導航:首頁 > 網路問題 > 生成器的深度網路模型有哪些

生成器的深度網路模型有哪些

發布時間:2022-10-11 09:12:02

『壹』 有哪些深度神經網路模型

卷積神經元(Convolutional cells)和前饋神經元非常相似,除了它們只跟前一神經細胞層的部分神經元有連接。因為它們不是和某些神經元隨機連接的,而是與特定范圍內的神經元相連接,通常用來保存空間信息。這讓它們對於那些擁有大量局部信息,比如圖像數據、語音數據(但多數情況下是圖像數據),會非常實用。

解卷積神經元恰好相反:它們是通過跟下一神經細胞層的連接來解碼空間信息。這兩種神經元都有很多副本,它們都是獨立訓練的;每個副本都有自己的權重,但連接方式卻完全相同。可以認為,這些副本是被放在了具備相同結構的不同的神經網路中。這兩種神經元本質上都是一般意義上的神經元,但是,它們的使用方式卻不同。

池化神經元和插值神經元(Pooling and interpolating cells)經常和卷積神經元結合起來使用。它們不是真正意義上的神經元,只能進行一些簡單的操作。

池化神經元接受到來自其它神經元的輸出過後,決定哪些值可以通過,哪些值不能通過。在圖像領域,可以理解成是把一個圖像縮小了(在查看圖片的時候,一般軟體都有一個放大、縮小的功能;這里的圖像縮小,就相當於軟體上的縮小圖像;也就是說我們能看到圖像的內容更加少了;在這個池化的過程當中,圖像的大小也會相應地減少)。這樣,你就再也不能看到所有的像素了,池化函數會知道什麼像素該保留,什麼像素該舍棄。

插值神經元恰好是相反的操作:它們獲取一些信息,然後映射出更多的信息。額外的信息都是按照某種方式製造出來的,這就好像在一張小解析度的圖片上面進行放大。插值神經元不僅僅是池化神經元的反向操作,而且,它們也是很常見,因為它們運行非常快,同時,實現起來也很簡單。池化神經元和插值神經元之間的關系,就像卷積神經元和解卷積神經元之間的關系。

均值神經元和標准方差神經元(Mean and standard deviation cells)(作為概率神經元它們總是成對地出現)是一類用來描述數據概率分布的神經元。均值就是所有值的平均值,而標准方差描述的是這些數據偏離(兩個方向)均值有多遠。比如:一個用於圖像處理的概率神經元可以包含一些信息,比如:在某個特定的像素裡面有多少紅色。舉個例來說,均值可能是0.5,同時標准方差是0.2。當要從這些概率神經元取樣的時候,你可以把這些值輸入到一個高斯隨機數生成器,這樣就會生成一些分布在0.4和0.6之間的值;值離0.5越遠,對應生成的概率也就越小。它們一般和前一神經元層或者下一神經元層是全連接,而且,它們沒有偏差(bias)。

循環神經元(Recurrent cells )不僅僅在神經細胞層之間有連接,而且在時間軸上也有相應的連接。每一個神經元內部都會保存它先前的值。它們跟一般的神經元一樣更新,但是,具有額外的權重:與當前神經元之前值之間的權重,還有大多數情況下,與同一神經細胞層各個神經元之間的權重。當前值和存儲的先前值之間權重的工作機制,與非永久性存儲器(比如RAM)的工作機制很相似,繼承了兩個性質:

『貳』 CNN、RNN、DNN的一般解釋

CNN(卷積神經網路)、RNN(循環神經網路)、DNN(深度神經網路)的內部網路結構有什麼區別?

轉自知乎 科言君  的回答

神經網路技術起源於上世紀五、六十年代,當時叫 感知機 (perceptron),擁有輸入層、輸出層和一個隱含層。輸入的特徵向量通過隱含層變換達到輸出層,在輸出層得到分類結果。早期感知機的推動者是Rosenblatt。 (扯一個不相關的:由於計算技術的落後,當時感知器傳輸函數是用線拉動變阻器改變電阻的方法機械實現的,腦補一下科學家們扯著密密麻麻的導線的樣子…)

但是,Rosenblatt的單層感知機有一個嚴重得不能再嚴重的問題,即它對稍復雜一些的函數都無能為力(比如最為典型的「異或」操作)。連異或都不能擬合,你還能指望這貨有什麼實際用途么o(╯□╰)o

隨著數學的發展,這個缺點直到上世紀八十年代才被Rumelhart、Williams、Hinton、LeCun等人(反正就是一票大牛)發明的 多層感知機 (multilayerperceptron)克服。多層感知機,顧名思義,就是有多個隱含層的感知機(廢話……)。好好,我們看一下多層感知機的結構:

圖1 上下層神經元全部相連的神經網路——多層感知機

多層感知機可以擺脫早期離散傳輸函數的束縛,使用sigmoid或tanh等連續函數模擬神經元對激勵的響應,在訓練演算法上則使用Werbos發明的反向傳播BP演算法。對,這貨就是我們現在所說的 神經網路 NN ——神經網路聽起來不知道比感知機高端到哪裡去了!這再次告訴我們起一個好聽的名字對於研(zhuang)究(bi)很重要!

多層感知機解決了之前無法模擬異或邏輯的缺陷,同時更多的層數也讓網路更能夠刻畫現實世界中的復雜情形。相信年輕如Hinton當時一定是春風得意。

多層感知機給我們帶來的啟示是, 神經網路的層數直接決定了它對現實的刻畫能力 ——利用每層更少的神經元擬合更加復雜的函數[1]。

(Bengio如是說:functions that can be compactly

represented by a depth k architecture might require an exponential number of

computational elements to be represented by a depth k − 1 architecture.)

即便大牛們早就預料到神經網路需要變得更深,但是有一個夢魘總是縈繞左右。隨著神經網路層數的加深, 優化函數越來越容易陷入局部最優解 ,並且這個「陷阱」越來越偏離真正的全局最優。利用有限數據訓練的深層網路,性能還不如較淺層網路。同時,另一個不可忽略的問題是隨著網路層數增加, 「梯度消失」現象更加嚴重 。具體來說,我們常常使用sigmoid作為神經元的輸入輸出函數。對於幅度為1的信號,在BP反向傳播梯度時,每傳遞一層,梯度衰減為原來的0.25。層數一多,梯度指數衰減後低層基本上接受不到有效的訓練信號。

2006年,Hinton利用預訓練方法緩解了局部最優解問題,將隱含層推動到了7層[2],神經網路真正意義上有了「深度」,由此揭開了深度學習的熱潮。這里的「深度」並沒有固定的定義——在語音識別中4層網路就能夠被認為是「較深的」,而在圖像識別中20層以上的網路屢見不鮮。為了克服梯度消失,ReLU、maxout等傳輸函數代替了sigmoid,形成了如今DNN的基本形式。單從結構上來說, 全連接的 DNN 和圖 1 的多層感知機是沒有任何區別的 。

值得一提的是,今年出現的高速公路網路(highway network)和深度殘差學習(deep resial learning)進一步避免了梯度消失,網路層數達到了前所未有的一百多層(深度殘差學習:152層)[3,4]!具體結構題主可自行搜索了解。如果你之前在懷疑是不是有很多方法打上了「深度學習」的噱頭,這個結果真是深得讓人心服口服。

圖2 縮減版的深度殘差學習網路,僅有34 層,終極版有152 層,自行感受一下

如圖1所示,我們看到 全連接 DNN 的結構里下層神經元和所有上層神經元都能夠形成連接 ,帶來的潛在問題是 參數數量的膨脹 。假設輸入的是一幅像素為1K*1K的圖像,隱含層有1M個節點,光這一層就有10^12個權重需要訓練,這不僅容易過擬合,而且極容易陷入局部最優。另外,圖像中有固有的局部模式(比如輪廓、邊界,人的眼睛、鼻子、嘴等)可以利用,顯然應該將圖像處理中的概念和神經網路技術相結合。此時我們可以祭出題主所說的卷積神經網路CNN。對於CNN來說,並不是所有上下層神經元都能直接相連,而是 通過「卷積核」作為中介。同一個卷積核在所有圖像內是共享的,圖像通過卷積操作後仍然保留原先的位置關系。 兩層之間的卷積傳輸的示意圖如下:

圖3 卷積神經網路隱含層(摘自Theano 教程)

通過一個例子簡單說明卷積神經網路的結構。假設圖3中m-1=1是輸入層,我們需要識別一幅彩色圖像,這幅圖像具有四個通道ARGB(透明度和紅綠藍,對應了四幅相同大小的圖像),假設卷積核大小為100*100,共使用100個卷積核w1到w100(從直覺來看,每個卷積核應該學習到不同的結構特徵)。用w1在ARGB圖像上進行卷積操作,可以得到隱含層的第一幅圖像;這幅隱含層圖像左上角第一個像素是四幅輸入圖像左上角100*100區域內像素的加權求和,以此類推。同理,算上其他卷積核,隱含層對應100幅「圖像」。每幅圖像對是對原始圖像中不同特徵的響應。按照這樣的結構繼續傳遞下去。CNN中還有max-pooling等操作進一步提高魯棒性。

圖4 一個典型的卷積神經網路結構,注意到最後一層實際上是一個全連接層(摘自Theano 教程)

在這個例子里,我們注意到 輸入層到隱含層的參數瞬間降低到了 100*100*100=10^6 個 !這使得我們能夠用已有的訓練數據得到良好的模型。題主所說的適用於圖像識別,正是由於 CNN 模型限制參數了個數並挖掘了局部結構的這個特點 。順著同樣的思路,利用語音語譜結構中的局部信息,CNN照樣能應用在語音識別中。

全連接的DNN還存在著另一個問題——無法對時間序列上的變化進行建模。然而, 樣本出現的時間順序對於自然語言處理、語音識別、手寫體識別等應用非常重要 。對了適應這種需求,就出現了題主所說的另一種神經網路結構——循環神經網路RNN。

在普通的全連接網路或CNN中,每層神經元的信號只能向上一層傳播,樣本的處理在各個時刻獨立,因此又被成為前向神經網路(Feed-forward Neural Networks)。而在 RNN 中,神經元的輸出可以在下一個時間戳直接作用到自身 ,即第i層神經元在m時刻的輸入,除了(i-1)層神經元在該時刻的輸出外,還包括其自身在(m-1)時刻的輸出!表示成圖就是這樣的:

圖5 RNN 網路結構

我們可以看到在隱含層節點之間增加了互連。為了分析方便,我們常將RNN在時間上進行展開,得到如圖6所示的結構:

圖6 RNN 在時間上進行展開

Cool, ( t+1 )時刻網路的最終結果O(t+1) 是該時刻輸入和所有歷史共同作用的結果 !這就達到了對時間序列建模的目的。

不知題主是否發現,RNN可以看成一個在時間上傳遞的神經網路,它的深度是時間的長度!正如我們上面所說, 「梯度消失」現象又要出現了,只不過這次發生在時間軸上 。對於t時刻來說,它產生的梯度在時間軸上向歷史傳播幾層之後就消失了,根本就無法影響太遙遠的過去。因此,之前說「所有歷史」共同作用只是理想的情況,在實際中,這種影響也就只能維持若干個時間戳。

為了解決時間上的梯度消失,機器學習領域發展出了 長短時記憶單元 LSTM ,通過門的開關實現時間上記憶功能,並防止梯度消失 ,一個LSTM單元長這個樣子:

圖7 LSTM 的模樣

除了題主疑惑的三種網路,和我之前提到的深度殘差學習、LSTM外,深度學習還有許多其他的結構。舉個例子,RNN既然能繼承歷史信息,是不是也能吸收點未來的信息呢?因為在序列信號分析中,如果我能預知未來,對識別一定也是有所幫助的。因此就有了 雙向 RNN 、雙向 LSTM ,同時利用歷史和未來的信息。

圖8 雙向RNN

事實上, 不論是那種網路,他們在實際應用中常常都混合著使用,比如 CNN 和RNN 在上層輸出之前往往會接上全連接層,很難說某個網路到底屬於哪個類別。 不難想像隨著深度學習熱度的延續,更靈活的組合方式、更多的網路結構將被發展出來。盡管看起來千變萬化,但研究者們的出發點肯定都是為了解決特定的問題。題主如果想進行這方面的研究,不妨仔細分析一下這些結構各自的特點以及它們達成目標的手段。入門的話可以參考:

Ng寫的Ufldl: UFLDL教程 - Ufldl

也可以看Theano內自帶的教程,例子非常具體: Deep Learning Tutorials

歡迎大家繼續推薦補充。

當然啦,如果題主只是想湊個熱鬧時髦一把,或者大概了解一下方便以後把妹使,這樣看看也就罷了吧。

參考文獻:

[1]

Bengio Y. Learning Deep

Architectures for AI[J]. Foundations & Trends® in Machine Learning, 2009,

2(1):1-127.

[2]

Hinton G E, Salakhutdinov R R.

Recing the Dimensionality of Data with Neural Networks[J]. Science, 2006,

313(5786):504-507.

[3]

He K, Zhang X, Ren S, Sun J. Deep

Resial Learning for Image Recognition. arXiv:1512.03385, 2015.

[4]

Srivastava R K, Greff K,

Schmidhuber J. Highway networks. arXiv:1505.00387, 2015.

『叄』 深度學習之卷積神經網路經典模型

LeNet-5模型 在CNN的應用中,文字識別系統所用的LeNet-5模型是非常經典的模型。LeNet-5模型是1998年,Yann LeCun教授提出的,它是第一個成功大規模應用在手寫數字識別問題的卷積神經網路,在MNIST數據集中的正確率可以高達99.2%。

下面詳細介紹一下LeNet-5模型工作的原理。
LeNet-5模型一共有7層,每層包含眾多參數,也就是卷積神經網路中的參數。雖然層數只有7層,這在如今龐大的神經網路中可是說是非常少的了,但是包含了卷積層,池化層,全連接層,可謂麻雀雖小五臟俱全了。為了方便,我們把卷積層稱為C層,下采樣層叫做下采樣層。
首先,輸入層輸入原始圖像,原始圖像被處理成32×32個像素點的值。然後,後面的隱層計在卷積和子抽樣之間交替進行。C1層是卷積層,包含了六個特徵圖。每個映射也就是28x28個神經元。卷積核可以是5x5的十字形,這28×28個神經元共享卷積核權值參數,通過卷積運算,原始信號特徵增強,同時也降低了雜訊,當卷積核不同時,提取到圖像中的特徵不同;C2層是一個池化層,池化層的功能在上文已經介紹過了,它將局部像素值平均化來實現子抽樣。
池化層包含了六個特徵映射,每個映射的像素值為14x14,這樣的池化層非常重要,可以在一定程度上保證網路的特徵被提取,同時運算量也大大降低,減少了網路結構過擬合的風險。因為卷積層與池化層是交替出現的,所以隱藏層的第三層又是一個卷積層,第二個卷積層由16個特徵映射構成,每個特徵映射用於加權和計算的卷積核為10x10的。第四個隱藏層,也就是第二個池化層同樣包含16個特徵映射,每個特徵映射中所用的卷積核是5x5的。第五個隱藏層是用5x5的卷積核進行運算,包含了120個神經元,也是這個網路中卷積運算的最後一層。
之後的第六層便是全連接層,包含了84個特徵圖。全連接層中對輸入進行點積之後加入偏置,然後經過一個激活函數傳輸給輸出層的神經元。最後一層,也就是第七層,為了得到輸出向量,設置了十個神經元來進行分類,相當於輸出一個包含十個元素的一維數組,向量中的十個元素即0到9。
AlexNet模型
AlexNet簡介
2012年Imagenet圖像識別大賽中,Alext提出的alexnet網路模型一鳴驚人,引爆了神經網路的應用熱潮,並且贏得了2012屆圖像識別大賽的冠軍,這也使得卷積神經網路真正意義上成為圖像處理上的核心演算法。上文介紹的LeNet-5出現在上個世紀,雖然是經典,但是迫於種種復雜的現實場景限制,只能在一些領域應用。不過,隨著SVM等手工設計的特徵的飛速發展,LeNet-5並沒有形成很大的應用狀況。隨著ReLU與dropout的提出,以及GPU帶來算力突破和互聯網時代大數據的爆發,卷積神經網路帶來歷史的突破,AlexNet的提出讓深度學習走上人工智慧的最前端。
圖像預處理
AlexNet的訓練數據採用ImageNet的子集中的ILSVRC2010數據集,包含了1000類,共1.2百萬的訓練圖像,50000張驗證集,150000張測試集。在進行網路訓練之前我們要對數據集圖片進行預處理。首先我們要將不同解析度的圖片全部變成256x256規格的圖像,變換方法是將圖片的短邊縮放到 256像素值,然後截取長邊的中間位置的256個像素值,得到256x256大小的圖像。除了對圖片大小進行預處理,還需要對圖片減均值,一般圖像均是由RGB三原色構成,均值按RGB三分量分別求得,由此可以更加突出圖片的特徵,更方便後面的計算。
此外,對了保證訓練的效果,我們仍需對訓練數據進行更為嚴苛的處理。在256x256大小的圖像中,截取227x227大小的圖像,在此之後對圖片取鏡像,這樣就使得原始數據增加了(256-224)x(256-224)x2= 2048倍。最後對RGB空間做PCA,然後對主成分做(0,0.1)的高斯擾動,結果使錯誤率下降1%。對測試數據而言,抽取以圖像4個角落的大小為224224的圖像,中心的224224大小的圖像以及它們的鏡像翻轉圖像,這樣便可以獲得10張圖像,我們便可以利用softmax進行預測,對所有預測取平均作為最終的分類結果。
ReLU激活函數
之前我們提到常用的非線性的激活函數是sigmoid,它能夠把輸入的連續實值全部確定在0和1之間。但是這帶來一個問題,當一個負數的絕對值很大時,那麼輸出就是0;如果是絕對值非常大的正數,輸出就是1。這就會出現飽和的現象,飽和現象中神經元的梯度會變得特別小,這樣必然會使得網路的學習更加困難。此外,sigmoid的output的值並不是0為均值,因為這會導致上一層輸出的非0均值信號會直接輸入到後一層的神經元上。所以AlexNet模型提出了ReLU函數,公式:f(x)=max(0,x)f(x)=max(0,x)。

用ReLU代替了Sigmoid,發現使用 ReLU 得到的SGD的收斂速度會比 sigmoid快很多,這成了AlexNet模型的優勢之一。
Dropout
AlexNet模型提出了一個有效的模型組合方式,相比於單模型,只需要多花費一倍的時間,這種方式就做Dropout。在整個神經網路中,隨機選取一半的神經元將它們的輸出變成0。這種方式使得網路關閉了部分神經元,減少了過擬合現象。同時訓練的迭代次數也得以增加。當時一個GTX580 GPU只有3GB內存,這使得大規模的運算成為不可能。但是,隨著硬體水平的發展,當時的GPU已經可以實現並行計算了,並行計算之後兩塊GPU可以互相通信傳輸數據,這樣的方式充分利用了GPU資源,所以模型設計利用兩個GPU並行運算,大大提高了運算效率。
模型分析

AlexNet模型共有8層結構,其中前5層為卷積層,其中前兩個卷積層和第五個卷積層有池化層,其他卷積層沒有。後面3層為全連接層,神經元約有六十五萬個,所需要訓練的參數約六千萬個。
圖片預處理過後,進過第一個卷積層C1之後,原始的圖像也就變成了55x55的像素大小,此時一共有96個通道。模型分為上下兩塊是為了方便GPU運算,48作為通道數目更加適合GPU的並行運算。上圖的模型里把48層直接變成了一個面,這使得模型看上去更像一個立方體,大小為55x55x48。在後面的第二個卷積層C2中,卷積核的尺寸為5x5x48,由此再次進行卷積運算。在C1,C2卷積層的卷積運算之後,都會有一個池化層,使得提取特徵之後的特徵圖像素值大大減小,方便了運算,也使得特徵更加明顯。而第三層的卷積層C3又是更加特殊了。第三層卷積層做了通道的合並,將之前兩個通道的數據再次合並起來,這是一種串接操作。第三層後,由於串接,通道數變成256。全卷積的卷積核尺寸也就變成了13×13×25613×13×256。一個有4096個這樣尺寸的卷積核分別對輸入圖像做4096次的全卷積操作,最後的結果就是一個列向量,一共有4096個數。這也就是最後的輸出,但是AlexNet最終是要分1000個類,所以通過第八層,也就是全連接的第三層,由此得到1000個類輸出。
Alexnet網路中各個層發揮了不同的作用,ReLU,多個CPU是為了提高訓練速度,重疊pool池化是為了提高精度,且不容易產生過擬合,局部歸一化響應是為了提高精度,而數據增益與dropout是為了減少過擬合。
VGG net
在ILSVRC-2014中,牛津大學的視覺幾何組提出的VGGNet模型在定位任務第一名和分類任務第一名[[i]]。如今在計算機視覺領域,卷積神經網路的良好效果深得廣大開發者的喜歡,並且上文提到的AlexNet模型擁有更好的效果,所以廣大從業者學習者試圖將其改進以獲得更好地效果。而後來很多人經過驗證認為,AlexNet模型中所謂的局部歸一化響應浪費了計算資源,但是對性能卻沒有很大的提升。VGG的實質是AlexNet結構的增強版,它側重強調卷積神經網路設計中的深度。將卷積層的深度提升到了19層,並且在當年的ImageNet大賽中的定位問題中獲得了第一名的好成績。整個網路向人們證明了我們是可以用很小的卷積核取得很好地效果,前提是我們要把網路的層數加深,這也論證了我們要想提高整個神經網路的模型效果,一個較為有效的方法便是將它的深度加深,雖然計算量會大大提高,但是整個復雜度也上升了,更能解決復雜的問題。雖然VGG網路已經誕生好幾年了,但是很多其他網路上效果並不是很好地情況下,VGG有時候還能夠發揮它的優勢,讓人有意想不到的收獲。

與AlexNet網路非常類似,VGG共有五個卷積層,並且每個卷積層之後都有一個池化層。當時在ImageNet大賽中,作者分別嘗試了六種網路結構。這六種結構大致相同,只是層數不同,少則11層,多達19層。網路結構的輸入是大小為224*224的RGB圖像,最終將分類結果輸出。當然,在輸入網路時,圖片要進行預處理。
VGG網路相比AlexNet網路,在網路的深度以及寬度上做了一定的拓展,具體的卷積運算還是與AlexNet網路類似。我們主要說明一下VGG網路所做的改進。第一點,由於很多研究者發現歸一化層的效果並不是很好,而且佔用了大量的計算資源,所以在VGG網路中作者取消了歸一化層;第二點,VGG網路用了更小的3x3的卷積核,而兩個連續的3x3的卷積核相當於5x5的感受野,由此類推,三個3x3的連續的卷積核也就相當於7x7的感受野。這樣的變化使得參數量更小,節省了計算資源,將資源留給後面的更深層次的網路。第三點是VGG網路中的池化層特徵池化核改為了2x2,而在AlexNet網路中池化核為3x3。這三點改進無疑是使得整個參數運算量下降,這樣我們在有限的計算平台上能夠獲得更多的資源留給更深層的網路。由於層數較多,卷積核比較小,這樣使得整個網路的特徵提取效果很好。其實由於VGG的層數較多,所以計算量還是相當大的,卷積層比較多成了它最顯著的特點。另外,VGG網路的拓展性能比較突出,結構比較簡潔,所以它的遷移性能比較好,遷移到其他數據集的時候泛化性能好。到現在為止,VGG網路還經常被用來提出特徵。所以當現在很多較新的模型效果不好時,使用VGG可能會解決這些問題。
GoogleNet
谷歌於2014年Imagenet挑戰賽(ILSVRC14)憑借GoogleNet再次斬獲第一名。這個通過增加了神經網路的深度和寬度獲得了更好地效果,在此過程中保證了計算資源的不變。這個網路論證了加大深度,寬度以及訓練數據的增加是現有深度學習獲得更好效果的主要方式。但是增加尺寸可能會帶來過擬合的問題,因為深度與寬度的加深必然會帶來過量的參數。此外,增加網路尺寸也帶來了對計算資源侵佔過多的缺點。為了保證計算資源充分利用的前提下去提高整個模型的性能,作者使用了Inception模型,這個模型在下圖中有展示,可以看出這個有點像金字塔的模型在寬度上使用並聯的不同大小的卷積核,增加了卷積核的輸出寬度。因為使用了較大尺度的卷積核增加了參數。使用了1*1的卷積核就是為了使得參數的數量最少。

Inception模塊
上圖表格為網路分析圖,第一行為卷積層,輸入為224×224×3 ,卷積核為7x7,步長為2,padding為3,輸出的維度為112×112×64,這裡面的7x7卷積使用了 7×1 然後 1×7 的方式,這樣便有(7+7)×64×3=2,688個參數。第二行為池化層,卷積核為3×33×3,滑動步長為2,padding為 1 ,輸出維度:56×56×64,計算方式:1/2×(112+2×1?3+1)=56。第三行,第四行與第一行,第二行類似。第 5 行 Inception mole中分為4條支線,輸入均為上層產生的 28×28×192 結果:第 1 部分,1×1 卷積層,輸出大小為28×28×64;第 2 部分,先1×1卷積層,輸出大小為28×28×96,作為輸入進行3×3卷積層,輸出大小為28×28×128;第 3部分,先1×1卷積層,輸出大小為28×28×32,作為輸入進行3×3卷積層,輸出大小為28×28×32;而第3 部分3×3的池化層,輸出大小為輸出大小為28×28×32。第5行的Inception mole會對上面是個結果的輸出結果並聯,由此增加網路寬度。
ResNet
2015年ImageNet大賽中,MSRA何凱明團隊的ResialNetworks力壓群雄,在ImageNet的諸多領域的比賽中上均獲得了第一名的好成績,而且這篇關於ResNet的論文Deep Resial Learning for Image Recognition也獲得了CVPR2016的最佳論文,實至而名歸。
上文介紹了的VGG以及GoogleNet都是增加了卷積神經網路的深度來獲得更好效果,也讓人們明白了網路的深度與廣度決定了訓練的效果。但是,與此同時,寬度與深度加深的同時,效果實際會慢慢變差。也就是說模型的層次加深,錯誤率提高了。模型的深度加深,以一定的錯誤率來換取學習能力的增強。但是深層的神經網路模型犧牲了大量的計算資源,學習能力提高的同時不應當產生比淺層神經網路更高的錯誤率。這個現象的產生主要是因為隨著神經網路的層數增加,梯度消失的現象就越來越明顯。所以為了解決這個問題,作者提出了一個深度殘差網路的結構Resial:

上圖就是殘差網路的基本結構,可以看出其實是增加了一個恆等映射,將原本的變換函數H(x)轉換成了F(x)+x。示意圖中可以很明顯看出來整個網路的變化,這樣網路不再是簡單的堆疊結構,這樣的話便很好地解決了由於網路層數增加而帶來的梯度原來越不明顯的問題。所以這時候網路可以做得很深,到目前為止,網路的層數都可以上千層,而能夠保證很好地效果。並且,這樣的簡單疊加並沒有給網路增加額外的參數跟計算量,同時也提高了網路訓練的效果與效率。
在比賽中,為了證明自己觀點是正確的,作者控制變數地設計幾個實驗。首先作者構建了兩個plain網路,這兩個網路分別為18層跟34層,隨後作者又設計了兩個殘差網路,層數也是分別為18層和34層。然後對這四個模型進行控制變數的實驗觀察數據量的變化。下圖便是實驗結果。實驗中,在plain網路上觀測到明顯的退化現象。實驗結果也表明,在殘差網路上,34層的效果明顯要好於18層的效果,足以證明殘差網路隨著層數增加性能也是增加的。不僅如此,殘差網路的在更深層的結構上收斂性能也有明顯的提升,整個實驗大為成功。

除此之外,作者還做了關於shortcut方式的實驗,如果殘差網路模塊的輸入輸出維度不一致,我們如果要使維度統一,必須要對維數較少的進行増維。而增維的最好效果是用0來填充。不過實驗數據顯示三者差距很小,所以線性投影並不是特別需要。使用0來填充維度同時也保證了模型的復雜度控制在比較低的情況下。
隨著實驗的深入,作者又提出了更深的殘差模塊。這種模型減少了各個層的參數量,將資源留給更深層數的模型,在保證復雜度很低的情況下,模型也沒有出現梯度消失很明顯的情況,因此目前模型最高可達1202層,錯誤率仍然控製得很低。但是層數如此之多也帶來了過擬合的現象,不過諸多研究者仍在改進之中,畢竟此時的ResNet已經相對於其他模型在性能上遙遙領先了。
殘差網路的精髓便是shortcut。從一個角度來看,也可以解讀為多種路徑組合的一個網路。如下圖:

ResNet可以做到很深,但是從上圖中可以體會到,當網路很深,也就是層數很多時,數據傳輸的路徑其實相對比較固定。我們似乎也可以將其理解為一個多人投票系統,大多數梯度都分布在論文中所謂的effective path上。
DenseNet
在Resnet模型之後,有人試圖對ResNet模型進行改進,由此便誕生了ResNeXt模型。

這是對上面介紹的ResNet模型結合了GoogleNet中的inception模塊思想,相比於Resnet來說更加有效。隨後,誕生了DenseNet模型,它直接將所有的模塊連接起來,整個模型更加簡單粗暴。稠密相連成了它的主要特點。

我們將DenseNet與ResNet相比較:

從上圖中可以看出,相比於ResNet,DenseNet參數量明顯減少很多,效果也更加優越,只是DenseNet需要消耗更多的內存。
總結
上面介紹了卷積神經網路發展史上比較著名的一些模型,這些模型非常經典,也各有優勢。在算力不斷增強的現在,各種新的網路訓練的效率以及效果也在逐漸提高。從收斂速度上看,VGG>Inception>DenseNet>ResNet,從泛化能力來看,Inception>DenseNet=ResNet>VGG,從運算量看來,Inception<DenseNet< ResNet<VGG,從內存開銷來看,Inception<ResNet< DenseNet<VGG。在本次研究中,我們對各個模型均進行了分析,但從效果來看,ResNet效果是最好的,優於Inception,優於VGG,所以我們第四章實驗中主要採用谷歌的Inception模型,也就是GoogleNet。

『肆』 深度學習 是生成模型還是判別模型

深度學習的模型有很多,既有生成模式也有判別模式, 目前開發者最常用的深度學習模型與架構包括 CNN卷積神經網路、DBN深度信念網路、RNN循環神經網路、RNTN遞歸神經張量網路、自動編碼器、GAN 生成對抗模型等。機器學習方法可以分為生成方法(generative approach)和判別方法(discriminative approach),所學到的模型分別稱為生成式模型(generative model)和判別式模型(discriminative model)。生成方法通過觀測數據學習樣本與標簽的聯合概率分布P(X, Y),訓練好的模型能夠生成符合樣本分布的新數據,它可以用於有監督學習和無監督學習。判別模型:將跟蹤問題看成一個二分類問題,然後找到目標和背景的決策邊界。它不管目標是怎麼描述的,那隻要知道目標和背景的差別在哪,然後你給一個圖像,它看它處於邊界的那一邊,就歸為哪一類。

『伍』 常見的深度學習演算法主要有哪些

深度學習常見的3種演算法有:卷積神經網路、循環神經網路、生成對抗網路。
卷積神經網路(Convolutional Neural Networks, CNN)是一類包含卷積計算且具有深度結構的前饋神經網路(Feedforward Neural Networks),是深度學習的代表演算法之一。
循環神經網路(Recurrent Neural Network, RNN)是一類以序列數據為輸入,在序列的演進方向進行遞歸且所有節點(循環單元)按鏈式連接的遞歸神經網路。
生成對抗網路(GAN, Generative Adversarial Networks )是一種深度學習模型,是最近兩年十分熱門的一種無監督學習演算法。

『陸』 主流的深度學習模型有哪些

主流的深度學習模型有很多CNN的各種變種,Bert,殘差網路,生成對抗網路

閱讀全文

與生成器的深度網路模型有哪些相關的資料

熱點內容
網路共享中心沒有網卡 瀏覽:521
電腦無法檢測到網路代理 瀏覽:1374
筆記本電腦一天會用多少流量 瀏覽:576
蘋果電腦整機轉移新機 瀏覽:1376
突然無法連接工作網路 瀏覽:1059
聯通網路怎麼設置才好 瀏覽:1224
小區網路電腦怎麼連接路由器 瀏覽:1034
p1108列印機網路共享 瀏覽:1212
怎麼調節台式電腦護眼 瀏覽:695
深圳天虹蘋果電腦 瀏覽:932
網路總是異常斷開 瀏覽:612
中級配置台式電腦 瀏覽:991
中國網路安全的戰士 瀏覽:630
同志網站在哪裡 瀏覽:1413
版觀看完整完結免費手機在線 瀏覽:1459
怎樣切換默認數據網路設置 瀏覽:1110
肯德基無線網無法訪問網路 瀏覽:1286
光纖貓怎麼連接不上網路 瀏覽:1474
神武3手游網路連接 瀏覽:965
局網列印機網路共享 瀏覽:1000