A. 神經網路到底有什麼作用,具體是用來干什麼的
神經網路(Artificial Neural Networks,簡寫為ANNs)也簡稱為神經網路(NNs)或稱作連接模型(Connection Model),它是一種模仿動物神經網路行為特徵,進行分布式並行信息處理的演算法數學模型。這種網路依靠系統的復雜程度,通過調整內部大量節點之間相互連接的關系,從而達到處理信息的目的。
神經網路可以用於模式識別、信號處理、知識工程、專家系統、優化組合、機器人控制等。隨著神經網路理論本身以及相關理論、相關技術的不斷發展,神經網路的應用定將更加深入。
B. 什麼叫神經網路
楓舞給出基本的概念:
一.一些基本常識和原理
[什麼叫神經網路?]
人的思維有邏輯性和直觀性兩種不同的基本方式。邏輯性的思維是指根據邏輯規則進行推理的過程;它先將信息化成概念,並用符號表示,然後,根據符號運算按串列模式進行邏輯推理;這一過程可以寫成串列的指令,讓計算機執行。然而,直觀性的思維是將分布式存儲的信息綜合起來,結果是忽然間產生想法或解決問題的辦法。這種思維方式的根本之點在於以下兩點:1.信息是通過神經元上的興奮模式分布儲在網路上;2.信息處理是通過神經元之間同時相互作用的動態過程來完成的。
人工神經網路就是模擬人思維的第二種方式。這是一個非線性動力學系統,其特色在於信息的分布式存儲和並行協同處理。雖然單個神經元的結構極其簡單,功能有限,但大量神經元構成的網路系統所能實現的行為卻是極其豐富多彩的。
[人工神經網路的工作原理]
人工神經網路首先要以一定的學習准則進行學習,然後才能工作。現以人工神經網路對手寫「A」、「B」兩個字母的識別為例進行說明,規定當「A」輸入網路時,應該輸出「1」,而當輸入為「B」時,輸出為「0」。
所以網路學習的准則應該是:如果網路作出錯誤的的判決,則通過網路的學習,應使得網路減少下次犯同樣錯誤的可能性。首先,給網路的各連接權值賦予(0,1)區間內的隨機值,將「A」所對應的圖象模式輸入給網路,網路將輸入模式加權求和、與門限比較、再進行非線性運算,得到網路的輸出。在此情況下,網路輸出為「1」和「0」的概率各為50%,也就是說是完全隨機的。這時如果輸出為「1」(結果正確),則使連接權值增大,以便使網路再次遇到「A」模式輸入時,仍然能作出正確的判斷。
如果輸出為「0」(即結果錯誤),則把網路連接權值朝著減小綜合輸入加權值的方向調整,其目的在於使網路下次再遇到「A」模式輸入時,減小犯同樣錯誤的可能性。如此操作調整,當給網路輪番輸入若干個手寫字母「A」、「B」後,經過網路按以上學習方法進行若干次學習後,網路判斷的正確率將大大提高。這說明網路對這兩個模式的學習已經獲得了成功,它已將這兩個模式分布地記憶在網路的各個連接權值上。當網路再次遇到其中任何一個模式時,能夠作出迅速、准確的判斷和識別。一般說來,網路中所含的神經元個數越多,則它能記憶、識別的模式也就越多。
=================================================
楓舞推薦一個小程序:
關於一個神經網路模擬程序的下載
人工神經網路實驗系統(BP網路) V1.0 Beta 作者:沈琦
http://emuch.net/html/200506/de24132.html
作者關於此程序的說明:
從輸出結果可以看到,前3條"學習"指令,使"輸出"神經元收斂到了值 0.515974。而後3條"學習"指令,其收斂到了值0.520051。再看看處理4和11的指令結果 P *Out1: 0.520051看到了嗎? "大腦"識別出了4和11是屬於第二類的!怎麼樣?很神奇吧?再打show指令看看吧!"神經網路"已經形成了!你可以自己任意的設"模式"讓這個"大腦"學習分辯哦!只要樣本數據量充分(可含有誤差的樣本),如果能夠在out數據上收斂地話,那它就能分辨地很准哦!有時不是絕對精確,因為它具有"模糊處理"的特性.看Process輸出的值接近哪個Learning的值就是"大腦"作出的"模糊性"判別!
=================================================
楓舞推薦神經網路研究社區:
人工神經網路論壇
http://www.youngfan.com/forum/index.php
http://www.youngfan.com/nn/index.html(舊版,楓舞推薦)
國際神經網路學會(INNS)(英文)
http://www.inns.org/
歐洲神經網路學會(ENNS)(英文)
http://www.snn.kun.nl/enns/
亞太神經網路學會(APNNA)(英文)
http://www.cse.cuhk.e.hk/~apnna
日本神經網路學會(JNNS)(日文)
http://www.jnns.org
國際電氣工程師協會神經網路分會
http://www.ieee-nns.org/
研學論壇神經網路
http://bbs.matwav.com/post/page?bid=8&sty=1&age=0
人工智慧研究者俱樂部
http://www.souwu.com/
2nsoft人工神經網路中文站
http://211.156.161.210:8888/2nsoft/index.jsp
=================================================
楓舞推薦部分書籍:
人工神經網路技術入門講稿(PDF)
http://www.youngfan.com/nn/ann.pdf
神經網路FAQ(英文)
http://www.youngfan.com/nn/FAQ/FAQ.html
數字神經網路系統(電子圖書)
http://www.youngfan.com/nn/nnbook/director.htm
神經網路導論(英文)
http://www.shef.ac.uk/psychology/gurney/notes/contents.html
===============================================
楓舞還找到一份很有參考價值的講座
<前向網路的敏感性研究>
http://www.youngfan.com/nn/mgx.ppt
是Powerpoint文件,比較大,如果網速不夠最好用滑鼠右鍵下載另存.
=========================================================
楓舞添言:很久之前,楓舞夢想智能機器人從自己手中誕生,SO在學專業的時候也有往這方面發展...考研的時候亦是朝著人工智慧的方向發展..但是很不幸的是楓舞考研失敗...SO 只好放棄這個美好的願望,為生活奔波.希望你能夠成為一個好的智能計算機工程師..楓舞已經努力的在給你提供條件資源哦~~
C. 神經網路模型有幾種分類方法,試給出一種分類
神經網路模型的分類人工神經網路的模型很多,可以按照不同的方法進行分類。其中,常見的兩種分類方法是,按照網路連接的拓樸結構分類和按照網路內部的信息流向分類。1 按照網路拓樸結構分類網路的拓樸結構,即神經元之間的連接方式。按此劃分,可將神經網路結構分為兩大類:層次型結構和互聯型結構。層次型結構的神經網路將神經元按功能和順序的不同分為輸出層、中間層(隱層)、輸出層。輸出層各神經元負責接收來自外界的輸入信息,並傳給中間各隱層神經元;隱層是神經網路的內部信息處理層,負責信息變換。根據需要可設計為一層或多層;最後一個隱層將信息傳遞給輸出層神經元經進一步處理後向外界輸出信息處理結果。 而互連型網路結構中,任意兩個節點之間都可能存在連接路徑,因此可以根據網路中節點的連接程度將互連型網路細分為三種情況:全互連型、局部互連型和稀疏連接型2 按照網路信息流向分類從神經網路內部信息傳遞方向來看,可以分為兩種類型:前饋型網路和反饋型網路。單純前饋網路的結構與分層網路結構相同,前饋是因網路信息處理的方向是從輸入層到各隱層再到輸出層逐層進行而得名的。前饋型網路中前一層的輸出是下一層的輸入,信息的處理具有逐層傳遞進行的方向性,一般不存在反饋環路。因此這類網路很容易串聯起來建立多層前饋網路。反饋型網路的結構與單層全互連結構網路相同。在反饋型網路中的所有節點都具有信息處理功能,而且每個節點既可以從外界接受輸入,同時又可以向外界輸出。
D. 都有什麼神經網路庫
matlab有專門的神經網路工具箱
也有交互的節目
help newff
nntool
E. 神經網路是什麼
神經網路是一種以人腦為模型的機器學習,簡單地說就是創造一個人工神經網路,通過一種演算法允許計算機通過合並新的數據來學習。
神經網路簡單說就是通過一種演算法允許計算機通過合並新的數據來學習!
F. 神經網路演算法實例說明有哪些
在網路模型與演算法研究的基礎上,利用人工神經網路組成實際的應用系統,例如,完成某種信號處理或模式識別的功能、構作專家系統、製成機器人、復雜系統控制等等。
縱觀當代新興科學技術的發展歷史,人類在征服宇宙空間、基本粒子,生命起源等科學技術領域的進程中歷經了崎嶇不平的道路。我們也會看到,探索人腦功能和神經網路的研究將伴隨著重重困難的克服而日新月異。
G. 什麼是神經網路
隱層節點數在BP 網路中,隱層節點數的選擇非常重要,它不僅對建立的神經網路模型的性能影響很大,而且是訓練時出現「過擬合」的直接原因,但是目前理論上還沒有一種科學的和普遍的確定方法。 目前多數文獻中提出的確定隱層節點數的計算公式都是針對訓練樣本任意多的情況,而且多數是針對最不利的情況,一般工程實踐中很難滿足,不宜採用。事實上,各種計算公式得到的隱層節點數有時相差幾倍甚至上百倍。為盡可能避免訓練時出現「過擬合」現象,保證足夠高的網路性能和泛化能力,確定隱層節點數的最基本原則是:在滿足精度要求的前提下取盡可能緊湊的結構,即取盡可能少的隱層節點數。研究表明,隱層節點數不僅與輸入/輸出層的節點數有關,更與需解決的問題的復雜程度和轉換函數的型式以及樣本數據的特性等因素有關。在確定隱層節點數時必須滿足下列條件:(1)隱層節點數必須小於N-1(其中N為訓練樣本數),否則,網路模型的系統誤差與訓練樣本的特性無關而趨於零,即建立的網路模型沒有泛化能力,也沒有任何實用價值。同理可推得:輸入層的節點數(變數數)必須小於N-1。(2) 訓練樣本數必須多於網路模型的連接權數,一般為2~10倍,否則,樣本必須分成幾部分並採用「輪流訓練」的方法才可能得到可靠的神經網路模型。 總之,若隱層節點數太少,網路可能根本不能訓練或網路性能很差;若隱層節點數太多,雖然可使網路的系統誤差減小,但一方面使網路訓練時間延長,另一方面,訓練容易陷入局部極小點而得不到最優點,也是訓練時出現「過擬合」的內在原因。因此,合理隱層節點數應在綜合考慮網路結構復雜程度和誤差大小的情況下用節點刪除法和擴張法確定。
H. 有哪些深度神經網路模型
目前經常使用的深度神經網路模型主要有卷積神經網路(CNN) 、遞歸神經網路(RNN)、深信度網路(DBN) 、深度自動編碼器(AutoEncoder) 和生成對抗網路(GAN) 等。
遞歸神經網路實際.上包含了兩種神經網路。一種是循環神經網路(Recurrent NeuralNetwork) ;另一種是結構遞歸神經網路(Recursive Neural Network),它使用相似的網路結構遞歸形成更加復雜的深度網路。RNN它們都可以處理有序列的問題,比如時間序列等且RNN有「記憶」能力,可以「模擬」數據間的依賴關系。卷積網路的精髓就是適合處理結構化數據。
關於深度神經網路模型的相關學習,推薦CDA數據師的相關課程,課程以項目調動學員數據挖掘實用能力的場景式教學為主,在講師設計的業務場景下由講師不斷提出業務問題,再由學員循序漸進思考並操作解決問題的過程中,幫助學員掌握真正過硬的解決業務問題的數據挖掘能力。這種教學方式能夠引發學員的獨立思考及主觀能動性,學員掌握的技能知識可以快速轉化為自身能夠靈活應用的技能,在面對不同場景時能夠自由發揮。點擊預約免費試聽課。
I. 神經網路是什麼
神經網路是一種模仿動物神經網路行為特徵,進行分布式並行信息處理的演算法數學模型。這種網路依靠系統的復雜程度,通過調整內部大量節點之間相互連接的關系,從而達到處理信息的目的。
生物神經網路主要是指人腦的神經網路,它是人工神經網路的技術原型。人腦是人類思維的物質基礎,思維的功能定位在大腦皮層,後者含有大約10^11個神經元,每個神經元又通過神經突觸與大約103個其它神經元相連,形成一個高度復雜高度靈活的動態網路。作為一門學科,生物神經網路主要研究人腦神經網路的結構、功能及其工作機制,意在探索人腦思維和智能活動的規律。
人工神經網路是生物神經網路在某種簡化意義下的技術復現,作為一門學科,它的主要任務是根據生物神經網路的原理和實際應用的需要建造實用的人工神經網路模型,設計相應的學習演算法,模擬人腦的某種智能活動,然後在技術上實現出來用以解決實際問題。因此,生物神經網路主要研究智能的機理;人工神經網路主要研究智能機理的實現,兩者相輔相成。
(9)神經網路有哪些擴展閱讀:
神經網路的研究內容相當廣泛,反映了多學科交叉技術領域的特點。主要的研究工作集中在以下幾個方面:
1、生物原型
從生理學、心理學、解剖學、腦科學、病理學等方面研究神經細胞、神經網路、神經系統的生物原型結構及其功能機理。
2、建立模型
根據生物原型的研究,建立神經元、神經網路的理論模型。其中包括概念模型、知識模型、物理化學模型、數學模型等。
3、演算法
在理論模型研究的基礎上構作具體的神經網路模型,以實現計算機模擬或准備製作硬體,包括網路學習演算法的研究。這方面的工作也稱為技術模型研究。
神經網路用到的演算法就是向量乘法,並且廣泛採用符號函數及其各種逼近。並行、容錯、可以硬體實現以及自我學習特性,是神經網路的幾個基本優點,也是神經網路計算方法與傳統方法的區別所在。