⑴ 為什麼OSI進行七層劃分,而非六層等好處是什麼出於什麼初衷
OSI 七層模型的每一層都具有清晰的特徵。基本來說,第七至第四層處理數據源和數據目的地之間的端到端通信,而第三至第一層處理網路設備間的通信。另外, OSI 模型的七層也可以劃分為兩組:上層(層 7 、層 6 和層 5 )和下層(層 4 、層 3 、層 2 和層 1 )。 OSI 模型的上層處理應用程序問題,並且通常只應用在軟體上。最高層,即應用層是與終端用戶最接近的。 OSI 模型的下層是處理數據傳輸的。物理層和數據鏈路層應用在硬體和軟體上。最底層,即物理層是與物理網路媒介(比如說,電線)最接近的,並且負責在媒介上發送數據。
各層的具體描述如下:
第七層:應用層
定義了用於在網路中進行通信和數據傳輸的介面 - 用戶程式;
提供標准服務,比如虛擬終端、文件以及任務的傳輸和處理;
第六層:表示層
掩蓋不同系統間的數據格式的不同性;
指定獨立結構的數據傳輸格式;
數據的編碼和解碼;加密和解密;壓縮和解壓縮
第五層:會話層
管理用戶會話和對話;
控制用戶間邏輯連接的建立和掛斷;
報告上一層發生的錯誤
第四層:傳輸層
管理網路中端到端的信息傳送;
通過錯誤糾正和流控制機制提供可靠且有序的數據包傳送;
提供面向無連接的數據包的傳送;
第三層:網路層
定義網路設備間如何傳輸數據;
根據唯一的網路設備地址路由數據包;
提供流和擁塞控制以防止網路資源的損耗
第二層:數據鏈路層
定義操作通信連接的程序;
封裝數據包為數據幀;
監測和糾正數據包傳輸錯誤
第一層:物理層
定義通過網路設備發送數據的物理方式;
作為網路媒介和設備間的介面;
定義光學、電氣以及機械特性。
⑵ 多層網路防禦系統有什麼作用
多層網路防禦系統通過層層「攔截」,提高整個信息防禦體系的效率。
如第1層防禦系統可防禦大量的日常性信息進攻威脅,「攔截」掉那些低技術進攻威脅;第2層和其他各層可依次用來防禦專業化、目的性很強的戰略性進攻威脅,最終實現確保信息的安全。
⑶ 簡要概述網路安全保障體系的總體框架
網路安全保障體系的總體框架
1.網路安全整體保障體系
計算機網路安全的整體保障作用,主要體現在整個系統生命周期對風險進行整體的管理、應對和控制。網路安全整體保障體系如圖1所示。
圖4 網路安全保障體系框架結構
【拓展閱讀】:風險管理是指在對風險的可能性和不確定性等因素進行收集、分析、評估、預測的基礎上,制定的識別、衡量、積極應對、有效處置風險及妥善處理風險等一整套系統而科學的管理方法,以避免和減少風險損失。網路安全管理的本質是對信息安全風險的動態有效管理和控制。風險管理是企業運營管理的核心,風險分為信用風險、市場風險和操作風險,其中包括信息安全風險。
實際上,在網路信息安全保障體系框架中,充分體現了風險管理的理念。網路安全保障體系架構包括五個部分:
(1)網路安全策略。以風險管理為核心理念,從長遠發展規劃和戰略角度通盤考慮網路建設安全。此項處於整個體系架構的上層,起到總體的戰略性和方向性指導的作用。
(2)網路安全政策和標准。網路安全政策和標準是對網路安全策略的逐層細化和落實,包括管理、運作和技術三個不同層面,在每一層面都有相應的安全政策和標准,通過落實標准政策規范管理、運作和技術,以保證其統一性和規范性。當三者發生變化時,相應的安全政策和標准也需要調整相互適應,反之,安全政策和標准也會影響管理、運作和技術。
(3)網路安全運作。網路安全運作基於風險管理理念的日常運作模式及其概念性流程(風險評估、安全控制規劃和實施、安全監控及響應恢復)。是網路安全保障體系的核心,貫穿網路安全始終;也是網路安全管理機制和技術機制在日常運作中的實現,涉及運作流程和運作管理。
(4)網路安全管理。網路安全管理是體系框架的上層基礎,對網路安全運作至關重要,從人員、意識、職責等方面保證網路安全運作的順利進行。網路安全通過運作體系實現,而網路安全管理體系是從人員組織的角度保證正常運作,網路安全技術體系是從技術角度保證運作。
(5)網路安全技術。網路安全運作需要的網路安全基礎服務和基礎設施的及時支持。先進完善的網路安全技術可以極大提高網路安全運作的有效性,從而達到網路安全保障體系的目標,實現整個生命周期(預防、保護、檢測、響應與恢復)的風險防範和控制。
引自高等教育出版社網路安全技術與實踐賈鐵軍主編2014.9
⑷ OSI七層型的層次結構是什麼
OSI七層型從低到高依次是:物理層、數據鏈路層、網路層、傳輸層、會話層、表示層和應用層。
1、應用層:網路服務與最終用戶的一個介面。
2、表示層:數據的表示、安全、壓縮。(在五層模型裡面已經合並到了應用層),格式有,JPEG、ASCll、EBCDIC、加密格式等。
3、會話層:建立、管理、終止會話。(在五層模型裡面已經合並到了應用層),對應主機進程,指本地主機與遠程主機正在進行的會話。
4、傳輸層:定義傳輸數據的協議埠號,以及流控和差錯校驗。
協議有:TCP、UDP,數據包一旦離開網卡即進入網路傳輸層。
5、網路層:進行邏輯地址定址,實現不同網路之間的路徑選擇。
協議有:ICMP、IGMP、IP(IPV4、IPV6)。
6、數據鏈路層:建立邏輯連接、進行硬體地址定址、差錯校驗等功能。將比特組合成位元組進而組合成幀,用MAC地址訪問介質,錯誤發現但不能糾正。
7、物理層:建立、維護、斷開物理連接。
TCP/IP 層級模型結構,應用層之間的協議通過逐級調用傳輸層、網路層和物理數據鏈路層而可以實現應用層的應用程序通信互聯。
⑸ 計算機網路的分層體系結構
第一層:物理層(PhysicalLayer),規定通信設備的機械的、電氣的、功能的和過程的特性,用以建立、維護和拆除物理鏈路連接。具體地講,機械特性規定了網路連接時所需接插件的規格尺寸、引腳數量和排列情況等;電氣特性規定了在物理連接上傳輸bit流時線路上信號電平的大小、阻抗匹配、傳輸速率距離限制等;功能特性是指對各個信號先分配確切的信號含義,即定義了DTE和DCE之間各個線路的功能;規程特性定義了利用信號線進行bit流傳輸的一組操作規程,是指在物理連接的建立、維護、交換信息是,DTE和DCE雙放在各電路上的動作系列。
在這一層,數據的單位稱為比特(bit)。
屬於物理層定義的典型規范代表包括:EIA/TIA RS-232、EIA/TIA RS-449、V.35、RJ-45等。
第二層:數據鏈路層(DataLinkLayer):在物理層提供比特流服務的基礎上,建立相鄰結點之間的數據鏈路,通過差錯控制提供數據幀(Frame)在信道上無差錯的傳輸,並進行各電路上的動作系列。
數據鏈路層在不可靠的物理介質上提供可靠的傳輸。該層的作用包括:物理地址定址、數據的成幀、流量控制、數據的檢錯、重發等。
在這一層,數據的單位稱為幀(frame)。
數據鏈路層協議的代表包括:SDLC、HDLC、PPP、STP、幀中繼等。
第三層是網路層(Network layer)
在計算機網路中進行通信的兩個計算機之間可能會經過很多個數據鏈路,也可能還要經過很多通信子網。網路層的任務就是選擇合適的網間路由和交換結點, 確保數據及時傳送。網路層將數據鏈路層提供的幀組成數據包,包中封裝有網路層包頭,其中含有邏輯地址信息- -源站點和目的站點地址的網路地址。
如果你在談論一個IP地址,那麼你是在處理第3層的問題,這是「數據包」問題,而不是第2層的「幀」。IP是第3層問題的一部分,此外還有一些路由協議和地址解析協議(ARP)。有關路由的一切事情都在第3層處理。地址解析和路由是3層的重要目的。網路層還可以實現擁塞控制、網際互連等功能。
在這一層,數據的單位稱為數據包(packet)。
網路層協議的代表包括:IP、IPX、RIP、OSPF等。
第四層是處理信息的傳輸層(Transport layer)。第4層的數據單元也稱作數據包(packets)。但是,當你談論TCP等具體的協議時又有特殊的叫法,TCP的數據單元稱為段(segments)而UDP協議的數據單元稱為「數據報(datagrams)」。這個層負責獲取全部信息,因此,它必須跟蹤數據單元碎片、亂序到達的數據包和其它在傳輸過程中可能發生的危險。第4層為上層提供端到端(最終用戶到最終用戶)的透明的、可靠的數據傳輸服務。所為透明的傳輸是指在通信過程中傳輸層對上層屏蔽了通信傳輸系統的具體細節。
傳輸層協議的代表包括:TCP、UDP、SPX等。
第五層是會話層(Session layer)
這一層也可以稱為會晤層或對話層,在會話層及以上的高層次中,數據傳送的單位不再另外命名,統稱為報文。會話層不參與具體的傳輸,它提供包括訪問驗證和會話管理在內的建立和維護應用之間通信的機制。如伺服器驗證用戶登錄便是由會話層完成的。
第六層是表示層(Presentation layer)
這一層主要解決用戶信息的語法表示問題。它將欲交換的數據從適合於某一用戶的抽象語法,轉換為適合於OSI系統內部使用的傳送語法。即提供格式化的表示和轉換數據服務。數據的壓縮和解壓縮, 加密和解密等工作都由表示層負責。
第七層應用層(Application layer),應用層為操作系統或網路應用程序提供訪問網路服務的介面。
應用層協議的代表包括:Telnet、FTP、HTTP、SNMP等。
⑹ 什麼是多層網路防禦系統
採用多層阻擋和防禦系統可通過層層「攔截」信息進攻。提高整個信息防禦體系的效率。
如第1層防禦系統可防禦大量的日常性信息進攻威脅,「攔截」掉那些低技術進攻威脅;第2層和其他各層可依次用來防禦專業化、目的性很強的戰略性進攻威脅,最終實現確保信息的安全。加拿大Sagus安全公司研製的多層信息防禦系統,可實施4個層次的防護。第1層是用戶層,第2層是網路層,第3層是各種伺服器,第4層才是主機。
⑺ 計算機網路安全體系結構包括什麼
計算機網路安全體系結構是由硬體網路、通信軟體以及操作系統構成的。
對於一個系統而言,首先要以硬體電路等物理設備為載體,然後才能運 行載體上的功能程序。通過使用路由器、集線器、交換機、網線等網路設備,用戶可以搭建自己所需要的通信網路,對於小范圍的無線區域網而言,人們可以使用這 些設備搭建用戶需要的通信網路,最簡單的防護方式是對無線路由器設置相應的指令來防止非法用戶的入侵,這種防護措施可以作為一種通信協議保護。
計算機網路安全廣泛採用WPA2加密協議實現協議加密,用戶只有通過使用密匙才能對路由器進行訪問,通常可以講驅動程序看作為操作系統的一部分,經過注冊表注冊後,相應的網路 通信驅動介面才能被通信應用程序所調用。網路安全通常是指網路系統中的硬體、軟體要受到保護,不能被更改、泄露和破壞,能夠使整個網路得到可持續的穩定運 行,信息能夠完整的傳送,並得到很好的保密。因此計算機網路安全設計到網路硬體、通信協議、加密技術等領域。
計算機安全的啟示:
1、按先進國家的經驗,考慮不安全因素,網路介面設備選用本國的,不使用外國貨。
2、網路安全設施使用國產品。
3、自行開發。
網路的拓撲結構:重要的是確定信息安全邊界
1、一般結構:外部區、公共服務區、內部區。
2、考慮國家利益的結構:外部區、公共服務區、內部區及稽查系統和代理伺服器定位。
3、重點考慮撥號上網的安全問題:遠程訪問伺服器,放置在什麼位置上,能滿足安全的需求。
⑻ 計算機病毒有哪些防治措施
計算機病毒防治措施有:
1.建立有效的計算機病毒防護體系。有效的計算機病毒防護體系應包括多個防護層。
(1)訪問控制層;
(2)病毒檢測層;
(3)病毒遏制層;
(4)病毒清除層;
(5)系統恢復層;
(6)應急計劃層。
上述六層計算機防護體系,須有有效的硬體和軟體技術的支持,如安全設計及規范操作。
2.嚴把收硬體安全關。國家的機密信息系統所用設備和系列產品,應建立自己的生產企業,實現計算機的國產化、系列化;對引進的計算機系統要在進行安全性檢查後才能啟用,以預防和限制計算機病毒伺機入侵。
3.防止電磁輻射和電磁泄露。採取電磁屏蔽的方法,阻斷電磁波輻射,這樣,不僅可以達到防止計算機信息泄露的目的,而且可以防止「電磁輻射式」病毒的攻擊。
4.加強計算機應急反應分隊建設。應成立自動化系統安全支援分隊,以解決計算機防禦性的有關問題。早在1994年,美國軟體工程學院就成立了計算機應急反應分隊。
計算機病毒攻擊與防禦手段是不斷發展的,要在計算機病毒對抗中保持領先地位,必須根據發展趨勢,在關鍵技術環節上實施跟蹤研究。實施跟蹤研究應著重圍繞以下方面進行:
(1)計算機病毒的數學模型。
(2)計算機病毒的注入方式,重點研究「固化」病毒的激發。
(3)計算機病毒的攻擊方式,重點研究網路間無線傳遞數據的標准化,以及它的安全脆弱性和高頻電磁脈沖病毒槍置人病毒的有效性。
(4)研究對付計算機病毒的安全策略及防禦技術。