㈠ TCP/IP有哪幾層,各層的功能是什麼
TCP/IP是有共網路介面層,網路層,運輸層和應用層共四層協議系統。
第一層是應用層,功能是服務於應用進程的,就是向用戶提供數據加上編碼和對話對的控制。
第二層是運輸層,功能是能夠解決諸如端到端可靠性和保證數據按照正確的順序到達。包括所給數據應該送給哪個應用程序。
第三層是網路層,功能是進行網路連接的建立,和終止及IP地址的尋找最佳途徑等功能。
第四層是網路介面層,功能是傳輸數據的物理媒介,是數據包從一個設備的網路層傳輸到另外一個設備的網路層的方法。還有控制組成網路的硬體設備。
(1)計算機網路介面層功能由什麼完成擴展閱讀:
TCP/IP協議不僅僅指的是TCP和IP兩個協議,而是指一個由FTP、SMTP、TCP、UDP、IP等協議構成的協議簇, 只是因為在TCP/IP協議中TCP協議和IP協議最具代表性,所以被稱為TCP/IP協議。
TCP/IP協議產生過程為:
(1)1973年,卡恩與瑟夫開發出了TCP/IP協議中最核心的兩個協議:TCP協議和IP協議。
(2)1974年12月,卡恩與瑟夫正式發表了TCP/IP協議並對其進行了詳細的說明。同時,為了驗證TCP/IP協議的可用性,使一個數據包由一端發出,在經過近10萬km的旅程後到達服務端。
在這次傳輸中,數據包沒有丟失一個位元組,這成分說明了TCP/IP協議的成功。
(3)1983年元旦,TCP/IP協議正式替代NCP,從此以後TCP/IP成為大部分網際網路共同遵守的一種網路規則。
(4)1984年,TCP/IP協議得到美國國防部的肯定,成為多數計算機共同遵守的一個標准。
(5)2005年9月9日卡恩和瑟夫由於他們對於美國文化做出的卓越貢獻被授予總統自由勛章。
TCP/IP協議能夠迅速發展起來並成為事實上的標准,是它恰好適應了世界范圍內數據通信的需要。它有以下特點:
(1)協議標準是完全開放的,可以供用戶免費使用,並且獨立於特定的計算機硬體與操作系統。
(2)獨立於網路硬體系統,可以運行在廣域網,更適合於互聯網。
(3)網路地址統一分配,網路中每一設備和終端都具有一個唯一地址。
(4)高層協議標准化,可以提供多種多樣可靠網路服務。
參考資料:網路——TCP/IP協議
㈡ tcp/ip協議包含哪四層,會有什麼功能
TCP/IP協議包括四個層次:網路介面層、網路層、傳輸層、應用層。
功能:
1、網路介面層
主要用於實現與傳輸媒介相關的物理特性,由下而上來看,對於接收到的物理幀數據,得到IP數據包,交給網路層;由上而下來看,從網路層接收到IP數據包封裝成幀數據,發送到網路中。
2、網路層:
處理來自傳輸層的分組發送請求,收到請求後,將分組裝入IP數據報,填充報頭,選擇去往信宿機的路徑,然後將數據報發往適當的網路介面。
處理輸入數據報:首先檢查其合法性,然後進行尋徑--假如該數據報已到達信宿機,則去掉報頭,將剩下部分交給適當的傳輸協議;假如該數據報尚未到達信宿,則轉發該數據報。處理路徑、流控、擁塞等問題。
3、傳輸層:
提供應用程序間的通信。其功能包括:一、格式化信息流;二、提供可靠傳輸。為實現後者,傳輸層協議規定接收端必須發回確認,並且假如分組丟失,必須重新發送,即耳熟能詳的「三次握手」過程,從而提供可靠的數據傳輸。
4、應用層:
向用戶提供一組常用的應用程序,比如電子郵件、文件傳輸訪問、遠程登錄等。遠程登錄TELNET使用TELNET協議提供在網路其它主機上注冊的介面。TELNET會話提供了基於字元的虛擬終端。文件傳輸訪問FTP使用FTP協議來提供網路內機器間的文件拷貝功能。
各層協議:
網路層中的協議主要有IP,ICMP,IGMP等,由於它包含了IP協議模塊,所以它是所有基於TCP/IP協議網路的核心。
傳輸層上的主要協議是TCP和UDP。正如網路層控制著主機之間的數據傳遞,傳輸層控制著那些將要進入網路層的數據。
兩個協議就是它管理這些數據的兩種方式:TCP是一個基於連接的協議;UDP則是面向無連接服務的管理方式的協議。
TCP/IP協議的主要特點
1、TCP/IP協議不依賴於任何特定的計算機硬體或操作系統,提供開放的協議標准,即使不考慮Internet,TCP/IP協議也獲得了廣泛的支持。所以TCP/IP協議成為一種聯合各種硬體和軟體的實用系統。
2、TCP/IP協議並不依賴於特定的網路傳輸硬體,所以TCP/IP協議能夠集成各種各樣的網路。用戶能夠使用乙太網(Ethernet)、令牌環網(Token Ring Network)、撥號線路(Dial-up line)、X.25網以及所有的網路傳輸硬體。
3、統一的網路地址分配方案,使得整個TCP/IP設備在網中都具有惟一的地址
4、標准化的高層協議,可以提供多種可靠的用戶服務。
㈢ 網路與最終用戶間的介面是由什麼實現
計算機網路體系結構
網路協議是計算機網路必不可少的,一個完整的計算機網路需要有一套復雜的協議集合,組織復雜的計算機網路協議的最好方式就是層次模型。而將計算機網路層次模型和各層協議的集合定義為計算機網路體系結構(NetworkArchitecture)。
計算機網路由多個互連的結點組成,結點之間要不斷地交換數據和控制信息,要做到有條不紊地交換數據,每個結點就必須遵守一整套合理而嚴謹的結構化管理體系.計算機網路就是按照高度結構化設計方法採用功能分層原理來實現的,即計算機網路體系結構的內容.
一、網路體系結構及協議的概念
1、網路體系和網路體系結構
網路體系(NetworkArchitecture):是為了完成計算機間的通信合作,把每台計算機互連的功能劃分成有明確定義的層次,並規定了同層次進程通信的協議及相鄰之間的介面及服務.
網路體系結構:是指用分層研究方法定義的網路各層的功能,各層協議和介面的集合.
2、計算機網路體系結構
計算機的網路結構可以從網路體系結構,網路組織和網路配置三個方面來描述,網路組織是從網路的物理結構和網路的實現兩方面來描述計算機網路;網路配置是從網路應用方面來描述計算機網路的布局,硬體,軟體和和通信線路來描述計算機網路;網路體系結構是從功能讓來描述計算機網路結構.
網路體系結構最早是由IBM公司在1974年提出的,名為SNA
計算機網路體系結構:是指計算機網路層次結構模型和各層協議的集合
結構化是指將一個復雜的系統設計問題分解成一個個容易處理的子問題,然後加以解決.
層次結構是指將一個復雜的系統設計問題分成層次分明的一組組容易處理的子問題,各層執行自己所承擔的任務.
計算機網路結構採用結構化層次模型,有如下優點:
1)各層之間相互獨立,即不需要知道低層的結構,只要知道是通過層間介面所提供的服務
2)靈活性好,是指只要介面不變就不會因層的變化(甚至是取消該層)而變化
3)各層採用最合適的技術實現而不影響其他層
4)有利於促進標准化,是因為每層的功能和提供的服務都已經有了精確的說明
網路協議
協議(Protocol)
網路中計算機的硬體和軟體存在各種差異,為了保證相互通信及雙方能夠正確地接收信息,必須事先形成一種約定,即網路協議.
協議:是為實現網路中的數據交換而建立的規則標准或約定.
網路協議三要素:語法,語義,交換規則(或稱時序/定時關系)
注:通信協議的特點是:層次性,可靠性和有效性.
實體(Entity)
實體:是通信時能發送和接收信息的任何軟硬體設施
介面(Interface)
介面:是指網路分層結構中各相鄰層之間的通信
開放系統互連參考模型(OSI/RM)
OSI/RM參考模型
1、基本概述
為了實現不同廠家生產的計算機系統之間以及不同網路之間的數據通信,就必須遵循相同的網路體系結構模型,否則異種計算機就無法連接成網路,這種共同遵循的網路體系結構模型就是國際標准——開放系統互連參考模型,即OSI/RM.
ISO發布的最著名的ISO標準是ISO/IEC7498,又稱為X.200建議,將OSI/RM依據網路的整個功能劃分成7個層次,以實現開放系統環境中的互連性(interconnection),互操作性(interoperation)和應用的可移植性(portability).
2、分層原則
ISO將整個通信功能劃分為7個層次,分層原則如下:
網路中各結點都有相同的層次
不同結點的同等層具有相同的功能
同一結點內相鄰層之間通過介面通信
每一層使用下層提供的服務,並向其上層提供服務
不同結點的同等層按照協議實現對等層之間的通信
第七層 應用層
第六層 表示層
第五層 會話層
第四層 傳輸層
第三層 網路層
第二層 數據鏈路層
第一層 物理層
OSI/RM參考模型
OSI/RM的配置管理主要目標就是網路適應系統的要求.
低三層可看作是傳輸控制層,負責有關通信子網的工作,解決網路中的通信問題;高三層為應用控制層,負責有關資源子網的工作,解決應用進程的通信問題;傳輸層為通信子網和資源子網的介面,起到連接傳輸和應用的作用.
ISO/RM的最高層為應用層,面向用戶提供應用的服務;最低層為物理層,連接通信媒體實現數據傳輸.
層與層之間的聯系是通過各層之間的介面來進行的,上層通過介面向下層提供服務請求,而下層通過介面向上層提供服務.
兩個計算機通過網路進行通信時,除了物理層之外(說明了只有物理層才有直接連接),其餘各對等層之間均不存在直接的通信關系,而是通過各對等層的協議來進行通信,如兩個對等的網路層使用網路層協議通信.只有兩個物理層之間才通過媒體進行真正的數據通信.
當通信實體通過一個通信子網進行通信時,必然會經過一些中間節點,通信子網中的節點只涉及到低三層的結構.
OSI/RM中系統間的通信信息流動過程
在OSI/RM中系統間的通信信息流動過程如下:發送端的各層從上到下逐步加上各層的控制信息構成的比特流傳遞到物理信道,然後再傳輸到接收端的物理層,經過從下到上逐層去掉相應層的控制住信息得到的數據流最終傳送到應用層的進程.
由於通信信道的雙向性,因此數據的流向也是雙向的.
比特流的構成:
數據DATA應用層(DATA+報文頭AH,用L7表示)表示層(L7+控制信息PH)會話層(L6+控制信息SH)傳輸層(L5+控制信息TH)網路層(L4+控制信息NH)數據鏈路層(差錯檢測控制信息DT+L3+控制信息DH)物理層(比特流)
3、OSI/RM各層概述
物理層(PhysicalLayer)
直接與物理信道直接相連,起到數據鏈路層和傳輸媒體之間的邏輯介面作用.
功能:提供建立,維護和釋放物理連接的方法,實現在物理信道上進行比特流的傳輸.
傳送的基本單位:比特(bit)
物理層的內容:
1)通信介面與傳輸媒體的物理特性
物理層協議主要規定了計算機或終端DTE與通信設備DCE之間的介面標准,包括介面的機械特性,電氣特性,功能特性,規程特性
2)物理層的數據交換單元為二進制比特:對數據鏈路層的數據進行調制或編碼,成為傳輸信號(模擬,數字或光信號)
3)比特的同步:時鍾的同步,如非同步/同步傳輸
4)線路的連接:點—點(專用鏈路),多點(共享一條鏈路)
5)物理拓撲結構:星型,環型,網狀
6)傳輸方式:單工,半雙工,全雙工
典型的物理層協議有RS-232系列,RS449,V.24,V.28,X.20,X.21
數據鏈路層(DataLinkLayer)
通過物理層提供的比特流服務,在相鄰節點之間建立鏈路,對傳輸中可能出現的差錯進行檢錯和糾錯,向網路層提供無差錯的透明傳輸.
主要負責數據鏈路的建立,維持和拆除,並在兩個相鄰機電隊線路上,將網路層送下來的信息(包)組成幀傳送,每一幀包括一定數量的數據和一些必要的控制信息.為了保證數據幀的可靠傳輸應具有差錯控制功能.
功能:是在不太可靠的物理鏈路上實現可靠的數據傳輸
傳送的基本單位:幀(Frame)
數據鏈路層內容:
1)成幀:是因要將網路層的數據分為管理和控制的數據單元
2)物理地址定址:標識發送和接收數據幀的節點位置,因此常在數據頭部加上控制信息DH(源,目的節點的地址),尾部加上差錯控制信息DT
3)流量控制:即對發送數據幀的速率進行控制,保證傳輸正確.
4)差錯控制:在數據幀的尾部所加上的尾部控制信息DT
5)接入控制:當多個節點共享通信鏈路時,確定在某一時間內由哪個節點發送數據
常見的數據鏈路層協議有兩類:一是面向字元型傳輸控制規程BSC;一是面向比特的傳輸控制規程HDLC
流量控制技術
(1)停-等流量控制:發送節點在發送一幀數據後必須等待對方回送確認應答信息到來後再發下一幀.接收節點檢查幀的校驗序列,無錯則發確認幀,否則發送否認幀,要求重發.
存在問題:雙方無休止等待(數據幀或確認幀丟失),解決辦法發送後使用超時定時器;重幀現象(收到同樣的兩幀),解決辦法是對幀進行編號
適用:半雙工通信
(2)滑動窗口流量控制:是指對於任意時刻,都允許發送端/接收端一次發送/接收多個幀,幀的序號個數稱為發送/接收窗口大小
適用:全雙工
工作原理:以幀控制段長為8位,則發送幀序號用3bit表示,發送窗口大小為WT=5,接收窗口大小為WR=2為例來說明
發送窗口
01234
12345
重發1
34567
56701
接收窗口
01(0對1錯)
12(1等2對)
12(正確)
34(正確)
……
滑動窗口的大小與協議的關系:
WT>1,WR=1,協議為退回N步的ARQ(自動反饋請求)
WT>1,WR>1,協議為選擇重傳的ARQ
WT=1,WR=1,協議為停-等式的ARQ
網路層(NetworkLayer)
又稱為通信子網層,是計算機網路中的通信子網的最高層(由於通信子網不存在路由選擇問題),在數據鏈路層提供服務的基礎上向資源子網提供服務.
網路層將從高層傳送下來的數據打包,再進行必要的路由選擇,差錯控制,流量控制及順序檢測等處理,使發送站傳輸層所傳下來的數據能夠正確無誤地按照地址傳送到目的站,並交付給目的站傳輸層.
功能:實現分別位於不同網路的源節點與目的節點之間的數據包傳輸(數據鏈路層只是負責同一個網路中的相鄰兩節點之間鏈路管理及幀的傳輸),即完成對通信子網正常運行的控制.
關鍵技術:路由選擇
傳送信息的基本單位:包(Packer)
網路層採用的協議是X.25分組級協議
網路層的服務:
面向連接服務:指數據傳輸過程為連接的建立,數傳的維持與拆除連接三個階段.如電路交換
面向無連接服務:指傳輸數據前後沒有連接的建立,拆除,分組依據目的地址選擇路由.如存儲轉發
網路層的內容:
邏輯地址定址:是指從一個網路傳輸到另一個網路的源節點和目的節點的邏輯地址NH(數據鏈路層中的物理地址是指在同一網路中)
路由功能:路由選擇是指根據一定的原則和演算法在傳輸通路中選出一條通向目的節點的最佳路由.有非適應型(有隨機式,擴散式,固定式路選法)和自適應型(有孤立的,分布的,集中的路選法)兩種選擇演算法
流量控制:
擁塞控制:是指在通信子網中由於出現過量的數據包而引起網路性能下降的現象.
傳輸層(TransportLayer)
是計算機網路中的資源子網和通信子網的介面和橋梁,完成資源子網中兩節點間的直接邏輯通信.
傳輸層下面的三層屬於通信子網,完成有關的通信處理,向傳輸層提供網路服務;傳輸層上面的三層完成面向數據處理的功能,為用戶提供與網路之間的介面.由此可見,傳輸層在OSI/RM中起到承上啟下的作用,是整個網路體系結構的關鍵.
功能:實現通信子網端到端的可靠傳輸(保證通信的質量)
信息傳送的基本單位:報文
傳輸層採用的協議是ISO8072/3
會話層(SessionLayer)
又稱為會晤層,是利用傳輸層提供的端到端的服務向表示層或會話層用戶提供會話服務.
功能:提供一個面向用戶的連接服務,並為會話活動提供有效的組織和同步所必須的手段,為數據傳送提供控制和管理.
信息傳送的基本單位:報文
會話層採用的協議是ISO8326/7
表示層(PresentationLayer)
表示層處理的是OSI系統之間用戶信息的表示問題,通過抽象的方法來定義一種數據類型或數據結構,並通過使用這種抽象的數據結構在各端系統之間實現數據類型和編碼的轉換.
功能:數據編碼,數據壓縮,數據加密等工作
信息傳送的基本單位:報文
表示層採用的協議是ISO8822/3/4/5
應用層(ApplicationLayer)
應用層是計算機網路與最終用戶間的介面,是利用網路資源唯一向應用程序直接提供服務的層.
功能:包括系統管理員管理網路服務所涉及的所有問題和基本功能.
信息傳送的基本單位:用戶數據報文
應用層採用的協議有:用於文件傳送,存取和管理FTAM的ISO8571/1~4;用於虛終端VP的ISO9040/1;用於作業傳送與操作協議JTM的ISO8831/2;用於公共應用服務元素CASE的ISO8649/50
二、Internet的體系結構
Internet是由無數不同類型的伺服器,用戶終端以及路由器,網關,通信線路等連接組成,不同網路之間,不同類型設備之間要完成信息的交換,資源的共享需要有功能強大的網路軟體的支持,TCP/IP就是能夠完成互聯網這些功能的協議集.
㈣ TCP/IP協議分為哪四層,具體作用是什麼
TCP/IP通訊協議採用了4層的層級結構,每一層都呼叫它的下一層所提供的網路來完成自己的需求。這4層分別為:
應用層:應用程序間溝通的層,如簡單電子郵件傳輸(SMTP)、文件傳輸協議(FTP)、網路遠程訪問協議(Telnet)等。
傳輸層:在此層中,它提供了節點間的數據傳送,應用程序之間的通信服務,主要功能是數據格式化、數據確認和丟失重傳等。如傳輸控制協議(TCP)、用戶數據報協議(UDP)等,TCP和UDP給數據包加入傳輸數據並把它傳輸到下一層中,這一層負責傳送數據,並且確定數據已被送達並接收。
互連網路層:負責提供基本的數據封包傳送功能,讓每一塊數據包都能夠到達目的主機(但不檢查是否被正確接收),如網際協議(IP)。
網路介面層(主機-網路層):接收IP數據報並進行傳輸,從網路上接收物理幀,抽取IP數據報轉交給下一層,對實際的網路媒體的管理,定義如何使用實際網路(如Ethernet、Serial Line等)來傳送數據。
TCP/IP 是基於 TCP 和 IP 這兩個最初的協議之上的不同的通信協議的大的集合。
㈤ 計算機網路中五層協議它們分別的主要功能是什麼它們具體分別是在哪裡(從硬體層面上談)實現的
計算機網路中五層協議分別是(從下向上):
1) 物理層
2)數據鏈路層
3)網路層
4)傳輸層
5)應用層
其功能分別是:
1)物理層主要負責在物理線路上傳輸原始的二進制數據;
2)數據鏈路層主要負責在通信的實體間建立數據鏈路連接;
3)網路層主要負責創建邏輯鏈路,以及實現數據包的分片和重組,實現擁塞控制、網路互連等功能;
4)傳輸曾負責向用戶提供端到端的通信服務,實現流量控制以及差錯控制;
5)應用層為應用程序提供了網路服務。
一般來說,物理層和數據鏈路層是由計算機硬體(如網卡)實現的,網路層和傳輸層由操作系統軟體實現,而應用層由應用程序或用戶創建實現。
希望以上的回答能夠讓你滿意。
㈥ TCP/IP協議分為哪幾層每層具有哪些功能
TCP/IP協議分為4個層次,自上而下依次為應用層、傳輸層、網路層、網路介面層。
各層的功能如下:
1、應用層的功能為對客戶發出的一個請求,伺服器作出響應並提供相應的服務。
2、傳輸層的功能為通信雙方的主機提供端到端的服務,傳輸層對信息流具有調節作用,提供可靠性傳輸,確保數據到達無誤。
3、網路層功能為進行網路互連,根據網間報文IP地址,從一個網路通過路由器傳到另一網路。
4、網路介面層負責接收IP數據報,並負責把這些數據報發送到指定網路上。
(6)計算機網路介面層功能由什麼完成擴展閱讀
TCP/IP協議的主要特點:
(1)TCP/IP協議不依賴於任何特定的計算機硬體或操作系統,提供開放的協議標准,即使不考慮Internet,TCP/IP協議也獲得了廣泛的支持。所以TCP/IP協議成為一種聯合各種硬體和軟體的實用系統。
(2)標准化的高層協議,可以提供多種可靠的用戶服務。
(3)統一的網路地址分配方案,使得整個TCP/IP設備在網中都具有惟一的地址。
(4)TCP/IP協議並不依賴於特定的網路傳輸硬體,所以TCP/IP協議能夠集成各種各樣的網路。用戶能夠使用乙太網(Ethernet)、令牌環網(Token Ring Network)、撥號線路(Dial-up line)、X.25網以及所有的網路傳輸硬體。
㈦ TCP/IP參考模型的層次結構及各層的功能有哪些
1、TCP/IP共分四層,應用層、主機到主機層、網路層、網路介面層。
2、物理層是定義物理介質的各種特性;
網路層負責相鄰計算機之間的通信;
傳輸層提供應用程序間的通信;
應用層向用戶提供一組常用的應用程序。
㈧ tcp/ip協議按什麼分層,寫出每一層協議實現的功能
簡述TCP/IP協議的分層結構是數據鏈路層 、網路層、傳輸層、應用層。
1.數據鏈路層:
數據鏈路層是物理傳輸通道,可使用多種傳輸介質傳輸,可建立在任何物理傳輸網上。比如光纖、雙絞線等。
2.網路層:其主要功能是要完成網路中主機間「分組」(Packet)的傳輸。
含有4個協議:
(1)網際協議IP
負責分組數據的傳輸,各個IP數據之間是相互獨立的。
(2)互聯網控制報文協議ICMP
IP層內特殊的報文機制,起控製作用,能發送報告差錯或提供有關意外情況的信息,因為ICMP的數據報通過IP送出因此功能上屬於網路的第3層。
3)地址轉換協議ARP
為了讓差錯或意外情況的信息能在物理網上傳送到目的地,必須知道彼此的物理地址,這樣就存在把互聯網地址(是32位的IP地址來標識,是一種邏輯地址)轉換為物理地址的要求,這就需要在網路層上有一組服務(協議)能將IP地址轉換為相應的網路地址,這組協議就是APP.(可以把互聯網地址看成是外識別地址和物理地址看成是內識別地址)
(4)反向地址轉換協議RARP
RARP用於特殊情況,當只有自己的物理地址沒有IP地址時,可通過RARP獲得IP地址,如果遇到斷電或重啟狀態下,開機後還必需再使用RARP重新獲取IP地址,廣泛用於獲取無盤工作站的IP地址。
3.傳輸層:其主要任務是向上一層提供可靠的端到端(End-to-End)服務,確保「報文」無差錯、有序、不丟失、無重復地傳輸。它向高層屏蔽了下層數據通信的細節,是計算機通信體系結構中最關鍵的一層。包含以下2個重要協議:
(1)TCP :
TCP是TCP/IP體系中的傳輸層協議處於第4層傳輸層,負責數據的可靠傳輸(「三次握手」-建立連接、數據傳送、關閉連接)。
(2)UDP:
和TCP相比,數據傳輸的可靠性低,適合少量的可靠性要求不高的數據傳輸。
4.應用層:應用層確定進程間通信的性質,以滿足用戶的需要。
在應用層提供了多個常用協議。
①Telnet(Remote Login):遠程登錄
②FTP(File Transfer Protocol):文件傳輸協議
③SMTP(Simple Mail Transfer Protocol):簡單郵件傳輸協議
④POP3(Post Office Protocol 3):第三代郵局協議
⑤HTTP(Hyper Text Transfer Protocol):超文本傳輸協議
⑥NNTP(Network News Transfer Protocol):網路新聞傳輸協議