Ⅰ 計算機網路的分層體系結構
第一層:物理層(PhysicalLayer),規定通信設備的機械的、電氣的、功能的和過程的特性,用以建立、維護和拆除物理鏈路連接。具體地講,機械特性規定了網路連接時所需接插件的規格尺寸、引腳數量和排列情況等;電氣特性規定了在物理連接上傳輸bit流時線路上信號電平的大小、阻抗匹配、傳輸速率距離限制等;功能特性是指對各個信號先分配確切的信號含義,即定義了DTE和DCE之間各個線路的功能;規程特性定義了利用信號線進行bit流傳輸的一組操作規程,是指在物理連接的建立、維護、交換信息是,DTE和DCE雙放在各電路上的動作系列。
在這一層,數據的單位稱為比特(bit)。
屬於物理層定義的典型規范代表包括:EIA/TIA RS-232、EIA/TIA RS-449、V.35、RJ-45等。
第二層:數據鏈路層(DataLinkLayer):在物理層提供比特流服務的基礎上,建立相鄰結點之間的數據鏈路,通過差錯控制提供數據幀(Frame)在信道上無差錯的傳輸,並進行各電路上的動作系列。
數據鏈路層在不可靠的物理介質上提供可靠的傳輸。該層的作用包括:物理地址定址、數據的成幀、流量控制、數據的檢錯、重發等。
在這一層,數據的單位稱為幀(frame)。
數據鏈路層協議的代表包括:SDLC、HDLC、PPP、STP、幀中繼等。
第三層是網路層(Network layer)
在計算機網路中進行通信的兩個計算機之間可能會經過很多個數據鏈路,也可能還要經過很多通信子網。網路層的任務就是選擇合適的網間路由和交換結點, 確保數據及時傳送。網路層將數據鏈路層提供的幀組成數據包,包中封裝有網路層包頭,其中含有邏輯地址信息- -源站點和目的站點地址的網路地址。
如果你在談論一個IP地址,那麼你是在處理第3層的問題,這是「數據包」問題,而不是第2層的「幀」。IP是第3層問題的一部分,此外還有一些路由協議和地址解析協議(ARP)。有關路由的一切事情都在第3層處理。地址解析和路由是3層的重要目的。網路層還可以實現擁塞控制、網際互連等功能。
在這一層,數據的單位稱為數據包(packet)。
網路層協議的代表包括:IP、IPX、RIP、OSPF等。
第四層是處理信息的傳輸層(Transport layer)。第4層的數據單元也稱作數據包(packets)。但是,當你談論TCP等具體的協議時又有特殊的叫法,TCP的數據單元稱為段(segments)而UDP協議的數據單元稱為「數據報(datagrams)」。這個層負責獲取全部信息,因此,它必須跟蹤數據單元碎片、亂序到達的數據包和其它在傳輸過程中可能發生的危險。第4層為上層提供端到端(最終用戶到最終用戶)的透明的、可靠的數據傳輸服務。所為透明的傳輸是指在通信過程中傳輸層對上層屏蔽了通信傳輸系統的具體細節。
傳輸層協議的代表包括:TCP、UDP、SPX等。
第五層是會話層(Session layer)
這一層也可以稱為會晤層或對話層,在會話層及以上的高層次中,數據傳送的單位不再另外命名,統稱為報文。會話層不參與具體的傳輸,它提供包括訪問驗證和會話管理在內的建立和維護應用之間通信的機制。如伺服器驗證用戶登錄便是由會話層完成的。
第六層是表示層(Presentation layer)
這一層主要解決用戶信息的語法表示問題。它將欲交換的數據從適合於某一用戶的抽象語法,轉換為適合於OSI系統內部使用的傳送語法。即提供格式化的表示和轉換數據服務。數據的壓縮和解壓縮, 加密和解密等工作都由表示層負責。
第七層應用層(Application layer),應用層為操作系統或網路應用程序提供訪問網路服務的介面。
應用層協議的代表包括:Telnet、FTP、HTTP、SNMP等。
Ⅱ 網路體系結構為什麼要採用分層次的結構試舉出一些與分層體系結構的思想相似的日常生活
網路體系結構要採用分層次的結構是因為分層有好處。與分層體系結構的思想相似的日常生活有郵政系統,物流系統。
分層的好處:
1、各層之間是獨立的。某一層可以使用其下一層提供的服務而不需要知道服務是如何實現的。
2、靈活性好。當某一層發生變化時,只要其介面關系不變,則這層以上或以下的各層均不受影響。
3、結構上可分割開。各層可以採用最合適的技術來實現。
4、易於實現和維護。
5、能促進標准化工作。
網路體系結構特點:
1、網路體系結構具有適用性。
2、網路體系結構具有特指性。
3、網路體系結構具有抽象性。
4、網路體系結構具有過程性。
Ⅲ 計算機網路體系分為哪四層
1.、應用層
應用層對應於OSI參考模型的高層,為用戶提供所需要的各種服務,例如:FTP、Telnet、DNS、SMTP等.
2.、傳輸層
傳輸層對應於OSI參考模型的傳輸層,為應用層實體提供端到端的通信功能,保證了數據包的順序傳送及數據的完整性。該層定義了兩個主要的協議:傳輸控制協議(TCP)和用戶數據報協議(UDP).
TCP協議提供的是一種可靠的、通過「三次握手」來連接的數據傳輸服務;而UDP協議提供的則是不保證可靠的(並不是不可靠)、無連接的數據傳輸服務.
3.、網際互聯層
網際互聯層對應於OSI參考模型的網路層,主要解決主機到主機的通信問題。它所包含的協議設計數據包在整個網路上的邏輯傳輸。注重重新賦予主機一個IP地址來完成對主機的定址,它還負責數據包在多種網路中的路由。
該層有三個主要協議:網際協議(IP)、互聯網組管理協議(IGMP)和互聯網控制報文協議(ICMP)。
IP協議是網際互聯層最重要的協議,它提供的是一個可靠、無連接的數據報傳遞服務。
4.、網路接入層(即主機-網路層)
網路接入層與OSI參考模型中的物理層和數據鏈路層相對應。它負責監視數據在主機和網路之間的交換。事實上,TCP/IP本身並未定義該層的協議,而由參與互連的各網路使用自己的物理層和數據鏈路層協議,然後與TCP/IP的網路接入層進行連接。地址解析協議(ARP)工作在此層,即OSI參考模型的數據鏈路層。
(3)網路分層體系設置擴展閱讀:
OSI將計算機網路體系結構(architecture)劃分為以下七層:
物理層: 將數據轉換為可通過物理介質傳送的電子信號相當於郵局中的搬運工人。
數據鏈路層: 決定訪問網路介質的方式。
在此層將數據分幀,並處理流控制。本層指定拓撲結構並提供硬體定址,相當於郵局中的裝拆箱工人。
網路層: 使用權數據路由經過大型網路 相當於郵局中的排序工人。
傳輸層: 提供終端到終端的可靠連接 相當於公司中跑郵局的送信職員。
會話層: 允許用戶使用簡單易記的名稱建立連接 相當於公司中收寄信、寫信封與拆信封的秘書。
表示層: 協商數據交換格式 相當公司中簡報老闆、替老闆寫信的助理。
應用層: 用戶的應用程序和網路之間的介面老闆。
Ⅳ 網路結構分層有哪些
OSI 七層模型稱為開放式系統互聯參考模型 OSI 七層模型是一種框架性的設計方法
OSI 七層模型通過七個層次化的結構模型使不同的系統不同的網路之間實現可靠的通訊,因此其最主
要的功能使就是幫助不同類型的主機實現數據傳輸
物理層 : O S I 模型的最低層或第一層,該層包括物理連網媒介,如電纜連線連接器。物理層的協議產生並檢測電壓以便發送和接收攜帶數據的信號。在你的桌面P C 上插入網路介面卡,你就建立了計算機連網的基礎。換言之,你提供了一個物理層。盡管物理層不提供糾錯服務,但它能夠設定數據傳輸速率並監測數據出錯率。網路物理問題,如電線斷開,將影響物理層。
數據鏈路層: O S I 模型的第二層,它控制網路層與物理層之間的通信。它的主要功能是如何在不可靠的物理線路上進行數據的可靠傳遞。為了保證傳輸,從網路層接收到的數據被分割成特定的可被物理層傳輸的幀。幀是用來移動數據的結構包,它不僅包括原始數據,還包括發送方和接收方的網路地址以及糾錯和控制信息。其中的地址確定了幀將發送到何處,而糾錯和控制信息則確保幀無差錯到達。
數據鏈路層的功能獨立於網路和它的節點和所採用的物理層類型,它也不關心是否正在運行 Wo r d 、E x c e l 或使用I n t e r n e t 。有一些連接設備,如交換機,由於它們要對幀解碼並使用幀信息將數據發送到正確的接收方,所以它們是工作在數據鏈路層的。
網路層: O S I 模型的第三層,其主要功能是將網路地址翻譯成對應的物理地址,並決定如何將數據從發送方路由到接收方。
網路層通過綜合考慮發送優先權、網路擁塞程度、服務質量以及可選路由的花費來決定從一個網路中節點A 到另一個網路中節點B 的最佳路徑。由於網路層處理路由,而路由器因為即連接網路各段,並智能指導數據傳送,屬於網路層。在網路中,「路由」是基於編址方案、使用模式以及可達性來指引數據的發送。
傳輸層: O S I 模型中最重要的一層。傳輸協議同時進行流量控制或是基於接收方可接收數據的快慢程度規定適當的發送速率。除此之外,傳輸層按照網路能處理的最大尺寸將較長的數據包進行強制分割。例如,乙太網無法接收大於1 5 0 0 位元組的數據包。發送方節點的傳輸層將數據分割成較小的數據片,同時對每一數據片安排一序列號,以便數據到達接收方節點的傳輸層時,能以正確的順序重組。該過程即被稱為排序。
工作在傳輸層的一種服務是 T C P / I P 協議套中的T C P (傳輸控制協議),另一項傳輸層服務是I P X / S P X 協議集的S P X (序列包交換)。
會話層: 負責在網路中的兩節點之間建立和維持通信。 會話層的功能包括:建立通信鏈接,保持會話過程通信鏈接的暢通,同步兩個節點之間的對 話,決定通信是否被中斷以及通信中斷時決定從何處重新發送。
你可能常常聽到有人把會話層稱作網路通信的「交通警察」。當通過撥號向你的 I S P (網際網路服務提供商)請求連接到網際網路時,I S P 伺服器上的會話層向你與你的P C 客戶機上的會話層進行協商連接。若你的電話線偶然從牆上插孔脫落時,你終端機上的會話層將檢測到連接中斷並重新發起連接。會話層通過決定節點通信的優先順序和通信時間的長短來設置通信期限
表示層: 應用程序和網路之間的翻譯官,在表示層,數據將按照網路能理解的方案進行格式化;這種格式化也因所使用網路的類型不同而不同。
表示層管理數據的解密與加密,如系統口令的處理。例如:在 Internet上查詢你銀行賬戶,使用的即是一種安全連接。你的賬戶數據在發送前被加密,在網路的另一端,表示層將對接收到的數據解密。除此之外,表示層協議還對圖片和文件格式信息進行解碼和編碼。
應用層: 負責對軟體提供介面以使程序能使用網路服務。術語「應用層」並不是指運行在網路上的某個特別應用程序 ,應用層提供的服務包括文件傳輸、文件管理以及電子郵件的信息處理。
Ⅳ 什麼是分層網路體系結構分層的含義是什麼
指的是將系統的組件分隔到不同的層中,每一層中的組件應保持內聚性,並且應大致在同一抽象級別;每一層都應與它下面的各層保持鬆散耦合。
分層架構的優點
1、開發人員的專業分工,專注理解某一層。由於某一層僅僅調用其相鄰下一層所提供的程序介面,只需要本層的介面和相鄰下一層的介面定義清晰完整,開發人員在開發某一層時就可以像關注集中於這一層所用的功能和技術。
2、可以很容易用新的實現來替換原有層次的實現。 只要前後提供的服務(介面)相同,即可替換。系統開發過程中,功能需求不斷變化,我們可以替換現有的層次以滿足新的需求變化。
3、降低了系統間的依賴。 比如業務邏輯層中的業務發生變化, 其他兩層即表現層以及數據訪問層程序也不需要變化。這大大降低了系統各層之間的依賴。
4、有利於復用。充分利用現有的功能程序組件,將已經辨識的具有相對獨立功能的層應用於新系統的開發,保證新系統開發的過程中,能夠將重點集中於辨識和實現應用系統特有的業務功能,最終縮短系統開發周期,提高系統的質量。
分層思想
分層是基於面向對象上的,是更高層次上的設計理念。在軟體開發技術的發展過程中,出現了很多優秀的思想與模式。這些思想和模式凝結了無數程序設計人員的實踐經驗和智慧,是軟體開發領域的精華。這其中有很多思想對分層架構設計有著重要的指導作用。
分層架構的弊端
1、級聯修改問題。一些復雜的業務中,由於業務流程發生變化,為了這個變化所有層都需要修改。
2、性能問題。本來是直接簡單的操作,需要在整個系統中層層傳遞,勢必造成性能的下降,同時也加大的開發的復雜度。
從上面的分析可以看出, 分層架構設計有許多優點同樣存在不足,在實際使用過程中,我們應該權衡利弊關系,選擇一種符合實際項目的最佳方案。
Ⅵ 4.網路體系結構分層的原則是什麼
必須有一個不同等級的抽象時,應設立一個相應的層次。依據邏輯功能的需要來劃分網路層次,每一層實現一個定義明確的功能集合。盡量做到相鄰層間介面清晰,選擇層間邊界時,應盡量使通過該界面的信息流量為最少。
計算機網路體系結構相當復雜,且具有一定的程序性和系統性,可以認為它是一個獨立系統,具有一定的系統性、復雜性以及其他獨特的特徵,而計算機網路體系結構的一個重要特徵就是過程性。
(6)網路分層體系設置擴展閱讀:
網路體系結相當於對網路的總體描述,從基礎搭建到上層建設,將實現某一特定功能的網路系統中的研究和建設中所有的方方面面全部的聯系起來,並使其成為一個整體,使具有某一特定功能的計算機網路系統的研究更為全面,更透徹。
網路體系結構的涵義的抽象性還體現在各層協議的集合上,雖然協議是實實在在存在的,但在搭建體系結構的運用中以及完成體系結構後,協議的存在就顯得模糊和抽象。
Ⅶ 網路體系結構為什麼要採用分層次的結構
原因:為把在一個網路結構下開發的系統與在另一個網路結構下開發的系統互聯起來,以實現更高一級的應用,使異種機之間的通信成為可能,便於網路結構標准化;
並且由於全球經濟的發展使得處在不同網路體系結構的用戶迫切要求能夠互相交換信息;
為此,國際標准化組織ISO成立了專門的機構研究該問題,並於1977年提出了一個試圖使各種計算機在世界范圍內互聯成網的標准框架,即著名的開放系統互連基本參考模型OSI/RM (Open System Interconnection Reference Model)。
1、網路體系結構(network architecture):是計算機之間相互通信的層次,以及各層中的協議和層次之間介面的集合。
2、網路協議:是計算機網路和分布系統中互相通信的對等實體間交換信息時所必須遵守的規則的集合。
3、語法(syntax):包括數據格式、編碼及信號電平等。
4、語義(semantics):包括用於協議和差錯處理的控制信息。
5、定時(timing):包括速度匹配和排序。
計算機網路是一個非常復雜的系統,需要解決的問題很多並且性質各不相同。所以,在ARPANET設計時,就提出了「分層」的思想,即將龐大而復雜的問題分為若干較小的易於處理的局部問題。