像縮小,就相當於軟體上的縮小圖像;也就是說我們能看到圖像的內容更加少了;在這個池化的過程當中,圖像的大小也會相應地減少)。這樣,你就再也不能看到所有的像素了,池化函數會知道什麼像素該保留,什麼像素該舍棄。

插值神經元恰好是相反的操作:它們獲取一些信息,然後映射出更多的信息。額外的信息都是按照某種方式製造出來的,這就好像在一張小解析度的圖片上面進行放大。插值神經元不僅僅是池化神經元的反向操作,而且,它們也是很常見,因為它們運行非常快,同時,實現起來也很簡單。池化神經元和插值神經元之間的關系,就像卷積神經元和解卷積神經元之間的關系。

均值神經元和標准方差神經元(Mean and standard deviation cells)(作為概率神經元它們總是成對地出現)是一類用來描述數據概率分布的神經元。均值就是所有值的平均值,而標准方差描述的是這些數據偏離(兩個方向)均值有多遠。比如:一個用於圖像處理的概率神經元可以包含一些信息,比如:在某個特定的像素裡面有多少紅色。舉個例來說,均值可能是0.5,同時標准方差是0.2。當要從這些概率神經元取樣的時候,你可以把這些值輸入到一個高斯隨機數生成器,這樣就會生成一些分布在0.4和0.6之間的值;值離0.5越遠,對應生成的概率也就越小。它們一般和前一神經元層或者下一神經元層是全連接,而且,它們沒有偏差(bias)。

循環神經元(Recurrent cells )不僅僅在神經細胞層之間有連接,而且在時間軸上也有相應的連接。每一個神經元內部都會保存它先前的值。它們跟一般的神經元一樣更新,但是,具有額外的權重:與當前神經元之前值之間的權重,還有大多數情況下,與同一神經細胞層各個神經元之間的權重。當前值和存儲的先前值之間權重的工作機制,與非永久性存儲器(比如RAM)的工作機制很相似,繼承了兩個性質:

E. 描述計算機視覺問題中卷積神經網路(CNN)的基本概念,並描述CNN如何實現這些概念。

摘要 你好,卷積是CNN的核心,是用卷積核掃描圖像,得到相應的特徵。卷積核可以理解成過濾器(或圖像掃描器、特徵掃描器、局部感受野)。這里先不涉及到卷積的具體操作,只介紹卷積的簡單概念。在BPNN中,前後層神經元的連接是「全連接」,即每個神經元都與前一層所有神經元相連,而卷積是每個神經元只與上一層的一部分神經元相連希望我的回答能幫到你

F. 如何用PyTorch實現遞歸神經網路

從 Siri 到谷歌翻譯,深度神經網路已經在機器理解自然語言方面取得了巨大突破。這些模型大多數將語言視為單調的單詞或字元序列,並使用一種稱為循環神經網路(recurrent neural network/RNN)的模型來處理該序列。但是許多語言學家認為語言最好被理解為具有樹形結構的層次化片語,一種被稱為遞歸神經網路(recursive neural network)的深度學習模型考慮到了這種結構,這方面已經有大量的研究。雖然這些模型非常難以實現且效率很低,但是一個全新的深度學習框架 PyTorch 能使它們和其它復雜的自然語言處理模型變得更加容易。

雖然遞歸神經網路很好地顯示了 PyTorch 的靈活性,但它也廣泛支持其它的各種深度學習框架,特別的是,它能夠對計算機視覺(computer vision)計算提供強大的支撐。PyTorch 是 Facebook AI Research 和其它幾個實驗室的開發人員的成果,該框架結合了 Torch7 高效靈活的 GPU 加速後端庫與直觀的 Python 前端,它的特點是快速成形、代碼可讀和支持最廣泛的深度學習模型。

開始 SPINN

鏈接中的文章(https://github.com/jekbradbury/examples/tree/spinn/snli)詳細介紹了一個遞歸神經網路的 PyTorch 實現,它具有一個循環跟蹤器(recurrent tracker)和 TreeLSTM 節點,也稱為 SPINN——SPINN 是深度學習模型用於自然語言處理的一個例子,它很難通過許多流行的框架構建。這里的模型實現部分運用了批處理(batch),所以它可以利用 GPU 加速,使得運行速度明顯快於不使用批處理的版本。

SPINN 的意思是堆棧增強的解析器-解釋器神經網路(Stack-augmented Parser-Interpreter Neural Network),由 Bowman 等人於 2016 年作為解決自然語言推理任務的一種方法引入,該論文中使用了斯坦福大學的 SNLI 數據集。

該任務是將語句對分為三類:假設語句 1 是一幅看不見的圖像的准確標題,那麼語句 2(a)肯定(b)可能還是(c)絕對不是一個准確的標題?(這些類分別被稱為蘊含(entailment)、中立(neutral)和矛盾(contradiction))。例如,假設一句話是「兩只狗正跑過一片場地」,蘊含可能會使這個語句對變成「戶外的動物」,中立可能會使這個語句對變成「一些小狗正在跑並試圖抓住一根棍子」,矛盾能會使這個語句對變成「寵物正坐在沙發上」。

特別地,研究 SPINN 的初始目標是在確定語句的關系之前將每個句子編碼(encoding)成固定長度的向量表示(也有其它方式,例如注意模型(attention model)中將每個句子的每個部分用一種柔焦(soft focus)的方法相互比較)。

數據集是用句法解析樹(syntactic parse tree)方法由機器生成的,句法解析樹將每個句子中的單詞分組成具有獨立意義的短語和子句,每個短語由兩個詞或子短語組成。許多語言學家認為,人類通過如上面所說的樹的分層方式來組合詞意並理解語言,所以用相同的方式嘗試構建一個神經網路是值得的。下面的例子是數據集中的一個句子,其解析樹由嵌套括弧表示:

( ( The church ) ( ( has ( cracks ( in ( the ceiling ) ) ) ) . ) )

這個句子進行編碼的一種方式是使用含有解析樹的神經網路構建一個神經網路層 Rece,這個神經網路層能夠組合詞語對(用詞嵌入(word embedding)表示,如 GloVe)、 和/或短語,然後遞歸地應用此層(函數),將最後一個 Rece 產生的結果作為句子的編碼:

X = Rece(「the」, 「ceiling」)
Y = Rece(「in」, X)
... etc.

但是,如果我希望網路以更類似人類的方式工作,從左到右閱讀並保留句子的語境,同時仍然使用解析樹組合短語?或者,如果我想訓練一個網路來構建自己的解析樹,讓解析樹根據它看到的單詞讀取句子?這是一個同樣的但方式略有不同的解析樹的寫法:

The church ) has cracks in the ceiling ) ) ) ) . ) )

或者用第 3 種方式表示,如下:

WORDS: The church has cracks in the ceiling .
PARSES: S S R S S S S S R R R R S R R

我所做的只是刪除開括弧,然後用「S」標記「shift」,並用「R」替換閉括弧用於「rece」。但是現在可以從左到右讀取信息作為一組指令來操作一個堆棧(stack)和一個類似堆棧的緩沖區(buffer),能得到與上述遞歸方法完全相同的結果:

1. 將單詞放入緩沖區。
2. 從緩沖區的前部彈出「The」,將其推送(push)到堆棧上層,緊接著是「church」。
3. 彈出前 2 個堆棧值,應用於 Rece,然後將結果推送回堆棧。
4. 從緩沖區彈出「has」,然後推送到堆棧,然後是「cracks」,然後是「in」,然後是「the」,然後是「ceiling」。
5. 重復四次:彈出 2 個堆棧值,應用於 Rece,然後推送結果。
6. 從緩沖區彈出「.」,然後推送到堆棧上層。
7. 重復兩次:彈出 2 個堆棧值,應用於 Rece,然後推送結果。
8. 彈出剩餘的堆棧值,並將其作為句子編碼返回。

我還想保留句子的語境,以便在對句子的後半部分應用 Rece 層時考慮系統已經讀取的句子部分的信息。所以我將用一個三參數函數替換雙參數的 Rece 函數,該函數的輸入值為一個左子句、一個右子句和當前句的上下文狀態。該狀態由神經網路的第二層(稱為循環跟蹤器(Tracker)的單元)創建。Tracker 在給定當前句子上下文狀態、緩沖區中的頂部條目 b 和堆棧中前兩個條目 s1\s2 時,在堆棧操作的每個步驟(即,讀取每個單詞或閉括弧)後生成一個新狀態:

context[t+1] = Tracker(context[t], b, s1, s2)

容易設想用你最喜歡的編程語言來編寫代碼做這些事情。對於要處理的每個句子,它將從緩沖區載入下一個單詞,運行跟蹤器,檢查是否將單詞推送入堆棧或執行 Rece 函數,執行該操作;然後重復,直到對整個句子完成處理。通過對單個句子的應用,該過程構成了一個大而復雜的深度神經網路,通過堆棧操作的方式一遍又一遍地應用它的兩個可訓練層。但是,如果你熟悉 TensorFlow 或 Theano 等傳統的深度學習框架,就知道它們很難實現這樣的動態過程。你值得花點時間回顧一下,探索為什麼 PyTorch 能有所不同。

圖論

圖 1:一個函數的圖結構表示

深度神經網路本質上是有大量參數的復雜函數。深度學習的目的是通過計算以損失函數(loss)度量的偏導數(梯度)來優化這些參數。如果函數表示為計算圖結構(圖 1),則向後遍歷該圖可實現這些梯度的計算,而無需冗餘工作。每個現代深度學習框架都是基於此反向傳播(backpropagation)的概念,因此每個框架都需要一個表示計算圖的方式。

在許多流行的框架中,包括 TensorFlow、Theano 和 Keras 以及 Torch7 的 nngraph 庫,計算圖是一個提前構建的靜態對象。該圖是用像數學表達式的代碼定義的,但其變數實際上是尚未保存任何數值的佔位符(placeholder)。圖中的佔位符變數被編譯進函數,然後可以在訓練集的批處理上重復運行該函數來產生輸出和梯度值。

這種靜態計算圖(static computation graph)方法對於固定結構的卷積神經網路效果很好。但是在許多其它應用中,有用的做法是令神經網路的圖結構根據數據而有所不同。在自然語言處理中,研究人員通常希望通過每個時間步驟中輸入的單詞來展開(確定)循環神經網路。上述 SPINN 模型中的堆棧操作很大程度上依賴於控制流程(如 for 和 if 語句)來定義特定句子的計算圖結構。在更復雜的情況下,你可能需要構建結構依賴於模型自身的子網路輸出的模型。

這些想法中的一些(雖然不是全部)可以被生搬硬套到靜態圖系統中,但幾乎總是以降低透明度和增加代碼的困惑度為代價。該框架必須在其計算圖中添加特殊的節點,這些節點代表如循環和條件的編程原語(programming primitive),而用戶必須學習和使用這些節點,而不僅僅是編程代碼語言中的 for 和 if 語句。這是因為程序員使用的任何控制流程語句將僅運行一次,當構建圖時程序員需要硬編碼(hard coding)單個計算路徑。

例如,通過詞向量(從初始狀態 h0 開始)運行循環神經網路單元(rnn_unit)需要 TensorFlow 中的特殊控制流節點 tf.while_loop。需要一個額外的特殊節點來獲取運行時的詞長度,因為在運行代碼時它只是一個佔位符。

# TensorFlow
# (this code runs once, ring model initialization)
# 「words」 is not a real list (it』s a placeholder variable) so
# I can』t use 「len」
cond = lambda i, h: i < tf.shape(words)[0]
cell = lambda i, h: rnn_unit(words[i], h)
i = 0
_, h = tf.while_loop(cond, cell, (i, h0))

基於動態計算圖(dynamic computation graph)的方法與之前的方法有根本性不同,它有幾十年的學術研究歷史,其中包括了哈佛的 Kayak、自動微分庫(autograd)以及以研究為中心的框架 Chainer和 DyNet。在這樣的框架(也稱為運行時定義(define-by-run))中,計算圖在運行時被建立和重建,使用相同的代碼為前向通過(forward pass)執行計算,同時也為反向傳播(backpropagation)建立所需的數據結構。這種方法能產生更直接的代碼,因為控制流程的編寫可以使用標準的 for 和 if。它還使調試更容易,因為運行時斷點(run-time breakpoint)或堆棧跟蹤(stack trace)將追蹤到實際編寫的代碼,而不是執行引擎中的編譯函數。可以在動態框架中使用簡單的 Python 的 for 循環來實現有相同變數長度的循環神經網路。

# PyTorch (also works in Chainer)
# (this code runs on every forward pass of the model)
# 「words」 is a Python list with actual values in it
h = h0
for word in words:
h = rnn_unit(word, h)

PyTorch 是第一個 define-by-run 的深度學習框架,它與靜態圖框架(如 TensorFlow)的功能和性能相匹配,使其能很好地適合從標准卷積神經網路(convolutional network)到最瘋狂的強化學習(reinforcement learning)等思想。所以讓我們來看看 SPINN 的實現。

代碼

在開始構建網路之前,我需要設置一個數據載入器(data loader)。通過深度學習,模型可以通過數據樣本的批處理進行操作,通過並行化(parallelism)加快訓練,並在每一步都有一個更平滑的梯度變化。我想在這里可以做到這一點(稍後我將解釋上述堆棧操作過程如何進行批處理)。以下 Python 代碼使用內置於 PyTorch 的文本庫的系統來載入數據,它可以通過連接相似長度的數據樣本自動生成批處理。運行此代碼之後,train_iter、dev_iter 和 test_itercontain 循環遍歷訓練集、驗證集和測試集分塊 SNLI 的批處理。

from torchtext import data, datasets
TEXT = datasets.snli.ParsedTextField(lower=True)
TRANSITIONS = datasets.snli.ShiftReceField()
LABELS = data.Field(sequential=False)train, dev, test = datasets.SNLI.splits(
TEXT, TRANSITIONS, LABELS, wv_type='glove.42B')TEXT.build_vocab(train, dev, test)
train_iter, dev_iter, test_iter = data.BucketIterator.splits(
(train, dev, test), batch_size=64)

你可以在 train.py中找到設置訓練循環和准確性(accuracy)測量的其餘代碼。讓我們繼續。如上所述,SPINN 編碼器包含參數化的 Rece 層和可選的循環跟蹤器來跟蹤句子上下文,以便在每次網路讀取單詞或應用 Rece 時更新隱藏狀態;以下代碼代表的是,創建一個 SPINN 只是意味著創建這兩個子模塊(我們將很快看到它們的代碼),並將它們放在一個容器中以供稍後使用。

import torchfrom torch import nn
# subclass the Mole class from PyTorch』s neural network package
class SPINN(nn.Mole):
def __init__(self, config):
super(SPINN, self).__init__()
self.config = config self.rece = Rece(config.d_hidden, config.d_tracker)
if config.d_tracker is not None:
self.tracker = Tracker(config.d_hidden, config.d_tracker)

當創建模型時,SPINN.__init__ 被調用了一次;它分配和初始化參數,但不執行任何神經網路操作或構建任何類型的計算圖。在每個新的批處理數據上運行的代碼由 SPINN.forward 方法定義,它是用戶實現的方法中用於定義模型向前過程的標准 PyTorch 名稱。上面描述的是堆棧操作演算法的一個有效實現,即在一般 Python 中,在一批緩沖區和堆棧上運行,每一個例子都對應一個緩沖區和堆棧。我使用轉移矩陣(transition)包含的「shift」和「rece」操作集合進行迭代,運行 Tracker(如果存在),並遍歷批處理中的每個樣本來應用「shift」操作(如果請求),或將其添加到需要「rece」操作的樣本列表中。然後在該列表中的所有樣本上運行 Rece 層,並將結果推送回到它們各自的堆棧。

def forward(self, buffers, transitions):
# The input comes in as a single tensor of word embeddings;
# I need it to be a list of stacks, one for each example in
# the batch, that we can pop from independently. The words in
# each example have already been reversed, so that they can
# be read from left to right by popping from the end of each
# list; they have also been prefixed with a null value.
buffers = [list(torch.split(b.squeeze(1), 1, 0))
for b in torch.split(buffers, 1, 1)]
# we also need two null values at the bottom of each stack,
# so we can from the nulls in the input; these nulls
# are all needed so that the tracker can run even if the
# buffer or stack is empty
stacks = [[buf[0], buf[0]] for buf in buffers]
if hasattr(self, 'tracker'):
self.tracker.reset_state()
for trans_batch in transitions:
if hasattr(self, 'tracker'):
# I described the Tracker earlier as taking 4
# arguments (context_t, b, s1, s2), but here I
# provide the stack contents as a single argument
# while storing the context inside the Tracker
# object itself.
tracker_states, _ = self.tracker(buffers, stacks)
else:
tracker_states = itertools.repeat(None)
lefts, rights, trackings = [], [], []
batch = zip(trans_batch, buffers, stacks, tracker_states)
for transition, buf, stack, tracking in batch:
if transition == SHIFT:
stack.append(buf.pop())
elif transition == REDUCE:
rights.append(stack.pop())
lefts.append(stack.pop())
trackings.append(tracking)
if rights:
reced = iter(self.rece(lefts, rights, trackings))
for transition, stack in zip(trans_batch, stacks):
if transition == REDUCE:
stack.append(next(reced))
return [stack.pop() for stack in stacks]

在調用 self.tracker 或 self.rece 時分別運行 Tracker 或 Rece 子模塊的向前方法,該方法需要在樣本列表上應用前向操作。在主函數的向前方法中,在不同的樣本上進行獨立的操作是有意義的,即為批處理中每個樣本提供分離的緩沖區和堆棧,因為所有受益於批處理執行的重度使用數學和需要 GPU 加速的操作都在 Tracker 和 Rece 中進行。為了更干凈地編寫這些函數,我將使用一些 helper(稍後將定義)將這些樣本列表轉化成批處理張量(tensor),反之亦然。

我希望 Rece 模塊自動批處理其參數以加速計算,然後解批處理(unbatch)它們,以便可以單獨推送和彈出。用於將每對左、右子短語表達組合成父短語(parent phrase)的實際組合函數是 TreeLSTM,它是普通循環神經網路單元 LSTM 的變型。該組合函數要求每個子短語的狀態實際上由兩個張量組成,一個隱藏狀態 h 和一個存儲單元(memory cell)狀態 c,而函數是使用在子短語的隱藏狀態操作的兩個線性層(nn.Linear)和將線性層的結果與子短語的存儲單元狀態相結合的非線性組合函數 tree_lstm。在 SPINN 中,這種方式通過添加在 Tracker 的隱藏狀態下運行的第 3 個線性層進行擴展。

圖 2:TreeLSTM 組合函數增加了第 3 個輸入(x,在這種情況下為 Tracker 狀態)。在下面所示的 PyTorch 實現中,5 組的三種線性變換(由藍色、黑色和紅色箭頭的三元組表示)組合為三個 nn.Linear 模塊,而 tree_lstm 函數執行位於框內的所有計算。圖來自 Chen et al. (2016)。

G. 如何有效的區分和理解RNN循環神經網路與遞歸神經網路

NN建立在與FNN相同的計算單元上,以犧牲計算的功能性為代價來簡化這一訓練過程,其中信息從輸入單元向輸出單元單向流動,在這些連通模式中並不存在不定向的循環。FNN是建立在層面之上。
因此,為了創建更為強大的計算系統,我們允許RNN打破這些人為設定強加性質的規定,神經元在實際中是允許彼此相連的,兩者之間區別在於:組成這些神經元相互關聯的架構有所不同,我們還是加入了這些限制條件。事實上:RNN無需在層面之間構建,同時定向循環也會出現。盡管大腦的神經元確實在層面之間的連接上包含有不定向循環

H. 神經網路演算法原理

一共有四種演算法及原理,如下所示:

1、自適應諧振理論(ART)網路

自適應諧振理論(ART)網路具有不同的方案。一個ART-1網路含有兩層一個輸入層和一個輸出層。這兩層完全互連,該連接沿著正向(自底向上)和反饋(自頂向下)兩個方向進行。

2、學習矢量量化(LVQ)網路

學習矢量量化(LVQ)網路,它由三層神經元組成,即輸入轉換層、隱含層和輸出層。該網路在輸入層與隱含層之間為完全連接,而在隱含層與輸出層之間為部分連接,每個輸出神經元與隱含神經元的不同組相連接。

3、Kohonen網路

Kohonen網路或自組織特徵映射網路含有兩層,一個輸入緩沖層用於接收輸入模式,另一個為輸出層,輸出層的神經元一般按正則二維陣列排列,每個輸出神經元連接至所有輸入神經元。連接權值形成與已知輸出神經元相連的參考矢量的分量。

4、Hopfield網路

Hopfield網路是一種典型的遞歸網路,這種網路通常只接受二進制輸入(0或1)以及雙極輸入(+1或-1)。它含有一個單層神經元,每個神經元與所有其他神經元連接,形成遞歸結構。

(8)遞歸神經網路具有設置擴展閱讀:

人工神經網路演算法的歷史背景:

該演算法系統是 20 世紀 40 年代後出現的。它是由眾多的神經元可調的連接權值連接而成,具有大規模並行處理、分布式信息存儲、良好的自組織自學習能力等特點。

BP演算法又稱為誤差反向傳播演算法,是人工神經網路中的一種監督式的學習演算法。BP 神經網路演算法在理論上可以逼近任意函數,基本的結構由非線性變化單元組成,具有很強的非線性映射能力。

而且網路的中間層數、各層的處理單元數及網路的學習系數等參數可根據具體情況設定,靈活性很大,在優化、信號處理與模式識別、智能控制、故障診斷等許 多領域都有著廣泛的應用前景。

I. 有哪些深度神經網路模型

目前經常使用的深度神經網路模型主要有卷積神經網路(CNN) 、遞歸神經網路(RNN)、深信度網路(DBN) 、深度自動編碼器(AutoEncoder) 和生成對抗網路(GAN) 等。

遞歸神經網路實際.上包含了兩種神經網路。一種是循環神經網路(Recurrent NeuralNetwork) ;另一種是結構遞歸神經網路(Recursive Neural Network),它使用相似的網路結構遞歸形成更加復雜的深度網路。RNN它們都可以處理有序列的問題,比如時間序列等且RNN有「記憶」能力,可以「模擬」數據間的依賴關系。卷積網路的精髓就是適合處理結構化數據。

關於深度神經網路模型的相關學習,推薦CDA數據師的相關課程,課程以項目調動學員數據挖掘實用能力的場景式教學為主,在講師設計的業務場景下由講師不斷提出業務問題,再由學員循序漸進思考並操作解決問題的過程中,幫助學員掌握真正過硬的解決業務問題的數據挖掘能力。這種教學方式能夠引發學員的獨立思考及主觀能動性,學員掌握的技能知識可以快速轉化為自身能夠靈活應用的技能,在面對不同場景時能夠自由發揮。點擊預約免費試聽課。

閱讀全文

與遞歸神經網路具有設置相關的資料

熱點內容
網路共享中心沒有網卡 瀏覽:521
電腦無法檢測到網路代理 瀏覽:1374
筆記本電腦一天會用多少流量 瀏覽:578
蘋果電腦整機轉移新機 瀏覽:1376
突然無法連接工作網路 瀏覽:1061
聯通網路怎麼設置才好 瀏覽:1224
小區網路電腦怎麼連接路由器 瀏覽:1036
p1108列印機網路共享 瀏覽:1212
怎麼調節台式電腦護眼 瀏覽:698
深圳天虹蘋果電腦 瀏覽:935
網路總是異常斷開 瀏覽:612
中級配置台式電腦 瀏覽:994
中國網路安全的戰士 瀏覽:630
同志網站在哪裡 瀏覽:1413
版觀看完整完結免費手機在線 瀏覽:1459
怎樣切換默認數據網路設置 瀏覽:1110
肯德基無線網無法訪問網路 瀏覽:1286
光纖貓怎麼連接不上網路 瀏覽:1476
神武3手游網路連接 瀏覽:965
局網列印機網路共享 瀏覽:1000