⑴ 卷積神經網路演算法是什麼
一維構築、二維構築、全卷積構築。
卷積神經網路(Convolutional Neural Networks, CNN)是一類包含卷積計算且具有深度結構的前饋神經網路(Feedforward Neural Networks),是深度學習(deep learning)的代表演算法之一。
卷積神經網路具有表徵學習(representation learning)能力,能夠按其階層結構對輸入信息進行平移不變分類(shift-invariant classification),因此也被稱為「平移不變人工神經網路(Shift-Invariant Artificial Neural Networks, SIANN)」。
卷積神經網路的連接性:
卷積神經網路中卷積層間的連接被稱為稀疏連接(sparse connection),即相比於前饋神經網路中的全連接,卷積層中的神經元僅與其相鄰層的部分,而非全部神經元相連。具體地,卷積神經網路第l層特徵圖中的任意一個像素(神經元)都僅是l-1層中卷積核所定義的感受野內的像素的線性組合。
卷積神經網路的稀疏連接具有正則化的效果,提高了網路結構的穩定性和泛化能力,避免過度擬合,同時,稀疏連接減少了權重參數的總量,有利於神經網路的快速學習,和在計算時減少內存開銷。
卷積神經網路中特徵圖同一通道內的所有像素共享一組卷積核權重系數,該性質被稱為權重共享(weight sharing)。權重共享將卷積神經網路和其它包含局部連接結構的神經網路相區分,後者雖然使用了稀疏連接,但不同連接的權重是不同的。權重共享和稀疏連接一樣,減少了卷積神經網路的參數總量,並具有正則化的效果。
在全連接網路視角下,卷積神經網路的稀疏連接和權重共享可以被視為兩個無限強的先驗(pirior),即一個隱含層神經元在其感受野之外的所有權重系數恆為0(但感受野可以在空間移動);且在一個通道內,所有神經元的權重系數相同。
⑵ 如何理解卷積神經網路中的權值共享
權值共享的通俗理解就是整張圖片或者整組feature map共用一個卷積核,卷積核在圖片上慢慢滑動,所以圖片上每個區域都是利用了卷積核內的參數,這就是權值共享。
⑶ 卷積神經網路
一般由卷積層,匯聚層,和全連接層交叉堆疊而成,使用反向傳播演算法進行訓練(反向傳播,再重新看一下)
卷積神經網路有三個結構上的特性:局部連接,權重共享以及子采樣
濾波器filter 卷積核convolution kernel
局部連接,其實就是根據時間,權重遞減 最後為0 參數就傳播不到遠處了
局部連接 乘以 濾波器 得特徵映射
互相關,是一個衡量兩個序列相關性的函數,
互相關和卷積的區別在於 卷積核僅僅是否進行翻轉,因此互相關也可以稱為 不翻轉卷積
使用卷積 是為了進行特徵抽取,卷積核 是否進行翻轉和其特徵抽取的能力無關。
當卷積核是可以學習的參數,卷積和互相關是等價的,因此,其實兩者差不多。
Tips:P是代表特徵映射
⑷ 人工智慧CNN卷積神經網路如何共享權值
首先權值共享就是濾波器共享,濾波器的參數是固定的,即是用相同的濾波器去掃一遍圖像,提取一次特徵特徵,得到feature map。在卷積網路中,學好了一個濾波器,就相當於掌握了一種特徵,這個濾波器在圖像中滑動,進行特徵提取,然後所有進行這樣操作的區域都會被採集到這種特徵,就好比上面的水平線。
⑸ 如何理解卷積神經網路中的權值共享
所謂的權值共享就是說,給一張輸入圖片,用一個filter去掃這張圖,filter裡面的數就叫權重,這張圖每個位置是被同樣的filter掃的,所以權重是一樣的,也就是共享。 這么說可能還不太明白,如果你能理解什麼叫全連接神經網路的話,那麼從一個盡量減少參數個數的角度去理解就可以了。 對於一張輸入圖片,大小為W*H,如果使用全連接網路,生成一張X*Y的feature map,需要W*H*X*Y個參數,如果原圖長寬是10^2級別的,而且XY大小和WH差不多的話,那麼這樣一層網路需要的參數個數是10^8~10^12級別。 這么多參數肯定是不行的,那麼我們就想辦法減少參數的個數對於輸出層feature map上的每一個像素,他與原圖片的每一個像素都有連接,每一個鏈接都需要一個參數。但注意到圖像一般都是局部相關的,那麼如果輸出層的每一個像素只和輸入層圖片的一個局部相連,那麼需要參數的個數就會大大減少。假設輸出層每個像素只與輸入圖片上F*F的一個小方塊有連接,也就是說輸出層的這個像素值,只是通過原圖的這個F*F的小方形中的像素值計算而來,那麼對於輸出層的每個像素,需要的參數個數就從原來的W*H減小到了F*F。如果對於原圖片的每一個F*F的方框都需要計算這樣一個輸出值,那麼需要的參數只是W*H*F*F,如果原圖長寬是10^2級別,而F在10以內的話,那麼需要的參數的個數只有10^5~10^6級別,相比於原來的10^8~10^12小了很多很多。
⑹ 如何理解人工智慧神經網路中的權值共享問題
權值(權重)共享這個詞是由LeNet5模型提出來的。以CNN為例,在對一張圖偏進行卷積的過程中,使用的是同一個卷積核的參數。比如一個3×3×1的卷積核,這個卷積核內9個的參數被整張圖共享,而不會因為圖像內位置的不同而改變卷積核內的權系數。說的再直白一些,就是用一個卷積核不改變其內權系數的情況下卷積處理整張圖片(當然CNN中每一層不會只有一個卷積核的,這樣說只是為了方便解釋而已)。
⑺ CNN基本運算元與操作
卷積神經網路 (Convolutional Neural Networks,CNN)是一種前饋神經網路。卷積神經網路是受生物學上感受野(Receptive Field)的機制而提出的。感受野主要是指聽覺系統、本體感覺系統和視覺系統中神經元的一些性質。比如在視覺神經系統中,一個神經元的感受野是指視網膜上的特定區域,只有這個區域內的刺激才能夠激活該神經元。
卷積神經網路有三個結構上的特性: 局部連接 , 權重共享 以及空間或時間上的 次采樣 。詳細介紹請見 卷積神經網路
1、卷積層 詳情參考 卷積層(Convolution Layer)
2、全連接層 詳情參考 全連接層 (Connected Layer) 作用:降維
3、Softmax Layer 詳情參考 Softmax Layer
4、 CNN池化
最大值池化 詳情參考 最大池化層(Maxpool Layer)
平局值池化 詳情參考 平均值池化
Golbal Average Pooling 詳情參考 Golbal Average Pooling
Spatial Pyramid Pooling 詳情參考 Spatial Pyramid Pooling
5、dropout layer:目的是為了防止CNN 過擬合,主要用於訓練過程,推理過程不需要 詳情參考 Dropout Layer
6、 激活函數 :線性激活函數與非線性激活函數
非線性激活函數,可以使神經網路隨意逼近復雜函數:Sigmoid、Tanh、ReLU
Sigmoid:詳情參考 Sigmoid
ReLU:詳情參考 ReLU
Tanh:詳情參考 Tanh
7、 loss函數
8、 梯度下降
⑻ 卷積神經網路權值共享怎麼體現的
⑼ 卷積神經網路卷積層算完數據超閾怎麼辦
、計算方法不同1、前饋神經網路:一種最簡單的神經網路,各神經元分層排列AI愛發貓 www.aifamao.com。每個神經元只與前一層的神經元相連。接收前一層的輸出,並輸出給下一層.各層間沒有反饋。
2、BP神經網路:是一種按照誤差逆向傳播演算法訓練的多層前饋神經網路。3、卷積神經網路:包含卷積計算且具有深度結構的前饋神經網路。
二、用途不同1、前饋神經網路:主要應用包括感知器網路、BP網路和RBF網路。
2、BP神經網路:(1)函數逼近:用輸入向量和相應的輸出向量訓練一個網路逼近一個函數;(2)模式識別:用一個待定的輸出向量將它與輸入向量聯系起來;(3)分類:把輸入向量所定義的合適方式進行分類;(4)數據壓縮:減少輸出向量維數以便於傳輸或存儲。
3、卷積神經網路:可應用於圖像識別、物體識別等計算機視覺、自然語言處理、物理學和遙感科學等領域。聯系:BP神經網路和卷積神經網路都屬於前饋神經網路,三者都屬於人工神經網路。因此,三者原理和結構相同。
三、作用不同1、前饋神經網路:結構簡單,應用廣泛,能夠以任意精度逼近任意連續函數及平方可積函數.而且可以精確實現任意有限訓練樣本集。2、BP神經網路:具有很強的非線性映射能力和柔性的網路結構。
網路的中間層數、各層的神經元個數可根據具體情況任意設定,並且隨著結構的差異其性能也有所不同。3、卷積神經網路:具有表徵學習能力,能夠按其階層結構對輸入信息進行平移不變分類。
(9)全卷積神經網路權重共享擴展閱讀:1、BP神經網路優劣勢BP神經網路無論在網路理論還是在性能方面已比較成熟。其突出優點就是具有很強的非線性映射能力和柔性的網路結構。
網路的中間層數、各層的神經元個數可根據具體情況任意設定,並且隨著結構的差異其性能也有所不同。但是BP神經網路也存在以下的一些主要缺陷。
①學習速度慢,即使是一個簡單的問題,一般也需要幾百次甚至上千次的學習才能收斂。②容易陷入局部極小值。③網路層數、神經元個數的選擇沒有相應的理論指導。④網路推廣能力有限。
2、人工神經網路的特點和優越性,主要表現在以下三個方面①具有自學習功能。
例如實現圖像識別時,只在先把許多不同的圖像樣板和對應的應識別的結果輸入人工神經網路,網路就會通過自學習功能,慢慢學會識別類似的圖像。自學習功能對於預測有特別重要的意義。
預期未來的人工神經網路計算機將為人類提供經濟預測、效益預測,其應用前途是很遠大的。②具有聯想存儲功能。用人工神經網路的反饋網路就可以實現這種聯想。③具有高速尋找優化解的能力。
尋找一個復雜問題的優化解,往往需要很大的計算量,利用一個針對某問題而設計的反饋型人工神經網路,發揮計算機的高速運算能力,可能很快找到優化解。
參考資料:網路—前饋神經網路網路—BP神經網路網路—卷積神經網路網路—人工神經網路。
卷積神經網路處理規格不同的圖片
用卷積神經網路處理 「圖」 結構數據應該怎麼辦
。
卷積神經網路有以下幾種應用可供研究:1、基於卷積網路的形狀識別物體的形狀是人的視覺系統分析和識別物體的基礎,幾何形狀是物體的本質特徵的表現,並具有平移、縮放和旋轉不變等特點,所以在模式識別領域,對於形狀的分析和識別具有十分重要的意義,而二維圖像作為三維圖像的特例以及組成部分,因此二維圖像的識別是三維圖像識別的基礎。
2、基於卷積網路的人臉檢測卷積神經網路與傳統的人臉檢測方法不同,它是通過直接作用於輸入樣本,用樣本來訓練網路並最終實現檢測任務的。
它是非參數型的人臉檢測方法,可以省去傳統方法中建模、參數估計以及參數檢驗、重建模型等的一系列復雜過程。本文針對圖像中任意大小、位置、姿勢、方向、膚色、面部表情和光照條件的人臉。
3、文字識別系統在經典的模式識別中,一般是事先提取特徵。提取諸多特徵後,要對這些特徵進行相關性分析,找到最能代表字元的特徵,去掉對分類無關和自相關的特徵。
然而,這些特徵的提取太過依賴人的經驗和主觀意識,提取到的特徵的不同對分類性能影響很大,甚至提取的特徵的順序也會影響最後的分類性能。同時,圖像預處理的好壞也會影響到提取的特徵。
卷積神經網路為什麼最後接一個全連接層
在常見的卷積神經網路的最後往往會出現一兩層全連接層,全連接一般會把卷積輸出的二維特徵圖(featuremap)轉化成(N*1)一維的一個向量全連接的目的是什麼呢?
因為傳統的端到到的卷積神經網路的輸出都是分類(一般都是一個概率值),也就是幾個類別的概率甚至就是一個數--類別號,那麼全連接層就是高度提純的特徵了,方便交給最後的分類器或者回歸。
但是全連接的參數實在是太多了,你想這張圖里就有20*12*12*100個參數,前面隨便一層卷積,假設卷積核是7*7的,厚度是64,那也才7*7*64,所以現在的趨勢是盡量避免全連接,目前主流的一個方法是全局平均值。
也就是最後那一層的featuremap(最後一層卷積的輸出結果),直接求平均值。有多少種分類就訓練多少層,這十個數字就是對應的概率或者叫置信度。
卷積神經網路是如何反向調整參數的?
卷積神經網路的模型問題? 50
。
怎麼又是你.....網路自然是搭建起來的啊,比如CNN,一層一層地建,如果你是用別人已經建好的網路,比如最簡單的LeNet-5,那麼Tensorflow中會直接提供你一個Net;但是如果你是自定義網路類型,那麼需要繼承nn.Noles,然後重新定義網路結構,封裝成一個Net,總結起來,模型是很多數學公式搭在一起,然鵝,數學公式是封裝好的,可以相互交流哈。
打開CSDN,閱讀體驗更佳
卷積神經網路的缺點是什麼?_土豆西瓜大芝麻的博客_卷積神經...
平移不變性 當我們說平移不變性時,我們意思是,稍微改變同一物體的朝向或位置,可能並不會激活那些識別該物體的神經元。 正如上圖所示,假如一個神經元是用來識別一隻貓的,其參數會隨著貓的位置和轉動的變化而變化。雖然數據擴增(data aug...
卷積神經網路存在的問題,卷積神經網路的卷積層_普通網友的博客-CSDN博 ...
對於無法完美解決的梯度消失問題,一個可能部分解決梯度消失問題的辦法是使用ReLU(RectifiedLinearUnit)激活函數,ReLU在卷積神經網路CNN中得到了廣泛的應用,在CNN中梯度消失似乎不再是問題。 那麼它是什麼樣子呢?其實很簡單,比我們前面提到的...
最新發布 影響深度卷積神經網路演算法的關鍵參數是網路結構
局部連接的概念參考局部感受域,即某個視神經元僅考慮某一個小區域的視覺輸入,因此相比普通神經網路的全連接層(下一層的某一個神經元需要與前一層的所有節點連接),卷積網路的某一個卷積層的所有節點只負責前層輸入的某一個區域(比如某個3*3的方塊)。卷積神經網路的連接性:卷積神經網路中卷積層間的連接被稱為稀疏連接(sparse connection),即相比於前饋神經網路中的全連接,卷積層中的神經元僅與其相鄰層的部分,而非全部神經元相連。權重共享和稀疏連接一樣,減少了卷積神經網路的參數總量,並具有正則化的效果。
繼續訪問
卷積神經網路難點梳理
目錄1 基本概念及原理1.1 基本概念1.2 基本原理2 卷積是怎麼「卷」的2.1 數學中的卷積2.2 CNN中的卷積3 損失函數是怎樣當好指揮官的4 梯度下降、反向傳播和顯卡參考內容 1 基本概念及原理 1.1 基本概念 概念名稱 目的 操作 示意圖 卷積(Convolution) 提取特徵 將圖像矩陣遍歷乘以卷積核矩陣並輸出 池化(Pooling) 降低數據量 對小塊矩陣中的所有數取平均(平均池化)或者取最大(最大池化)並只輸出一個值,再遍歷 激活(Activation) 對
繼續訪問
卷積神經網路的缺點_遼寧大學的博客_卷積神經網路的優缺點
1.做卷積神經網路需要將數據集歸一化。不同的尺寸混合在一起難以訓練。2.卷積神經網路沒有記憶功能。3.對圖像處理很友善,對視頻語音自然語言處理能力差...
關於CNN卷積神經網路的問題_麥格芬230的博客
將卷積神經網路CNN應用到文本分類任務,利用多個不同大小的卷積核來提取句子中的關鍵信息(類似於多窗口大小的N-gram),從而能夠更好地捕捉局部相關性。 4.在情感分析任務中,TextCNN的卷積核,卷積的是哪些向量呢?卷積卷的是這些向量的什麼...
深入淺出——搞懂卷積神經網路的過擬合、梯度彌散、batchsize的影響的問題(二)
過擬合 梯度彌散 batchsize 不平衡數據集
繼續訪問
cnn卷積神經網路反向傳播,卷積神經網路維度變化
深度學習框架,尤其是基於人工神經網路的框架可以追溯到1980年福島邦彥提出的新認知機[2],而人工神經網路的歷史更為久遠。1989年,燕樂存(YannLeCun)等人開始將1974年提出的標准反向傳播演算法[3]應用於深度神經網路,這一網路被用於手寫郵政編碼識別。盡管演算法可以成功執行,但計算代價非常巨大,神經網路的訓練時間達到了3天,因而無法投入實際使用[4]。...
繼續訪問
卷積神經網路CNN特點功能及其缺陷_一隻不出息的程序員的博客...
卷積:簡單地說,圖像經過平移,相應的特徵圖上的表達也是平移的。 下圖只是一個為了說明這個問題的例子。輸入圖像的左下角有一個人臉,經過卷積,人臉的特徵(眼睛,鼻子)也位於特徵圖的左下角。 在神經網路中,卷積被定義為不同位置的特徵...
記錄 訓練卷積神經網路時遇到的問題_後知後覺w的博客
記錄 訓練卷積神經網路時遇到的問題 問題1、softmax分類的loss最後會停在0.6931這個值 原因分析:在分類層使用了keras.layers.Lambda,導致分類器沒有可訓練的參數,因此沒有分類能力,即,無論是否為object,softmax的輸出都是0.5,根據loss...
都說卷積神經網路是個好東西,但它有什麼弊端呢?
圖片來源:Mathworks翻譯 | 王赫編輯 | Donna2012年,三位深度學習的「巨人」Alex Krizhevsky, Ilya Sutskever 和 Geoffrey Hinton,聯合發表了題為 「ImageNet Classification with Deep Convolutional Networks」 的論文。自此,卷積神經網路( CNNs )就成了一個萬人追捧的工具,並
繼續訪問
卷積神經網路—全連接層
卷積神經網路—全連接層 全連接層 全連接層與卷積層 全連接層與GAP(全局平均池化層) [1] https://blog.csdn.net/Touch_Dream/article/details/79775786 [2] https://www.cnblogs.com/zongfa/p/9048680.html [3] https://www.hu.com/question/410379...
繼續訪問
五、卷積神經網路CNN5(卷積相關問題2)_滿滿myno的博客
輸出深度(通道)與卷積核(過濾器)的個數相等。 激活函數通常放在卷積神經網路的那個操作之後 通常放在卷積層之後。 如何理解最大池化層有幾分縮小 池化層:對輸入的特徵圖進行壓縮,一方面使特徵圖變小,簡化網路計算復雜度;一方面 ...
卷積神經網路的缺點
(1)效果好是因為仿生學,缺點是無法擴展到平面視覺以外的地方吧。 (2)缺點一:實現比較復雜。缺點二:訓練所需時間比較久。 (3)不是單一演算法,不同的任務需要單獨訓練 (4)世界(物理空間、解空間等)是連續且局部平坦的+規律/特徵具有時空局部平移不變性,即世界存在局部平移不變的統計規律 舉個例子:在地球表面某局部畫三角形,發現內角和總是等於180,並且隨便跑到地球的哪裡都是如此,但是如果你
繼續訪問
神經網路 卷積神經網路,卷積神經網路常見問題
卷積神經網路(ConvolutionalNeuralNetwork,CNN)是一種前饋神經網路,它的人工神經元可以響應一部分覆蓋范圍內的周圍單元,對於大型圖像處理有出色表現。[1] 它包括卷積層(alternatingconvolutionallayer)和池層(poolinglayer)。卷積神經網路是近年發展起來,並引起廣泛重視的一種高效識別方法。...
繼續訪問
卷積神經網路(CNN)入門常見問題解答
目錄 什麼是神經元? 激活函數的作用? 什麼是神經網路? CNN怎麼進行識別? 計算機如何識別圖像? CNN如何更准確人性化的對比圖像? 什麼是卷積操作? 感謝作者: CNN筆記:通俗理解卷積神經網路_v_JULY_v的博客-CSDN博客_卷積神經網路通俗理解 什麼是神經元? 神經網路由大量的神經元相互連接而成。每個神經元接受線性組合的輸入後,最開始只是簡單的線性加權,後來給每個神經元加上了非線性的激活函數,從而進行非線性變換後輸出。每兩個神經元之間的連接代表加權值,稱...
繼續訪問
卷積神經網路——解決參數太多問題
一、全連接網路的局限性 圖像變大導致色彩書變多,不好解決 不便處理高維數據 對於比較復雜的高維數據,如果按照全連接的方法,則只能通過增加節點、增加層數的方式來解決。增加節點會引起參數過多的問題。由於隱藏層神經網路使用的是sigmod或tanh激活函數,其反向傳播的有效成層數只能在4~6層左右。 二、理解卷積神經網路 三、網路結構 卷積神經網路的結構與全連接網路相比復雜很多。它的網路結構主要包括卷積層、池化層。細節又可以分為濾波器、步長、卷積操作、池化操作。 1.網路結構描述 對於一般的圖片會使用多個卷積
繼續訪問
人工智慧深度學習卷積神經網路入門
<span style="font-size:16px;">"java大數據人工智慧培訓學校全套教材"系列課程由1000集視頻構成,基本就 是1)時下流行的java培訓學校主流內部教材,2)和市面上培訓學校的通 行的課程體系幾乎一樣。所以這套課程都能自己學下來,等於上了培訓學校一次,完全可以找個java工程師的工作了。</span><br /> <br /> <span style="font-size:14px;"><span style="font-size:16px;"> 通過學習卷積神經網路概述,為什麼引入神經網路來做識別,判斷,預測,</span><strong><span style="font-size:16px;">訓練模型</span></strong><span style="font-size:16px;">,</span><strong><span style="font-size:16px;">激活函數</span></strong><span style="font-size:16px;">,</span><strong><span style="font-size:16px;">sigmoid激活函數</span></strong><span style="font-size:16px;">,</span><strong><span style="font-size:16px;">導數和切線</span></strong><span style="font-size:16px;">,</span><strong><span style="font-size:16px;">sigmoid激活函數如何求導</span></strong><span style="font-size:16px;">,</span><strong><span style="font-size:16px;">鏈式法則</span></strong><span style="font-size:16px;">,</span><strong><span style="font-size:16px;">梯度</span></strong><span style="font-size:16px;">,</span><strong><span style="font-size:16px;">梯度下降法與delta法則</span></strong><span style="font-size:16px;">,</span><strong><span style="font-size:16px;">BP(back propagation)誤差逆傳播神經網路</span></strong><span style="font-size:16px;">,</span><strong><span style="font-size:16px;">卷積到底有什麼作用?如何做到特徵提取</span></strong><span style="font-size:16px;">,</span><strong><span style="font-size:16px;">池化的名字由來</span></strong><span style="font-size:16px;">,</span><strong><strong><span style="font-size:16px;">dropout</span></strong></strong><span style="font-size:16px;">,</span><strong><span style="font-size:16px;">Anaconda Prompt的用法</span></strong><span style="font-size:16px;">,</span><strong><span style="font-size:16px;">Jupyter notebook的用法</span></strong><span style="font-size:16px;">,</span><strong><span style="font-size:16px;">Spyder的用法</span></strong><span style="font-size:16px;">,</span><strong><span style="font-size:16px;">建立安裝Tensorflow所需的Anaconda虛擬環境</span></strong><span style="font-size:16px;">,</span><strong><span style="font-size:16px;">如何在Anaconda虛擬環境安裝Tensorflow與Keras</span></strong><span style="font-size:16px;">概念等讓大家對人工智慧,卷積神經網路快速入門。</span></span><br /> <br /> <span style="font-size:16px;">課程特色:專業細致,偏案例,理論強。</span><br /> <br /> <span style="font-size:14px;"><span style="font-size:16px;">課程軟體使用:</span><span style="font-size:14px;"><strong><span style="font-size:16px;">Anaconda,</span><span style="font-size:14px;"><strong><span><span style="font-size:16px;">Spyder,</span><span style="font-size:16px;"><strong><span style="font-size:16px;">Jupyter notebook</span></strong></span></span></strong></span></strong></span></span><br /> <br /> <span style="font-size:16px;">重要聲明:</span><br /> <br /> <span style="font-size:16px;">1) 如果感覺噪音大,可以選擇不用耳機,加音箱或用電腦原聲 </span><br /> <br /> <span style="font-size:14px;"><span style="font-size:16px;">2) 既然我們的名字叫</span><span style="font-size:16px;">人工智慧深度學習卷積神經網路入門</span><span style="font-size:16px;">,這個課程的特點就在於成本最低的, 讓你最快速的,最容易的入門。</span><span style="font-size:16px;">人工智慧深度學習卷積神經網路入門</span><span style="font-size:16px;">的最大的難點在於入門入不了,從而最終放棄。俗話說師傅領進門,修行在個人。只要入了門了,後面的事都好辦。選課前,務必注意本章的學習目標和內容。想學更多,注意後邊的課程。</span></span>
繼續訪問
python卷積神經網路回歸預測_回歸[keras]的一維卷積神經網路,做
在上一篇博客里我介紹了如何利用keras對一個給定的數據集來完成多分類任務。100%的分類准確度驗證了分類模型的可行性和數據集的准確度。在這篇博客當中我將利用一個稍加修改的數據集來完成線性回歸任務。相比較以往的線性回歸處理方式,我認為使用神經網路實現線性回歸要簡單和准確得多。數據集大小仍然是247*900,不同的是數據集的第247位變成了濕度特徵的真實濕度值。不同於分類演算法得到的決策面,回歸演算法得...
繼續訪問
卷積神經網路之全連接層
大多數內容來源於 :卷積神經網路中的全連接層 全連接層的作用是: 連接所有的特徵,將輸出值送給分類器 (如softmax分類器),其將卷積輸出的二維特徵圖轉化成 (N * 1)一維的一個向量。 最後的兩列小圓球就是兩個全連接層,在最後一層卷積結束後,又進行了一次池化操作,輸出了20個 12*12 的圖像(20指最後一層的厚度),然後通過了一個全連接層變成了 1*100 的向量(第一個全連接層神...
繼續訪問
人工神經網路的功能特點,神經網路的優缺點
此時,網路學習了過多的樣本細節,而不能反映樣本內含的規律由於BP演算法本質上為梯度下降法,而它所要優化的目標函數又非常復雜,因此,必然會出現「鋸齒形現象」,這使得BP演算法低效;多層前向BP網路的問題:從數學角度看,BP演算法為一種局部搜索的優化方法,但它要解決的問題為求解復雜非線性函數的全局極值,因此,演算法很有可能陷入局部極值,使訓練失敗;例如實現圖像識別時,只在先把許多不同的圖像樣板和對應的應識別的結果輸入人工神經網路,網路就會通過自學習功能,慢慢學會識別類似的圖像。第三,具有高速尋找優化解的能力。...
繼續訪問
【Keras】卷積神經網路數據回歸預測實戰
基於卷積神經網路的數據回歸預測
繼續訪問
熱門推薦 反向傳播演算法(過程及公式推導)
反向傳播演算法(Backpropagation)是目前用來訓練人工神經網路(Artificial Neural Network,ANN)的最常用且最有效的演算法。
繼續訪問
深度學習---卷積神經網路解決分類與回歸問題
一、CNN神經網路的發展史: Lenet,1986年 Alexnet,2012年 2012年,Imagenet比賽冠軍的model——Alexnet [2](以第一作者alex命名),AlexNet 是一種典型的 convolutional neural network,它由5層 convolutional layer,2層 fully connected layer,和最後一層 label layer (1000個node, 每個node代表ImageNet中的一個類別) 組成 GoogleNet
繼續訪問
深度學習之卷積神經網路CNN詳細
計算機視覺、自然語言處理等領域(圖像分類、圖像分割、圖像檢測、文本
繼續訪問
一文讓你徹底了解卷積神經網路
目錄 卷積層 直觀理解卷積 卷積計算流程 計算過程: 思考: 池化層(PoolingLayer) 卷積神經網路的組成 前向傳播與反向傳播 卷積神經網路(Convolutional Neural Network,CNN)是一種前饋神經網路,它的人工神經元可以響應一部分覆蓋范圍內的周圍單元,對於大型圖像處理有出
⑽ 卷積神經網路
關於花書中卷積網路的筆記記錄於 https://www.jianshu.com/p/5a3c90ea0807 。
卷積神經網路(Convolutional Neural Network,CNN或ConvNet)是一種具有 局部連接、權重共享 等特性的深層前饋神經網路。卷積神經網路是受生物學上感受野的機制而提出。 感受野(Receptive Field) 主要是指聽覺、視覺等神經系統中一些神經元的特性,即 神經元只接受其所支配的刺激區域內的信號 。
卷積神經網路最早是主要用來處理圖像信息。如果用全連接前饋網路來處理圖像時,會存在以下兩個問題:
目前的卷積神經網路一般是由卷積層、匯聚層和全連接層交叉堆疊而成的前饋神經網路,使用反向傳播演算法進行訓練。 卷積神經網路有三個結構上的特性:局部連接,權重共享以及匯聚 。這些特性使卷積神經網路具有一定程度上的平移、縮放和旋轉不變性。
卷積(Convolution)是分析數學中一種重要的運算。在信號處理或圖像處理中,經常使用一維或二維卷積。
一維卷積經常用在信號處理中,用於計算信號的延遲累積。假設一個信號發生器每個時刻t 產生一個信號 ,其信息的衰減率為 ,即在 個時間步長後,信息為原來的 倍。假設 ,那麼在時刻t收到的信號 為當前時刻產生的信息和以前時刻延遲信息的疊加:
我們把 稱為 濾波器(Filter)或卷積核(Convolution Kernel) 。假設濾波器長度為 ,它和一個信號序列 的卷積為:
信號序列 和濾波器 的卷積定義為:
一般情況下濾波器的長度 遠小於信號序列長度 ,下圖給出一個一維卷積示例,濾波器為 :
二維卷積經常用在圖像處理中。因為圖像為一個兩維結構,所以需要將一維卷積進行擴展。給定一個圖像 和濾波器 ,其卷積為:
下圖給出一個二維卷積示例:
注意這里的卷積運算並不是在圖像中框定卷積核大小的方框並將各像素值與卷積核各個元素相乘並加和,而是先把卷積核旋轉180度,再做上述運算。
在圖像處理中,卷積經常作為特徵提取的有效方法。一幅圖像在經過卷積操作後得到結果稱為 特徵映射(Feature Map) 。
最上面的濾波器是常用的高斯濾波器,可以用來對圖像進行 平滑去噪 ;中間和最下面的過濾器可以用來 提取邊緣特徵 。
在機器學習和圖像處理領域,卷積的主要功能是在一個圖像(或某種特徵)上滑動一個卷積核(即濾波器),通過卷積操作得到一組新的特徵。在計算卷積的過程中,需要進行卷積核翻轉(即上文提到的旋轉180度)。 在具體實現上,一般會以互相關操作來代替卷積,從而會減少一些不必要的操作或開銷。
互相關(Cross-Correlation)是一個衡量兩個序列相關性的函數,通常是用滑動窗口的點積計算來實現 。給定一個圖像 和卷積核 ,它們的互相關為:
互相關和卷積的區別僅在於卷積核是否進行翻轉。因此互相關也可以稱為不翻轉卷積 。當卷積核是可學習的參數時,卷積和互相關是等價的。因此,為了實現上(或描述上)的方便起見,我們用互相關來代替卷積。事實上,很多深度學習工具中卷積操作其實都是互相關操作。
在卷積的標準定義基礎上,還可以引入濾波器的 滑動步長 和 零填充 來增加卷積多樣性,更靈活地進行特徵抽取。
濾波器的步長(Stride)是指濾波器在滑動時的時間間隔。
零填充(Zero Padding)是在輸入向量兩端進行補零。
假設卷積層的輸入神經元個數為 ,卷積大小為 ,步長為 ,神經元兩端各填補 個零,那麼該卷積層的神經元數量為 。
一般常用的卷積有以下三類:
因為卷積網路的訓練也是基於反向傳播演算法,因此我們重點關注卷積的導數性質:
假設 。
, , 。函數 為一個標量函數。
則由 有:
可以看出, 關於 的偏導數為 和 的卷積 :
同理得到:
當 或 時, ,即相當於對 進行 的零填充。從而 關於 的偏導數為 和 的寬卷積 。
用互相關的「卷積」表示,即為(注意 寬卷積運算具有交換性性質 ):
在全連接前饋神經網路中,如果第 層有 個神經元,第 層有 個神經元,連接邊有 個,也就是權重矩陣有 個參數。當 和 都很大時,權重矩陣的參數非常多,訓練的效率會非常低。
如果採用卷積來代替全連接,第 層的凈輸入 為第 層活性值 和濾波器 的卷積,即:
根據卷積的定義,卷積層有兩個很重要的性質:
由於局部連接和權重共享,卷積層的參數只有一個m維的權重 和1維的偏置 ,共 個參數。參數個數和神經元的數量無關。此外,第 層的神經元個數不是任意選擇的,而是滿足 。
卷積層的作用是提取一個局部區域的特徵,不同的卷積核相當於不同的特徵提取器。
特徵映射(Feature Map)為一幅圖像(或其它特徵映射)在經過卷積提取到的特徵,每個特徵映射可以作為一類抽取的圖像特徵。 為了提高卷積網路的表示能力,可以在每一層使用多個不同的特徵映射,以更好地表示圖像的特徵。
在輸入層,特徵映射就是圖像本身。如果是灰度圖像,就是有一個特徵映射,深度 ;如果是彩色圖像,分別有RGB三個顏色通道的特徵映射,深度 。
不失一般性,假設一個卷積層的結構如下:
為了計算輸出特徵映射 ,用卷積核 分別對輸入特徵映射 進行卷積,然後將卷積結果相加,並加上一個標量偏置 得到卷積層的凈輸入 再經過非線性激活函數後得到輸出特徵映射 。
在輸入為 ,輸出為 的卷積層中,每個輸出特徵映射都需要 個濾波器以及一個偏置。假設每個濾波器的大小為 ,那麼共需要 個參數。
匯聚層(Pooling Layer)也叫子采樣層(Subsampling Layer),其作用是進行特徵選擇,降低特徵數量,並從而減少參數數量。
常用的匯聚函數有兩種:
其中 為區域 內每個神經元的激活值。
可以看出,匯聚層不但可以有效地減少神經元的數量,還可以使得網路對一些小的局部形態改變保持不變性,並擁有更大的感受野。
典型的匯聚層是將每個特徵映射劃分為 大小的不重疊區域,然後使用最大匯聚的方式進行下采樣。匯聚層也可以看做是一個特殊的卷積層,卷積核大小為 ,步長為 ,卷積核為 函數或 函數。過大的采樣區域會急劇減少神經元的數量,會造成過多的信息損失。
一個典型的卷積網路是由卷積層、匯聚層、全連接層交叉堆疊而成。
目前常用卷積網路結構如圖所示,一個卷積塊為連續 個卷積層和 個匯聚層( 通常設置為 , 為 或 )。一個卷積網路中可以堆疊 個連續的卷積塊,然後在後面接著 個全連接層( 的取值區間比較大,比如 或者更大; 一般為 )。
目前,整個網路結構 趨向於使用更小的卷積核(比如 和 )以及更深的結構(比如層數大於50) 。此外,由於卷積的操作性越來越靈活(比如不同的步長),匯聚層的作用變得也越來越小,因此目前比較流行的卷積網路中, 匯聚層的比例也逐漸降低,趨向於全卷積網路 。
在全連接前饋神經網路中,梯度主要通過每一層的誤差項 進行反向傳播,並進一步計算每層參數的梯度。在卷積神經網路中,主要有兩種不同功能的神經層:卷積層和匯聚層。而參數為卷積核以及偏置,因此 只需要計算卷積層中參數的梯度。
不失一般性,第 層為卷積層,第 層的輸入特徵映射為 ,通過卷積計算得到第 層的特徵映射凈輸入 ,第 層的第 個特徵映射凈輸入
由 得:
同理可得,損失函數關於第 層的第 個偏置 的偏導數為:
在卷積網路中,每層參數的梯度依賴其所在層的誤差項 。
卷積層和匯聚層中,誤差項的計算有所不同,因此我們分別計算其誤差項。
第 層的第 個特徵映射的誤差項 的具體推導過程如下:
其中 為第 層使用的激活函數導數, 為上采樣函數(upsampling),與匯聚層中使用的下采樣操作剛好相反。如果下采樣是最大匯聚(max pooling),誤差項 中每個值會直接傳遞到上一層對應區域中的最大值所對應的神經元,該區域中其它神經元的誤差項的都設為0。如果下采樣是平均匯聚(meanpooling),誤差項 中每個值會被平均分配到上一層對應區域中的所有神經元上。
第 層的第 個特徵映射的誤差項 的具體推導過程如下:
其中 為寬卷積。
LeNet-5雖然提出的時間比較早,但是是一個非常成功的神經網路模型。基於LeNet-5 的手寫數字識別系統在90年代被美國很多銀行使用,用來識別支票上面的手寫數字。LeNet-5 的網路結構如圖:
不計輸入層,LeNet-5共有7層,每一層的結構為:
AlexNet是第一個現代深度卷積網路模型,其首次使用了很多現代深度卷積網路的一些技術方法,比如採用了ReLU作為非線性激活函數,使用Dropout防止過擬合,使用數據增強來提高模型准確率等。AlexNet 贏得了2012 年ImageNet 圖像分類競賽的冠軍。
AlexNet的結構如圖,包括5個卷積層、3個全連接層和1個softmax層。因為網路規模超出了當時的單個GPU的內存限制,AlexNet 將網路拆為兩半,分別放在兩個GPU上,GPU間只在某些層(比如第3層)進行通訊。
AlexNet的具體結構如下:
在卷積網路中,如何設置卷積層的卷積核大小是一個十分關鍵的問題。 在Inception網路中,一個卷積層包含多個不同大小的卷積操作,稱為Inception模塊。Inception網路是由有多個inception模塊和少量的匯聚層堆疊而成 。
v1版本的Inception模塊,採用了4組平行的特徵抽取方式,分別為1×1、3× 3、5×5的卷積和3×3的最大匯聚。同時,為了提高計算效率,減少參數數量,Inception模塊在進行3×3、5×5的卷積之前、3×3的最大匯聚之後,進行一次1×1的卷積來減少特徵映射的深度。如果輸入特徵映射之間存在冗餘信息, 1×1的卷積相當於先進行一次特徵抽取 。