❶ GCN圖卷積網路入門詳解
在這篇文章中,我們將仔細研究一個名為GCN的著名圖神經網路。首先,我們先直觀的了解一下它的工作原理,然後再深入了解它背後的數學原理。
字幕組雙語原文: 【GCN】圖卷積網路(GCN)入門詳解
英語原文: Graph Convolutional Networks (GCN)
翻譯: 聽風1996 、 大表哥
許多問題的本質上都是圖。在我們的世界裡,我們看到很多數據都是圖,比如分子、社交網路、論文引用網路。
圖的例子。(圖片來自[1])
在圖中,我們有節點特徵(代表節點的數據)和圖的結構(表示節點如何連接)。
對於節點來說,我們可以很容易地得到每個節點的數據。但是當涉及到圖的結構時,要從中提取有用的信息就不是一件容易的事情了。例如,如果2個節點彼此距離很近,我們是否應該將它們與其他對節點區別對待呢?高低度節點又該如何處理呢?其實,對於每一項具體的工作,僅僅是特徵工程,即把圖結構轉換為我們的特徵,就會消耗大量的時間和精力。
圖上的特徵工程。(圖片來自[1])
如果能以某種方式同時得到圖的節點特徵和結構信息作為輸入,讓機器自己去判斷哪些信息是有用的,那就更好了。
這也是為什麼我們需要圖表示學習的原因。
我們希望圖能夠自己學習 "特徵工程"。(圖片來自[1])
論文 :基於圖神經網路的半監督分類 (2017)[3]
GCN是一種卷積神經網路,它可以直接在圖上工作,並利用圖的結構信息。
它解決的是對圖(如引文網路)中的節點(如文檔)進行分類的問題,其中僅有一小部分節點有標簽(半監督學習)。
在Graphs上進行半監督學習的例子。有些節點沒有標簽(未知節點)。
就像"卷積"這個名字所指代的那樣,這個想法來自於圖像,之後引進到圖(Graphs)中。然而,當圖像有固定的結構時,圖(Graphs)就復雜得多。
從圖像到圖形的卷積思想。 (圖片來自[1])
GCN的基本思路:對於每個節點,我們從它的所有鄰居節點處獲取其特徵信息,當然也包括它自身的特徵。假設我們使用average()函數。我們將對所有的節點進行同樣的操作。最後,我們將這些計算得到的平均值輸入到神經網路中。
在下圖中,我們有一個引文網路的簡單實例。其中每個節點代表一篇研究論文,同時邊代表的是引文。我們在這里有一個預處理步驟。在這里我們不使用原始論文作為特徵,而是將論文轉換成向量(通過使用NLP嵌入,例如tf-idf)。NLP嵌入,例如TF-IDF)。
讓我們考慮下綠色節點。首先,我們得到它的所有鄰居的特徵值,包括自身節點,接著取平均值。最後通過神經網路返回一個結果向量並將此作為最終結果。
GCN的主要思想。我們以綠色節點為例。首先,我們取其所有鄰居節點的平均值,包括自身節點。然後,將平均值通過神經網路。請注意,在GCN中,我們僅僅使用一個全連接層。在這個例子中,我們得到2維向量作為輸出(全連接層的2個節點)。
在實際操作中,我們可以使用比average函數更復雜的聚合函數。我們還可以將更多的層疊加在一起,以獲得更深的GCN。其中每一層的輸出會被視為下一層的輸入。
2層GCN的例子:第一層的輸出是第二層的輸入。同樣,注意GCN中的神經網路僅僅是一個全連接層(圖片來自[2])。
讓我們認真從數學角度看看它到底是如何起作用的。
首先,我們需要一些註解
我們考慮圖G,如下圖所示。
從圖G中,我們有一個鄰接矩陣A和一個度矩陣D。同時我們也有特徵矩陣X。
那麼我們怎樣才能從鄰居節點處得到每一個節點的特徵值呢?解決方法就在於A和X的相乘。
看看鄰接矩陣的第一行,我們看到節點A與節點E之間有連接,得到的矩陣第一行就是與A相連接的E節點的特徵向量(如下圖)。同理,得到的矩陣的第二行是D和E的特徵向量之和,通過這個方法,我們可以得到所有鄰居節點的向量之和。
計算 "和向量矩陣 "AX的第一行。
在問題(1)中,我們可以通過在A中增加一個單位矩陣I來解決,得到一個新的鄰接矩陣Ã。
取lambda=1(使得節點本身的特徵和鄰居一樣重要),我們就有Ã=A+I,注意,我們可以把lambda當做一個可訓練的參數,但現在只要把lambda賦值為1就可以了,即使在論文中,lambda也只是簡單的賦值為1。
通過給每個節點增加一個自循環,我們得到新的鄰接矩陣
對於問題(2): 對於矩陣縮放,我們通常將矩陣乘以對角線矩陣。在當前的情況下,我們要取聚合特徵的平均值,或者從數學角度上說,要根據節點度數對聚合向量矩陣ÃX進行縮放。直覺告訴我們這里用來縮放的對角矩陣是和度矩陣D̃有關的東西(為什麼是D̃,而不是D?因為我們考慮的是新鄰接矩陣Ã 的度矩陣D̃,而不再是A了)。
現在的問題變成了我們要如何對和向量進行縮放/歸一化?換句話說:
我們如何將鄰居的信息傳遞給特定節點?我們從我們的老朋友average開始。在這種情況下,D̃的逆矩陣(即,D̃^{-1})就會用起作用。基本上,D̃的逆矩陣中的每個元素都是對角矩陣D中相應項的倒數。
例如,節點A的度數為2,所以我們將節點A的聚合向量乘以1/2,而節點E的度數為5,我們應該將E的聚合向量乘以1/5,以此類推。
因此,通過D̃取反和X的乘法,我們可以取所有鄰居節點的特徵向量(包括自身節點)的平均值。
到目前為止一切都很好。但是你可能會問加權平均()怎麼樣?直覺上,如果我們對高低度的節點區別對待,應該會更好。
但我們只是按行縮放,但忽略了對應的列(虛線框)。
為列增加一個新的縮放器。
新的縮放方法給我們提供了 "加權 "的平均值。我們在這里做的是給低度的節點加更多的權重,以減少高度節點的影響。這個加權平均的想法是,我們假設低度節點會對鄰居節點產生更大的影響,而高度節點則會產生較低的影響,因為它們的影響力分散在太多的鄰居節點上。
在節點B處聚合鄰接節點特徵時,我們為節點B本身分配最大的權重(度數為3),為節點E分配最小的權重(度數為5)。
因為我們歸一化了兩次,所以將"-1 "改為"-1/2"
例如,我們有一個多分類問題,有10個類,F 被設置為10。在第2層有了10個維度的向量後,我們將這些向量通過一個softmax函數進行預測。
Loss函數的計算方法很簡單,就是通過對所有有標簽的例子的交叉熵誤差來計算,其中Y_{l}是有標簽的節點的集合。
層數是指節點特徵能夠傳輸的最遠距離。例如,在1層的GCN中,每個節點只能從其鄰居那裡獲得信息。每個節點收集信息的過程是獨立進行的,對所有節點來說都是在同一時間進行的。
當在第一層的基礎上再疊加一層時,我們重復收集信息的過程,但這一次,鄰居節點已經有了自己的鄰居的信息(來自上一步)。這使得層數成為每個節點可以走的最大跳步。所以,這取決於我們認為一個節點應該從網路中獲取多遠的信息,我們可以為#layers設置一個合適的數字。但同樣,在圖中,通常我們不希望走得太遠。設置為6-7跳,我們就幾乎可以得到整個圖,但是這就使得聚合的意義不大。
例: 收集目標節點 i 的兩層信息的過程
在論文中,作者還分別對淺層和深層的GCN進行了一些實驗。在下圖中,我們可以看到,使用2層或3層的模型可以得到最好的結果。此外,對於深層的GCN(超過7層),反而往往得到不好的性能(虛線藍色)。一種解決方案是藉助隱藏層之間的殘余連接(紫色線)。
不同層數#的性能。圖片來自論文[3]
論文作者的說明
該框架目前僅限於無向圖(加權或不加權)。但是,可以通過將原始有向圖表示為一個無向的兩端圖,並增加代表原始圖中邊的節點,來處理有向邊和邊特徵。
對於GCN,我們似乎可以同時利用節點特徵和圖的結構。然而,如果圖中的邊有不同的類型呢?我們是否應該對每種關系進行不同的處理?在這種情況下如何聚合鄰居節點?最近有哪些先進的方法?
在圖專題的下一篇文章中,我們將研究一些更復雜的方法。
如何處理邊的不同關系(兄弟、朋友、......)?
[1] Excellent slides on Graph Representation Learning by Jure Leskovec (Stanford): https://drive.google.com/file/d//view?usp=sharing
[2] Video Graph Convolutional Networks (GCNs) made simple: https://www.youtube.com/watch?v=2KRAOZIULzw
[3] Paper Semi-supervised Classification with Graph Convolutional Networks (2017): https://arxiv.org/pdf/1609.02907.pdf
[4] GCN source code: https://github.com/tkipf/gcn
[5] Demo with StellarGraph library: https://stellargraph.readthedocs.io/en/stable/demos/node-classification/gcn-node-classification.html
雷鋒字幕組是一個由AI愛好者組成的翻譯團隊,匯聚五五多位志願者的力量,分享最新的海外AI資訊,交流關於人工智慧技術領域的行業轉變與技術創新的見解。
團隊成員有大數據專家,演算法工程師,圖像處理工程師,產品經理,產品運營,IT咨詢人,在校師生;志願者們來自IBM,AVL,Adobe,阿里,網路等知名企業,北大,清華,港大,中科院,南卡羅萊納大學,早稻田大學等海內外高校研究所。
如果,你也是位熱愛分享的AI愛好者。歡迎與雷鋒字幕組一起,學習新知,分享成長。
❷ PART 4 W1 卷積神經網路介紹
一個是圖像分類:如貓臉識別等;一個是目標檢測:如無人駕駛技術中的各種交通信號檢測技術
1. 卷積操作及過濾器/卷積核的概念
如上圖所示:最左側矩陣是一個灰度圖像,中間是一個3*3的小矩陣,稱為「卷積核」或「過濾器」。
卷積:先把卷積核放到灰度圖像左上角(綠色框),蓋住灰度圖像上一個3*3的矩陣區域,然後9對對應的元素相乘,然後求和(得到0),然後把卷積核逐漸移動一行一行的「掃描」,最終得到最右側矩陣。上述操作叫做「卷積」,最右側矩陣是卷積的輸出。
2. 垂直邊緣檢測
仍以上圖為例,可以看到3*3的卷積核具體的數值構成為「左邊一列1,中間一列0,右邊一列-1」,這種卷積核在「掃描」灰度圖像時,可以檢測到灰度圖像的垂直邊緣。分析如下:
1)假設正在掃描的灰度區域沒有垂直邊緣,意味著區域內的值在左右方向上分布差不多,與卷積核做完運算後,左邊的乘1,右邊的乘-1,相加正好有一定的抵消作用,其實計算出來的結果會接近0。即:卷積結果接近0代表沒有邊緣。
2)有垂直邊緣分為兩種情況:目標區域「左邊值較大,右邊值較小」 或「左邊值較小,右邊值較大」。前一種情況在卷積操作後會得到一個較大的正值,後一種情況卷積操作後會得到一個較大的負值。
可以看出,較大的正值代表著目標區域的變化趨勢與卷積核相同,即檢測到的是與卷積核相同的邊緣,而較大的負值代表目標區域的變化趨勢與卷積核相反,即檢測到的是與卷積核相反的邊緣。
3. 卷積應用在卷積神經網路中
卷積操作如何應用於神經網路中?簡言之,卷積核本身就是網路要學習的參數。如上圖所示,我們並不是事先設定好要檢測垂直邊緣或水平邊緣或其它什麼邊緣,而是要網路去學習要檢測什麼東西。
1. padding的原因
在上節展示的卷積操作中,可以看出,假設輸入圖像的大小為n*n,而卷積核的大小為f*f,那麼卷積核從輸入圖像的左上角掃描到右下角,最終得到的結果大小為(n-f+1)*(n-f+1),意味著如果一次次進行卷積,那麼結果的尺寸會越來越小
另外,顯然輸入圖像邊緣的像素被使用的較少(最邊緣的像素僅被使用一次),這顯然會造成信息的丟失。
2. 如何進行padding
非常簡單:把輸入圖像的四周補充p = (f-1)/2 圈的0,這樣輸入的圖像尺寸變成了(n+2p)*(n+2p),因此卷積後的大小變成了(n+2p -f + 1)*(n+2p -f + 1)=n*n,即與原始的圖像有了相同的大小,且原始圖像邊緣的像素也被較多的利用到。
3. 幾點補充
(1)卷積核的尺寸設置為 奇數 :因為① 這樣(f-1)/2就恰好是整數了,方便進行padding,② 有中心像素,便於表徵卷積核的位置,等。
(2)根據是否進行padding,分為 普通卷積(valid) 和 同尺寸卷積(same)
1. 步長概念
在上文中講到卷積,即使用一個卷積核對輸入圖像進行「掃描」並進行相應計算時,提到這個「掃描」是逐個像素逐個像素的邁進的。但是,並不一定非得這樣,也可以每次跨越兩個或更多個像素,這就是「步長」的概念,一般用s表示
2. 卷積結果尺寸與步長的關系
前文提到,若輸入圖像尺寸為n*n,卷積核尺寸為f*f,則卷積結果尺寸為(n+f-1)*(n+f-1),若算上padding操作,則結果為(n+2p -f + 1)*(n+2p -f + 1)。這是在步長s=1的前提下成立。若步長不為1,則結果為floor((n+2p-f)/s+1)**2
3. 其它:數學中的卷積和神經網路中的卷積
需要說明的是,神經網路中所說的卷積和數學中說的卷積不是一回事,但數學中的卷積是啥就不追究了。
神經網路中的卷積操作,在數學的描述上,更像是一種「交叉相關性」的計算,可以看出,若目標區域與卷積核有類似的分布,則會計算出較大的正值(正相關),若有相反的分布,則會計算出較大的負值(負相關),若沒什麼關系,則會計算出接近0的值(不相關)。卷積操作的確很像一種相關性的計算。
1. RGB圖像的數學構成
灰度圖像是一個n*n的二維矩陣,彩色圖像則是n*n*3 的三維矩陣,最外圍的三個維度分別代表了RGB三原色的值,其中數字「3」在卷積神經網路中被稱為通道數或信道數
2. 對RGB圖像進行卷積
在對灰度圖像進行卷積時,使用的是f*f的二維卷積核。在對RGB圖像進行卷積時,則卷積核的維度也+1,變成了f*f*3。一次卷積的結果仍然是把所有的值加起來輸出一個值。即: 一個三維的圖像,和一個三維的卷積核,在進行完卷積操作後,輸出的是一個二維的矩陣(如上圖) 。
3. 當使用多個卷積核時的輸出
如上圖所示,可以使用多個卷積核(一個亮黃色,一個屎黃色)。根據前文描述,一個立體的卷積核在一個立體的矩陣上掃描完,結果是一個二維的。但當使用多個卷積核時,則輸出了多個二維矩陣,這些二維矩陣沿著第三個維度排列到一起,使得結果重新變成了三維。此時,第三個維度的尺寸,反應的是卷積核數,也就是說 卷積核數就是信道數 。直觀理解,每一個卷積核代表著檢測了某一種特徵,多個卷積核就是同時檢測了多種特徵,傳遞了多種信息。
1. 一個卷積層的數據的基本流
如上圖所示,由於卷積核本身就是一堆待學參數w,所以卷積操作本質還是「加權求和」,之後會加入偏置值,然後進行非線性變換,然後輸出(到下一層),可見還是那一套。
需要提一下的是,卷積的輸入不一定是原始圖像構成的矩陣,還有可能是上一個卷積的結果。原始圖像是彩色的,有多個通道。卷積時可以用多個卷積核,最終產生的結果也是立體的。因此原始的輸入與中間卷積層的輸出,在數學形式上是統一的。因此可以「輸入->卷積層->卷積層->...」這樣操作。
2. 卷積層的參數規模
一個卷積層總的參數規模(包括w,不包括b)為: ,即:卷積核的大小的平方*上層輸出的通道數)*本層所用的卷積核數。與上層輸入的大小無關(但與通道數有關)
3. 一個卷積層涉及到的超參
卷積核的大小、是否padding、步長、卷積核數。
1. 一個示例
上圖為一個簡單的卷積神經網路示例: 一層一層的卷積,最後把所有的元素展開成一個一維向量,然後加一個全連接層。
2. 注意以下幾點:
1⃣️ 實際上CNN會有卷積層、池化層、全連接層,而非僅有卷積和全連接;
2⃣️ 從數據的構成形式上看,按照網路從前往後的順序,圖片尺寸不斷減小,信道數量不斷增加。一般遵從這個趨勢。
1. 池化
如上圖所示,假設輸入是一個4*4的矩陣,現在我們把它分割成2*2四個子矩陣(或者說使用一個2*2的核以2為步長掃描矩陣),對四個子區域分別求最大值,最終得到一個值為9、2、6、3的2*2的矩陣輸出。這種操作就叫池化,具體為最大值池化。
2. 池化的作用
1⃣️ 一般來說,較大的值往往代表學到了一個重要或典型的特徵,把原始輸入以某種方式濾除掉一些不重要的值,只保留一些較大的值,相當於 強化了一些重要信息的表達 。2⃣️ 降低圖片的尺寸,可以節省空間、加速運算等。
3. 池化的特點
並沒有需要學習的參數(w、b之類的),也因此「池化層」一般並不被稱為單獨的一層。在卷積神經網路中,通常把一個卷積層+一個池化層的組合叫一層。
4. 池化的超參數及經驗值
池化層沒有要學習的參數,只有核心的兩個超參:池化核的大小、池化步長。此外還有池化所用的rece操作:最大或者平均(沒有其它選項)。
一般把池化核的大小設置為3或2,步長為2。注意:步長為2意味著把圖片減小到原來的一半。
rece操作最常用最大池化,偶爾用平均池化,不會用其它操作。
上圖為一個典型的卷積神經網路示例,描述如下:
輸入層 :彩色的手寫數字圖片,數學構成為32*32*3的矩陣,其中3為通道數。
Layer 1-卷積層 :1)使用6個5*5*3的卷積核,以步長為1對輸入層進行卷積,輸出28*28*6的矩陣,2)然後使用2*2的最大池化,步長為2,最終輸出14*14*6的矩陣。其中14為圖片尺寸,6為信道數。
Layer2-卷積層 :1)使用16個5*5*3的卷積核以步長1對上層輸出進行卷積,輸出10*10*16的矩陣,2)然後使用2*2的最大池化,步長為2,最終輸出5*5*16的矩陣。
Layer3-全連接層: 把上層輸出的5*5*16矩陣展開成1*400的一維向量,以120*400的權重矩陣送入本層120個神經元,激活後輸出。
Layer4-全連接層: 120->84,激活後輸出
輸出層 :84 -> 10,然後softmax後輸出。
1. 參數少
假如原始圖片尺寸為100*100*3,假設使用全連接,即使第二層僅用100個神經元,那也已經產生了100*100*3*100 = 300w個參數,難以想像。
假設使用卷積層,使用10個10*10*3的卷積核,那就是只有3000個參數,而能輸出的矩陣規模是91*91*10=81000
2. 參數少的原因
1)稀疏連接:卷積核掃描矩陣產生輸出,這個過程就從「神經元連接」的角度看,輸入的左上角只連著輸出的左上角,右上角只連右上角,而非「全連接」,參數就會少很多。2)參數共享:這么稀疏的連接,還是使用了同一套參數,進一步減少了參數的量。
3. 參數共享的其它好處
如果圖片上有一隻貓,那麼不管這個貓在圖片的什麼位置,都不改變「這是一張貓的照片」。使用參數共享時,相當於用同樣的特徵提取作用到整個圖片的各個區域,適應平移不變性,增強魯棒性。
❸ 卷積神經網路的結構、尺寸
(摘錄源於: CS231n課程筆記 )
最常見的形式就是將一些卷積層和ReLU層放在一起,其後緊跟池化層,然後重復如此直到圖像在空間上被縮小到一個足夠小的尺寸,在某個地方過渡成全連接層也較為常見。最後的全連接層得到輸出,比如分類評分等。
換句話說,最常見的卷積神經網路結構如下:
INPUT -> [[CONV -> RELU]*N -> POOL?]*M -> [FC -> RELU]*K -> FC
其中*指的是重復次數,POOL?指的是一個可選的匯聚層。其中N >=0,通常N<=3,M>=0,K>=0,通常K<3。例如,下面是一些常見的網路結構規律:
輸入層(包含圖像的)應該能被2整除很多次。常用數字包括32(比如CIFAR-10),64,96(比如STL-10)或224(比如ImageNet卷積神經網路),384和512。
最常用的設置是用用2x2感受野,步長為1。
———·———·———·———·———·———·———·———·———·———·——
(以下)直接全復制,供查閱參考。
———·———·———·———·———·———·———·———·———·———·——
下面是卷積神經網路領域中比較有名的幾種結構:
VGGNet的細節: 我們進一步對 VGGNet 的細節進行分析學習。整個VGGNet中的卷積層都是以步長為1進行3x3的卷積,使用了1的零填充,匯聚層都是以步長為2進行了2x2的最大值匯聚。可以寫出處理過程中每一步數據體尺寸的變化,然後對數據尺寸和整體權重的數量進行查看:
注意,大部分的內存和計算時間都被前面的卷積層佔用,大部分的參數都用在後面的全連接層,這在卷積神經網路中是比較常見的。在這個例子中,全部參數有140M,但第一個全連接層就包含了100M的參數。
一旦對於所有這些數值的數量有了一個大略估計(包含激活數據,梯度和各種雜項),數量應該轉化為以GB為計量單位。把這個值乘以4,得到原始的位元組數(因為每個浮點數佔用4個位元組,如果是雙精度浮點數那就是佔用8個位元組),然後多次除以1024分別得到佔用內存的KB,MB,最後是GB計量。如果你的網路工作得不好,一個常用的方法是降低批尺寸(batch size),因為絕大多數的內存都是被激活數據消耗掉了。
❹ 卷積神經網路CNN(Convolutional Neural Network)
上圖計算過程為,首先我們可以將右邊進行卷積的可以稱為過濾器也可以叫做核,覆蓋到左邊第一個區域,然後分別按照對應位置相乘再相加,3*1+1*1+2*1+0*0+0*0+0*0+1*(-1)+8*(-1)+2*(-1)=-5;
按照上述的計算方法逐步按右移一個步長(步長可以設定為1,2,...等),然後按往下移,逐漸計算相應的值,得出最終的值。
如上圖顯示,對於第一個圖像矩陣對應的圖,一邊是白色,一邊是黑色,那麼中間就會存在一個垂直的邊緣,我們可以選擇一個垂直邊緣檢測過濾器,如乘法右邊的矩陣,那麼兩者做卷積後得出的圖會顯示如等號右邊的結果矩陣對應的灰度圖中間會有一個白色的中間帶,也就是檢測出來的邊緣,那為什麼感覺中間邊緣帶會比較寬呢?而不是很細的一個局域呢?原因是我們輸入的圖像只有6*6,過於小了,如果我們選擇輸出更大的尺寸的圖,那麼結果來說就是相對的一個細的邊緣檢測帶,也就將我們的垂直邊緣特徵提取出來了。
上述都是人工選擇過濾器的參數,隨著神經網路的發展我們可以利用反向傳播演算法來學習過濾器的參數
我們可以將卷積的顧慮器的數值變成一個參數,通過反向傳播演算法去學習,這樣學到的過濾器或者說卷積核就能夠識別到很多的特徵,而不是依靠手工選擇過濾器。
- padding 操作,卷積經常會出現兩個問題:
1.每經過一次卷積圖像都會縮小,如果卷積層很多的話,後面的圖像就縮的很小了;
2.邊緣像素利用次數只有一次,很明顯少於位於中間的像素,因此會損失邊緣圖像信息。
為了解決上述的問題,我們可以在圖像邊緣填充像素,也就是 padding 操作了。
如果我們設置在圖像邊緣填充的像素數為p,那麼經過卷積後的圖像是:(n+2p-f+1)x(n+2p-f+1).
如何去選擇p呢
通常有兩種選擇:
-Valid:也就是說不填充操作(no padding),因此如果我們有nxn的圖像,fxf的過濾器,那麼我們進行卷積nxn fxf=(n-f+1)x(n-f+1)的輸出圖像;
-Same:也就是填充後是輸出圖像的大小的與輸入相同,同樣就有(n+2p)x(n+2p) fxf=nxn,那麼可以算,n+2p-f+1=n,得到p=(f-1)/2。
通常對於過濾器的選擇有一個默認的准則就是選擇過濾器的尺寸是奇數的過濾器。
- 卷積步長設置(Strided COnvolution)
卷積步長也就是我們進行卷積操作時,過濾器每次移動的步長,上面我們介紹的卷積操作步長默認都是1,也就是說每次移動過濾器時我們是向右移動一格,或者向下移動一格。
但是我們可以對卷積進行步長的設置,也就是我們能夠對卷積移動的格數進行設置。同樣假如我們的圖像是nxn,過濾器是fxf,padding設置是p,步長strided設置為s,那麼我們進行卷積操作後輸出的圖像為((n+2p-f)/s+1)x((n+2p-f)/s+1),那麼這樣就會出現一個問題,如果計算結果不是整數怎麼辦?
一般是選擇向下取整,也就是說明,只有當我們的過濾器完全在圖像上能夠覆蓋時才對它進行計算,這是一個慣例。
實際上上述所述的操作在嚴格數學角度來說不是卷積的定義,卷積的定義上我們計算的時候在移動步長之前也就是對應元素相乘之前是需要對卷積核或者說我們的過濾器進行鏡像操作的,經過鏡像操作後再把對應元素進行相乘這才是嚴格意義上的卷積操作,在數學角度上來說這個操作不算嚴格的卷積操作應該是屬於互相關操作,但是在深度學習領域中,大家按照慣例都省略了反轉操作,也把這個操作叫做卷積操作
我們知道彩色圖像有RGB三個通道,因此對於輸入來說是一個三維的輸入,那麼對三維輸入的圖像如何進行卷積操作呢?
例子,如上圖我們輸入圖像假設為6×6×3,3代表有RGB三個通道channel,或者可以叫depth深度,過濾器的選擇為3×3×3,其中需要規定的是,顧慮器的channel必須與輸入圖像的channel相同,長寬沒有限制,那麼計算過程是,我們將過濾器的立體覆蓋在輸入,這樣對應的27個數對應相乘後相加得到一個數,對應到我們的輸出,因此這樣的方式進行卷積後我們得出的輸出層為4×4×1。如果我們有多個過濾器,比如我們分別用兩個過濾器一個提取垂直特徵,一個提取水平特徵,那麼輸出圖4×4×2 。也就是代表我們輸出的深度或者說通道與過濾器的個數是相等的。
第l層的卷積標記如下:
加入我們的過濾器是3×3×3規格的,如果我們設定10個過濾器,那麼需要學習的參數總數為每個過濾器為27個參數然後加上一個偏差bias那麼每個過濾器的參數為28個,所以十個過濾器的參數為280個。從這里也就可以看出,不管我們輸入的圖片大小是多大,我們都只需要計算這些參數,因此參數共享也就很容易理解了。
為了縮減模型的大小,提高計算速度,同時提高所提取特徵的魯棒性,我們經常會使用池化層。池化層的計算方式與卷積類似,只是我們需要對每一個通道都進行池化操作。
池化的方式一般有兩種:Max Pooling和Average Pooling。
上面為Max Pooling,那麼計算方法與卷積類似,首先設定超參數比如過濾器的大小與步長,然後覆蓋到對應格子上面,用最大值取代其值作為輸出的結果,例如上圖為過濾器選擇2×2,步長選擇為2,因此輸出就是2×2的維度,每個輸出格子都是過濾器對應維度上輸入的最大值。如果為平均池化,那麼就是選擇其間的平均值作為輸出的值。
因此從上面的過程我們看到,通過池化操作能夠縮小模型,同時能讓特徵值更加明顯,也就提高了提取特徵的魯棒性。
❺ 深度卷積網路
LeNet網路的結構如下圖所示,可以看出,LeNet網路並沒有使用padding,每進行一次卷積,圖像的高度和寬度都會縮小,而通道數會一直增加。在全連接層中有400個節點,每個極點都有120個神經元,有時還會從這400個節點抽取一部分節點構建一個全連接層,即有兩個全連接層。在該網路中,最後一步就是利用84個特徵得到最後的輸出,該網路剛開始使用的是 sigmoid 函數 tanh 函數,而現在常常傾向於使用 softmax 函數。需要注意的是,LeNet-5網路進行圖像分類時,輸入的圖像是單通道的灰度圖像。
AlexNet是以論文第一作者的名字命名的,該網路的結構,如下圖所示,該網路的輸出層使用了 softmax 函數。AlexNet網路比LeNet網路規模更大,大約有6000萬個參數,用於訓練圖像和數據集時,能夠處理非常相似的基本構造模塊,這些模塊中包含著大量的隱藏單元,並且與LeNet網路不同的是,該網路使用了ReLu的激活函數。
VGG-16網路沒有太多的超參數,這是一種專注於構建卷積層的簡單網路。如下圖所示,該網路首先利用64個過濾器進行了兩次卷積,接著在池化層將輸入圖像壓縮,接著又是128個過濾器進行兩次卷積,接著載池化。繼續用256個過濾器進行3次卷積,再池化,接著再利用512個過濾器卷積3次,再池化,將稍後得到的特徵圖進行全連接操作,再進 softmax 激活。
由於存在梯度消失和梯度爆炸的原因,深層次的神經網路是很難訓練的,如果採用一種跳躍連接的方式,即從某一層網路層獲取激活,然後迅速反饋給另外一層,甚至是神經網路的更深層。這種利用跳躍連接構建的深度神經網路ResNets,深度能夠超過100層
一個簡單的兩層神經網路示例,如下圖所示:
常規的輸出和輸出之間的關系可以用如下的公式表示:
如上公式所述,這是一條神經網路的主路徑。如果將 的輸入直接到深層的激活函數之前,此時,神經網路有了一條副路徑,其對應輸出將有公式(5)變成如下所示的公式(6)
此時的輸入除了原先的輸入 外,多了一個 項,即由於 產生了一個殘差塊。
構建一個ResNet網路就是將很多這樣的殘差塊堆積在一起,形成一個深度神經網路,如下所示:
使用傳統的標准優化演算法訓練一個網路,隨著網路深度的增加,訓練誤差會先減小再增加,隨著網路層數的增加,優化演算法會越難以訓練,訓練誤差也會越來越多。但是,使用ResNet網路,能夠有效地避免這種情況。
如上所述,加入殘差網路之後,其輸出計算公式如公式(6)所示,展開這個公式,則有:
如果使用L2正則化或者權重衰減,則會壓縮權重參數 的值,如果參數 和參數 等於0,其輸出將由公式(7)變成 ,假定使用ReLU激活函數,則有:
由於殘差網路存在的這種跳躍連接,很容易得出以上等式,這意味著,即使給神經網路增加兩層,但是其效率並不遜色與更簡單的神經網路。並且由於存在以上恆等式,使得網路學習隱藏層的單元的信息更加容易。而普通網路,隨著網路層數的增加,學習參數會變得很困難。
此外,關於殘差網路,如公式(6)所示,假設 與 具有相同的維度,由於ResNets使用了許多same卷積, 的維度等於輸出層的維度。如果輸入和輸出具有不同的維度,可以再增加一個矩陣 ,使得 和 具有相同的維度。而 的維度可以通過0值填充調節。
在卷積網路的架構設計中,一種有趣的想法是會使用到1×1的過濾矩陣,實際上,對於單通道的圖像而言,1×1的過濾矩陣,意義不大,但是,對於多通道的圖像而言,1×1的過濾矩陣能夠有效減少圖像卷積之後的通道數量。
根據卷積和池化的基本知識,隨著神經網路層數的增加,圖像的通道數量會逐漸增加,採用1×1的過濾矩陣卷積之後,可以有效減少圖像的通道數量,一個簡單的示例,如下所示:
假設有一個6×6×32的圖片,使用1×1×32的過濾矩陣進行卷積運算,整個運算過程將會遍歷36個單元格,並計算過濾矩陣所覆蓋區域的元素積之和,將其應用到ReLu非線性函數,會得到一個輸出值。此計算過程中,可能會用到多個1×1×32的過濾器,那麼,通過以上計算會得到一個 6×6×過濾器數量 的矩陣。
構建卷積神經網路時,有時會很難決定過濾器的大小,而Inception網路的引入,卻能很好的解決這個問題。
Inception網路的作用就是代替人工確定選擇卷積層的過濾器類型。如下圖所示,對於一個多通道圖像,可以使用不同的過濾矩陣或者池化層,得到不同的輸出,將這些輸出堆積起來。
有了如上圖所示的Inception塊,最終輸出為32+32+64+128=256,而Inception模塊的輸入為28×28×192,其整個計算成本,以5×5的過濾矩陣為例,其乘法的計算次數為:28×28×32×5×5×192,整個計算次數超過了1.2億次。而如果使用如下所示的優化計算方法,則可以有效減少計算量。
如果利用1×1的過濾器,將輸入矩陣的通道減少至16,則可以有效減少計算量,如下所示:
如上圖所示的價格中,整個網路的運算次數為:28×28×192×16+28×28×32×5×5×16=1240萬,整個計算成本降低至原來的十分之一。而,通過1×1×192過濾器卷積得到的這個網路層被稱之為瓶頸層。
如上,所示,可以給每一個非1×1的卷積層之前,加入一個1×1的瓶頸層,就可以構建一個基本的inception模塊了,如下圖所示:
而一個inception網路就是多個Inception模塊連接起來,如下圖所示:
事實上,以上網路中,還存在一些分支,如編號1所示,這些分支就是全連接層,而全連接層之後就是一個softmax層用於預測。又如分支2所示,包含一些隱藏層(編號3),通過全連接層和softmax進行預測。這些分支結構能夠確保,即使是隱藏層和中間層也參與了特徵計算,並且也能夠預測圖片的分類。這種做法能夠有效避免網路過擬合。
對於計算機視覺領域而言,神經網路的訓練可能需要大量的數據,但是當數據量有限時,可以通過數據增強來實現數據量的擴充,以提高系統的魯棒性,具體的數據增強方法如下所示:
除了以上三種數據增強的方法外,更多的數據增強方法和實現可以參考 圖像數據增強
數據增強可以利用計算機多線程實現,一個線程用來實現載入數據,實現數據增強,其他線程可以訓練這些數據以加快整體的運算速度。
❻ 卷積神經網路(CNN)基礎
在七月初七情人節,牛郎織女相見的一天,我終於學習了CNN(來自CS231n),感覺感觸良多,所以趕快記下來,別忘了,最後祝大家情人節快樂5555555.正題開始!
CNN一共有卷積層(CONV)、ReLU層(ReLU)、池化層(Pooling)、全連接層(FC(Full Connection))下面是各個層的詳細解釋。
卷積,尤其是圖像的卷積,需要一個濾波器,用濾波器對整個圖像進行遍歷,我們假設有一個32*32*3的原始圖像A,濾波器的尺寸為5*5*3,用w表示,濾波器中的數據就是CNN的參數的一部分,那麼在使用濾波器w對A進行濾波的話,可以用下面的式子表示:
其中x為原始圖像的5*5*3的一部分,b是偏置項置為1。在對A進行濾波之後,產生的是一個28*28*1的數據。那麼假設我們存在6個濾波器,這六個濾波器之間彼此是獨立的,也就是他們內部的數據是不同的且沒有相關性的。可以理解為一個濾波器查找整幅圖像的垂直邊緣,一個查找水平邊緣,一個查找紅色,一個查找黑色這樣。那麼我就可以產生6個28*28*1的數據,將它們組合到一起就可以產生28*28*6的數據,這就是卷積層主要做的工作。
CNN可以看作一系列的卷積層和ReLU層對原始數據結構進行處理的神經網路,處理的過程可以用下面這幅圖表示
特別要注意的是濾波器的深度一定要與上一層傳來的數據的深度相同,就像上圖的第二個卷積層在處理傳來的28*28*6的數據時要使用5*5*6的濾波器.
濾波器在圖像上不斷移動對圖像濾波,自然存在步長的問題,在上面我們舉的例子都是步長為1的情況,如果步長為3的話,32*32*3的圖像經過5*5*3的濾波器卷積得到的大小是(32-5)/3+1=10, 註:步長不能為2因為(32-5)/2+1=14.5是小數。
所以當圖像大小是N,濾波器尺寸為F時,步長S,那麼卷積後大小為(N-F)/S+1
我們從上面的圖中可以看到圖像的長和寬在逐漸的減小,在經過超過5層之後極可能只剩下1*1的空間尺度,這樣是十分不好的,而且也不利於我們接下來的計算,所以我們想讓卷積層處理完之後圖像在空間尺度上大小不變,所以我們引入了pad the border的操作。pad其實就是在圖像周圍補0,擴大圖像的尺寸,使得卷積後圖像大小不變。在CNN中,主要存在4個超參數,濾波器個數K,濾波器大小F,pad大小P和步長S,其中P是整數,當P=1時,對原始數據的操作如圖所示:
那麼在pad操作後卷積後的圖像大小為:(N-F+2*P)/S+1
而要想讓卷積層處理後圖像空間尺度不變,P的值可以設為P=(F-1)/2
卷積層輸入W 1 *H 1 *D 1 大小的數據,輸出W 2 *H 2 *D 2 的數據,此時的卷積層共有4個超參數:
K:濾波器個數
P:pad屬性值
S:濾波器每次移動的步長
F:濾波器尺寸
此時輸出的大小可以用輸入和超參計算得到:
W 2 =(W 1 -F+2P)/S+1
H 2 =(H 1 -F+2P)/S+1
D 2 =D 1
1*1的濾波器也是有意義的,它在深度方向做卷積,例如1*1*64的濾波器對56*56*64的數據卷積得到56*56的數據
F通常是奇數,這樣可以綜合考慮上下左右四個方向的數據。
卷積層從神經元的角度看待可以有兩個性質: 參數共享和局域連接 。對待一個濾波器,例如5*5*3的一個濾波器,對32*32*3的數據卷積得到28*28的數據,可以看作存在28*28個神經元,每個對原圖像5*5*3的區域進行計算,這28*28個神經元由於使用同一個濾波器,所以參數相同,我們稱這一特性為 參數共享 。
針對不同的濾波器,我們可以看到他們會看到同一區域的圖像,相當於在深度方向存在多個神經元,他們看著相同區域叫做 局域連接
參數共享減少了參數的數量,防止了過擬合
局域連接為查找不同特徵更豐富的表現圖像提供了可能。
卷積就像是對原圖像的另一種表達。
激活函數,對於每一個維度經過ReLU函數輸出即可。不改變數據的空間尺度。
通過pad操作,輸出圖像在控制項上並沒有變化,但是深度發生了變化,越來越龐大的數據給計算帶來了困難,也出現了冗餘的特徵,所以需要進行池化操作,池化不改變深度,只改變長寬,主要有最大值和均值兩種方法,一般的池化濾波器大小F為2步長為2,對於最大值池化可以用下面的圖像清晰的表示:
卷積層輸入W 1 *H 1 *D 1 大小的數據,輸出W 2 *H 2 *D 2 的數據,此時的卷積層共有2個超參數:
S:濾波器每次移動的步長
F:濾波器尺寸
此時輸出的大小可以用輸入和超參計算得到:
W 2 =(W 1 -F)/S+1
H 2 =(H 1 -F)/S+1
D 2 =D 1
將最後一層(CONV、ReLU或Pool)處理後的數據輸入全連接層,對於W 2 *H 2 *D 2 數據,我們將其展成1*1*W 2 *H 2 *D 2 大小的數據,輸入層共有W 2 *H 2 *D 2 個神經元,最後根據問題確定輸出層的規模,輸出層可以用softmax表示。也就是說,全連接層就是一個常見的BP神經網路。而這個網路也是參數最多的部分,是接下來想要去掉的部分。完整的神經網路可以用下面的圖表示:
[(CONV-ReLU)*N-POOL?]*M-(FC-RELU)*K,SoftMax
1.更小的濾波器與更深的網路
2.只有CONV層而去掉池化與全鏈接
最早的CNN,用於識別郵編,結構為:
CONV-POOL-CONV-POOL-CONV-FC
濾波器大小5*5,步長為1,池化層2*2,步長為2
2012年由於GPU技術所限,原始AlexNet為兩個GPU分開計算,這里介紹合起來的結構。
輸入圖像為227*227*3
1.首次使用ReLU
2.使用Norm layers,現在已經拋棄,因為效果不大
3.數據經過預處理(例如大小變化,顏色變化等)
4.失活比率0.5
5.batch size 128
6.SGD Momentum 參數0.9(SGD和Momentum見我的其他文章)
7.學習速率 0.01,准確率不在提升時減少10倍,1-2次後達到收斂
8.L2權重減少0.0005
9.錯誤率15.4%
改進自AlexNet,主要改變:
1.CONV1的濾波器從11*11步長S=4改為7*7步長為2.
2.CONV3,4,5濾波器數量有384,384,256改為512,1024,512(濾波器數量為2的n次冪有利於計算機計算可以提高效率)
錯誤率:14.8%後繼續改進至11.2%
當前最好的最易用的CNN網路,所有卷積層濾波器的大小均為3*3,步長為1,pad=1,池化層為2*2的最大值池化,S=2。
主要參數來自全連接層,這也是想要去掉FC的原因。
具有高度的統一性和線性的組合,易於理解,十分方便有VGG-16,VGG-19等多種結構。
錯誤率7.3%
完全移除FC層,參數只有500萬,使用Inception模塊(不太理解,有時間繼續看)
准確率6.67%
准確率3.6%
擁有極深的網路結構,且越深准確率越高。是傳統CNN不具備的特點,傳統CNN並非越深越准確。需要訓練時間較長但是快於VGG
1.每個卷積層使用Batch Normalization
2.Xavier/2初始化
3.SGD+Momentum(0.9)
4.Learning rate:0.1,准確率不變減小10倍(因為Batch Normalization所以比AlexNet大)
5.mini-batch size 256
6.Weight decay of 0.00001
7.不適用失活(因為Batch Normalization)
具體的梯度過程學完ResNet再說吧。
❼ 卷積神經網路
1、二維互相關運算
二維互相關(cross-correlation)運算的輸入是一個二維輸入數組和一個二維核(kernel)數組,輸出也是一個二維數組,其中核數組通常稱為卷積核或過濾器(filter)。卷積核的尺寸通常小於輸入數組,卷積核在輸入數組上滑動,在每個位置上,卷積核與該位置處的輸入子數組按元素相乘並求和,得到輸出數組中相應位置的元素。圖1展示了一個互相關運算的例子,陰影部分分別是輸入的第一個計算區域、核數組以及對應的輸出。
2、二維卷積層
卷積層得名於卷積運算,但卷積層中用到的並非卷積運算而是互相關運算。我們將核數組上下翻轉、左右翻轉,再與輸入數組做互相關運算,這一過程就是卷積運算。由於卷積層的核數組是可學習的,所以使用互相關運算與使用卷積運算並無本質區別。
二維卷積層將輸入和卷積核做互相關運算,並加上一個標量偏置來得到輸出。卷積層的模型參數包括卷積核和標量偏置。
3、特徵圖與感受野
二維卷積層輸出的二維數組可以看作是輸入在空間維度(寬和高)上某一級的表徵,也叫特徵圖(feature map)。影響元素x的前向計算的所有可能輸入區域(可能大於輸入的實際尺寸)叫做x的感受野(receptive field)。
以圖1為例,輸入中陰影部分的四個元素是輸出中陰影部分元素的感受野。我們將圖中形狀為2×2的輸出記為Y,將Y與另一個形狀為2×2的核數組做互相關運算,輸出單個元素z。那麼,z在Y上的感受野包括Y的全部四個元素,在輸入上的感受野包括其中全部9個元素。可見,我們可以通過更深的卷積神經網路使特徵圖中單個元素的感受野變得更加廣闊,從而捕捉輸入上更大尺寸的特徵。
4、填充和步幅
我們介紹卷積層的兩個超參數,即填充和步幅,它們可以對給定形狀的輸入和卷積核改變輸出形狀。
4.1 填充(padding)
是指在輸入高和寬的兩側填充元素(通常是0元素),圖2里我們在原輸入高和寬的兩側分別添加了值為0的元素。
如果原輸入的高和寬是 和 ,卷積核的高和寬是 和 ,在高的兩側一共填充 行,在寬的兩側一共填充 列,則輸出形狀為:
)
我們在卷積神經網路中使用奇數高寬的核,比如3×3,5×5的卷積核,對於高度(或寬度)為大小為2k+1的核,令步幅為1,在高(或寬)兩側選擇大小為k的填充,便可保持輸入與輸出尺寸相同。
4.2 步幅(stride)
在互相關運算中,卷積核在輸入數組上滑動,每次滑動的行數與列數即是步幅(stride)。此前我們使用的步幅都是1,圖3展示了在高上步幅為3、在寬上步幅為2的二維互相關運算。
一般來說,當高上步幅為 ,寬上步幅為 時,輸出形狀為:
如果 ,那麼輸出形狀將簡化為:
更進一步,如果輸入的高和寬能分別被高和寬上的步幅整除,那麼輸出形狀將是:(nh/sh)×(nw/sw)
當 時,我們稱填充為p;當 時,我們稱步幅為s。
5、多輸入通道和多輸出通道
之前的輸入和輸出都是二維數組,但真實數據的維度經常更高。例如,彩色圖像在高和寬2個維度外還有RGB(紅、綠、藍)3個顏色通道。假設彩色圖像的高和寬分別是h和w(像素),那麼它可以表示為一個3×h×w的多維數組,我們將大小為3的這一維稱為通道(channel)維。
5.1 多輸入通道
卷積層的輸入可以包含多個通道,圖4展示了一個含2個輸入通道的二維互相關計算的例子。
5.2 多輸出通道
卷積層的輸出也可以包含多個通道,設卷積核輸入通道數和輸出通道數分別為ci和co,高和寬分別為kh和kw。如果希望得到含多個通道的輸出,我們可以為每個輸出通道分別創建形狀為ci×kh×kw的核數組,將它們在輸出通道維上連結,卷積核的形狀即co×ci×kh×kw。
對於輸出通道的卷積核,我們提供這樣一種理解,一個ci×kh×kw的核數組可以提取某種局部特徵,但是輸入可能具有相當豐富的特徵,我們需要有多個這樣的ci×kh×kw的核數組,不同的核數組提取的是不同的特徵。
5.3 1x1卷積層
最後討論形狀為1×1的卷積核,我們通常稱這樣的卷積運算為1×1卷積,稱包含這種卷積核的卷積層為1×1卷積層。圖5展示了使用輸入通道數為3、輸出通道數為2的1×1卷積核的互相關計算。
1×1卷積核可在不改變高寬的情況下,調整通道數。1×1卷積核不識別高和寬維度上相鄰元素構成的模式,其主要計算發生在通道維上。假設我們將通道維當作特徵維,將高和寬維度上的元素當成數據樣本,那麼1×1卷積層的作用與全連接層等價。
6、卷積層與全連接層的對比
二維卷積層經常用於處理圖像,與此前的全連接層相比,它主要有兩個優勢:
一是全連接層把圖像展平成一個向量,在輸入圖像上相鄰的元素可能因為展平操作不再相鄰,網路難以捕捉局部信息。而卷積層的設計,天然地具有提取局部信息的能力。
二是卷積層的參數量更少。不考慮偏置的情況下,一個形狀為(ci,co,h,w)的卷積核的參數量是ci×co×h×w,與輸入圖像的寬高無關。假如一個卷積層的輸入和輸出形狀分別是(c1,h1,w1)和(c2,h2,w2),如果要用全連接層進行連接,參數數量就是c1×c2×h1×w1×h2×w2。使用卷積層可以以較少的參數數量來處理更大的圖像。
X=torch.rand(4,2,3,5)
print(X.shape)
conv2d=nn.Conv2d(in_channels=2,out_channels=3,kernel_size=(3,5),stride=1,padding=(1,2))
Y=conv2d(X)
print('Y.shape: ',Y.shape)
print('weight.shape: ',conv2d.weight.shape)
print('bias.shape: ',conv2d.bias.shape)
輸出:
torch.Size([4, 2, 3, 5])
Y.shape: torch.Size([4, 3, 3, 5])
weight.shape: torch.Size([3, 2, 3, 5])
bias.shape: torch.Size([3])
7、池化
7.1 二維池化層
池化層主要用於緩解卷積層對位置的過度敏感性。同卷積層一樣,池化層每次對輸入數據的一個固定形狀窗口(又稱池化窗口)中的元素計算輸出,池化層直接計算池化窗口內元素的最大值或者平均值,該運算也分別叫做最大池化或平均池化。圖6展示了池化窗口形狀為2×2的最大池化。
二維平均池化的工作原理與二維最大池化類似,但將最大運算符替換成平均運算符。池化窗口形狀為p×q的池化層稱為p×q池化層,其中的池化運算叫作p×q池化。
池化層也可以在輸入的高和寬兩側填充並調整窗口的移動步幅來改變輸出形狀。池化層填充和步幅與卷積層填充和步幅的工作機制一樣。
在處理多通道輸入數據時,池化層對每個輸入通道分別池化,但不會像卷積層那樣將各通道的結果按通道相加。這意味著池化層的輸出通道數與輸入通道數相等。
CNN網路中另外一個不可導的環節就是Pooling池化操作,因為Pooling操作使得feature map的尺寸變化,假如做2×2的池化,假設那麼第l+1層的feature map有16個梯度,那麼第l層就會有64個梯度,這使得梯度無法對位的進行傳播下去。其實解決這個問題的思想也很簡單,就是把1個像素的梯度傳遞給4個像素,但是需要保證傳遞的loss(或者梯度)總和不變。根據這條原則,mean pooling和max pooling的反向傳播也是不同的。
7.2 mean pooling
mean pooling的前向傳播就是把一個patch中的值求取平均來做pooling,那麼反向傳播的過程也就是把某個元素的梯度等分為n份分配給前一層,這樣就保證池化前後的梯度(殘差)之和保持不變,還是比較理解的,圖示如下:
mean pooling比較容易讓人理解錯的地方就是會簡單的認為直接把梯度復制N遍之後直接反向傳播回去,但是這樣會造成loss之和變為原來的N倍,網路是會產生梯度爆炸的。
7.3 max pooling
max pooling也要滿足梯度之和不變的原則,max pooling的前向傳播是把patch中最大的值傳遞給後一層,而其他像素的值直接被舍棄掉。那麼反向傳播也就是把梯度直接傳給前一層某一個像素,而其他像素不接受梯度,也就是為0。所以max pooling操作和mean pooling操作不同點在於需要記錄下池化操作時到底哪個像素的值是最大,也就是max id。
源碼中有一個max_idx_的變數,這個變數就是記錄最大值所在位置的,因為在反向傳播中要用到,那麼假設前向傳播和反向傳播的過程就如下圖所示。
7.4 Pytorch 實現池化層
我們使用Pytorch中的nn.MaxPool2d實現最大池化層,關注以下構造函數參數:
kernel_size – the size of the window to take a max over
stride – the stride of the window. Default value is kernel_size
padding – implicit zero padding to be added on both sides
forward函數的參數為一個四維張量,形狀為 ,返回值也是一個四維張量,形狀為 ,其中N是批量大小,C,H,W分別表示通道數、高度、寬度。
X=torch.arange(32,dtype=torch.float32).view(1,2,4,4)
pool2d=nn.MaxPool2d(kernel_size=3,padding=1,stride=(2,1))
Y=pool2d(X)
print(X)
print(Y)
練習
1、假如你用全連接層處理一張256 \times 256256×256的彩色(RGB)圖像,輸出包含1000個神經元,在使用偏置的情況下,參數數量是:
答:圖像展平後長度為3×256×256,權重參數和偏置參數的數量是3× 256× 256 × 1000 + 1000 =196609000。
2、假如你用全連接層處理一張256×256的彩色(RGB)圖像,卷積核的高寬是3×3,輸出包含10個通道,在使用偏置的情況下,這個卷積層共有多少個參數:
答:輸入通道數是3,輸出通道數是10,所以參數數量是10×3×3×3+10=280。
3、conv2d = nn.Conv2d(in_channels=3, out_channels=4, kernel_size=3, padding=2),輸入一張形狀為3×100×100的圖像,輸出的形狀為:
答:輸出通道數是4,上下兩側總共填充4行,卷積核高度是3,所以輸出的高度是104 - 3 + 1=102104−3+1=102,寬度同理可得。
4、關於卷積層,以下哪種說法是錯誤的:
A.1×1卷積可以看作是通道維上的全連接
B.某個二維卷積層用於處理形狀為3×100×100的輸入,則該卷積層無法處理形狀為3×256×256的輸入
C.卷積層通過填充、步幅、輸入通道數、輸出通道數等調節輸出的形狀
D .兩個連續的3×3卷積核的感受野與一個5×5卷積核的感受野相同
答:選B,對於高寬維度,只要輸入的高寬(填充後的)大於或等於卷積核的高寬即可進行計算。
the first layer is a 3 × 3 convolution, the second is a fully connected layer on top of the 3 × 3 output grid of the first layer (see Figure 1). Sliding this small network over the input activation grid boils down to replacing the 5 × 5 convolution with two layers of 3 × 3 convolution.
我們假設圖片是5*5的
我們使用5*5的卷積核對其卷積,步長為1,得到的結果是:(5-5)/1+1=1
然後我們使用2個卷積核為3*3的,這里的兩個是指2層:
第一層3*3:
得到的結果是(5-3)/1+1=3
第二層3*3:
得到的結果是(3-3)/1+1=1
所以我們的最終得到結果感受野大小和用5*5的卷積核得到的結果大小是一樣的!!!
5、關於池化層,以下哪種說法是錯誤的:
A.池化層不參與反向傳播
B.池化層沒有模型參數
C.池化層通常會減小特徵圖的高和寬
D.池化層的輸入和輸出具有相同的通道數
答:A
選項1:錯誤,池化層有參與模型的正向計算,同樣也會參與反向傳播
選項2:正確,池化層直接對窗口內的元素求最大值或平均值,並沒有模型參數參與計算
選項3:正確
選項4:正確
參考文獻:
https://www.boyuai.com/
https://blog.csdn.net/qq_21578849/article/details/94667699
https://www.hu.com/question/265791259/answer/298610437
https://blog.csdn.net/zouxiaolv/article/details/97366681
❽ 卷積神經網路——卷積層、池化層和激活函數
2018年11月20日,在看tensorflow的時候發現還是有很多概念沒有理解透徹,發現一個很贊的資源(估計大家都知道的,只有我現在才發現),吳恩達老師在網易雲課堂上開的深度學習的 課程 ,感覺很贊.本文實際上是吳恩達卷積神經網路視頻學習筆記。
2019年2月14日,再次溫故這部分的內容,添加了1.1章節的自問自答,添加了對池化層實現反向傳播的方式,添加了激活函數relu和sigmoid的對比。
通過一個3 * 3的每列值相同、第一列為1,第二列為0,第三列為-1的過濾器可以檢測垂直的邊沿。注意到1表示亮,-1表示暗。這樣可以發現正負值的邊沿。
對於垂直邊緣過濾器而言,重要的是中間一列為0,左右兩列的值可以相差盡可能的大。
這個過濾器的數值也是可以通過反向傳播演算法學習的,不一定需要在演算法開始之前就決定。
深度學習甚至可以去學習其他的邊沿,無論是45度、73度乃至是其他的角度,雖然比手工要復雜一些,但是確實具有這樣的能力。
為什麼需要填充?大家都知道,卷積就是用過濾器(f x f)從左到右、從上到下的掃描一個矩陣(n x n)。有兩種卷積操作,一種稱為valid-conv,一種稱為same-conv。每次卷積的時候,過濾器右側碰到矩陣右邊界就結束當前行的掃描,下側碰到矩陣下邊界就結束掃描,因此通過過濾器的圖像都會縮小,變為(n-f+1) * (n-f+1)。valid-conv就是這樣的卷積操作,而same-conv會在卷積之前填充原始圖,使得卷積之後的大小不變。
一般來說,若原圖像大小為n * n,過濾器大小為f * f,那麼需要padding的大小為p=(f-1)/2。一般來說我們會設置f為奇數,很少看見偶數的過濾器。其中的原因之一就是為了對稱填充。另一個原因可能是一般需要將過濾器的中間點用於定位卷積的位置,而偶數過濾器沒有中間點。
上面的提到的卷積過程每次只移動一步。實際上過濾器可以移動不止一步,用s表示步長。那麼n x n的矩陣輸入, f x f的過濾器, p填充padding,以及s步長的情況下,輸出的矩陣大小為 (n+2p-f)/2+1 x (n+2p-f)/2+1 ,這里是向下取整的,這意味過濾器只能在輸入圖像內部移動,不可以移動出邊緣。
注意 在tensorflow中,有兩種填充方式,一種是same,一種是valid。same是填充,而valid是不填充。如果遇到valid,那麼實際計算矩陣大小的時候,是向上取整,而不是這里提到的向下取整。如果是same模式,那麼最後的矩陣形狀是n/s,也是向上取整
上面提到的卷積的輸入是n x n的,這一般是灰度圖像。對應彩色圖像則存在RGB三個顏色channel,這樣的圖片是n x n x 3。此時的過濾器也必須存在第三個維度,即channel維度,且一個過濾器的channel維度必須和輸入的channel維度一致。這樣的卷積結果就是三個維度上,過濾器和輸入的重疊位置乘積之和。最後的輸出是(n - f + 1) x ( n - f +1)的。 注意,輸出是二維的
我們可以使用N個不同的過濾器得到不同的N個二維輸出,按照輸入的格式將其疊起來,這樣輸出就是 (n - f + 1) x ( n - f +1) x N了。
在上面一節中已經講了如何得到輸入和一個過濾器卷積之後的結果。通常會給卷積的結果添加一個偏執,然後使用非線性的函數進行處理,得到的就是這層網路的輸出。將過濾器的參數標記為W,偏置為 b(一個channel的輸出矩陣Wa的偏置是一個實數,而非一個矩陣。一個layer的偏置b的維度和通道數channel一致) , 輸入數據為上層的激活值。這樣每個過濾器處理之後的結果就可以看成是經過了該layer一個節點之後的輸出。
下面是每層的符號標記,以及根據上一層計算下一層輸入大小的公式,右下角是使用BP學習更新的時候參數更新的次數。可以看到每層的參數的個數只和這層的filter的大小、數目有關,而和輸入的規模無關。這樣就可以通過控制參數的數量避免過擬合了。
可以從下面的課件中看到,卷積神經網路的趨勢是長度和高度逐漸減少,而channel逐漸加深。最後一層會將卷積層平鋪開來,形成一個全連接。全連接層會連接到最後一個判別函數上,判別函數可以是logistic或者softmax層,用於輸出類別或者概率。
一般情況下,卷積網路除了卷積層之外,還會有池化層和全連接層,這些層可以提供更好的學習。
池化層一般在卷積層之後,可以也可以看成一個過濾器,實際上實現的一個采樣的功能,其主要的思想是,著重提取具有某種傾向的特徵,比如最大池化對應的是更顯著的特徵;平均池化對應的是更加平滑的特徵。過濾器有幾點不同
一般常用的池化層有max_pooling和average_pooling.max_pooling更加常用。 ,最大池化層意味著檢測某個特徵,並始終將這個特徵留在池化層的輸出中 。
池化層的輸入n x n x nc,過濾器 f x f,步長s,輸出 ((n-f)/s+1) x ((n-f)/s+1) * nc。
一般取s=2,這意味著輸入的長寬減小一半。
比較好奇的一個問題是,池化層的存在對反向傳播有什麼影響?我們都知道在傳統的神經網路中,反向傳播演算法實際上就是利用函數的梯度進行反向傳播的,那麼池化層這種既改變了矩陣大小又不好求導的情況,怎麼處理呢?
(下面的內容來自 迷川浩浩_ZJU 的博客 )
mean pooling的前向傳播就是把一個patch中的值求取平均來做pooling,那麼反向傳播的過程也就是把某個元素的梯度等分為n份分配給前一層,這樣就保證池化前後的梯度(殘差)之和保持不變,還是比較理解的。mean pooling比較容易讓人理解錯的地方就是會簡單的認為直接把梯度復制N遍之後直接反向傳播回去,但是這樣會造成loss之和變為原來的N倍,網路是會產生梯度爆炸的。
2、max pooling
max pooling也要滿足梯度之和不變的原則,max pooling的前向傳播是把patch中最大的值傳遞給後一層,而其他像素的值直接被舍棄掉。那麼反向傳播也就是把梯度直接傳給前一層某一個像素,而其他像素不接受梯度,也就是為0。所以max pooling操作和mean pooling操作不同點在於需要記錄下池化操作時到底哪個像素的值是最大,也就是max id
一般概念上的一層包括卷積層和池化層,之所以不把池化層當做新的一層是因為池化層沒有需要學習的參數,一般意義上的layer是有權重和參數需要學習的。
盡量不要自己設置超參數,而是盡量參考別人論文裡面使用的超參數,選擇一個在別人任務中效果很好的超參數。
下面的表中列舉了上面的網路每一層的數據規模a^(l)以及參數數量。可以發現數據的規模逐漸減小。主卷積層的參數比較少,而進入全連接層之後參數數量很大。(表格中最後三列的參數數量可能存在錯誤,應該是48000 + 120, 120 * 84 + 84, 84 * 10 + 10)
以上的兩個特徵可以明顯的減少參數。減少過擬合
(內容來自 迷川浩浩_ZJU 的博客 )
常用的激活函數有sigmoid函數和relu函數.
Relu(x)={if x>0 then x;else 0}為了在反向傳播演算法中可以正常使用,將其在x=0x=0處的導數置為1,所以它的導數也就變為了 δRelu(x)={if x>0 then 1 else 0}
Relu是一個非常優秀的激活哈數,相比較於傳統的Sigmoid函數,有三個作用
❾ 構建ResNet卷積神經網路
2015年,微軟亞洲研究院的何凱明團隊發布了一種特殊的卷積神經網路——殘差神經網路(ResNet)。在殘差神經網路出現之前,最深的深度神經網路只有二三十層左右,這該神經網路卻可以在實驗中輕松達到上百層甚至上千層,另外不會佔用過多訓練時間,也正因如此,圖像識別准確率有了顯著增強。此模型更是在同年的ImageNet大賽中,獲得圖像分類、定位、檢測三個項目的冠軍。在國際大賽上取得如此優異的成績,證明了殘差神經網路是個實用性強且優異的模型。在本研究中的貓狗二分類的實驗中,也是基於殘差神經網路來構建分類模型的。
在本文中我們將把kaggle貓狗數據集應用於ResNet-18和ResNet-50網路模型。使用Resnet來探究當前使用卷積神經網路的准確率。如圖4-1為ResNet的經典網路結構圖——ResNet-18。
ResNet-18都是由BasicBlock組成,從圖4-2也可得知50層及以上的ResNet網路模型由BottleBlock組成。在我們就需要將我們預處理過的數據集放入現有的Resnet-18和ResNet-50模型中去訓練,首先我們通過前面提到的圖像預處理把訓練圖像裁剪成一個96x96的正方形尺寸,然後輸入到我們的模型中,這里就介紹一下ResNet-18的網路模型的結構,因為ResNet50與第五章的ResNet-34模型結構相仿。
ResNet-18的模型結構為:首先第一層是一個7×7的卷積核,輸入特徵矩陣為[112,112,64],經過卷積核64,stride為2得到出入特徵矩陣[56,56,64]。第二層一開始是由一個3×3的池化層組成的,接著是2個殘差結構,一開始的輸入的特徵矩陣為[56,56,64],需要輸出的特徵矩陣shape為[28,28,128], 然而主分支與shortcut的輸出特徵矩陣shape必須相同,所以[56,56,64]這個特徵矩陣的高和寬從56通過主分支的stride為2來縮減為原來的一半即為28,再通過128個卷積核來改變特徵矩陣的深度。然而這里的shortcut加上了一個1x1的卷積核,stride也為2,通過這個stride,輸入的特徵矩陣的寬和高也縮減為原有的一半,同時通過128個卷積核將輸入的特徵矩陣的深度也變為了128。第三層,有2個殘差結構,輸入的特徵矩陣shape是[28,28,128],輸出特徵矩陣shape是[14,14,256], 然而主分支與shortcut的輸出特徵矩陣shape必須相同,所以[14,14,256]這個特徵矩陣的高和寬從14通過主分支的stride為2來縮減為原來的一半即為7,再通過128個卷積核來改變特徵矩陣的深度。然而這里的shortcut加上了一個1×1的卷積核,stride也為2,通過這個stride,輸入的特徵矩陣的寬和高也縮減為原有的一半,同時通過256個卷積核將輸入的特徵矩陣的深度也變為了256。第四層,有2個殘差結構,經過上述的相同的變化過程得到輸出的特徵矩陣為[7,7,512]。第五層,有2個殘差結構, 經過上述的相同的變化過程得到輸出的特徵矩陣為[1,1,512]。接著是平均池化和全連接層。
❿ 卷積神經網路
關於花書中卷積網路的筆記記錄於 https://www.jianshu.com/p/5a3c90ea0807 。
卷積神經網路(Convolutional Neural Network,CNN或ConvNet)是一種具有 局部連接、權重共享 等特性的深層前饋神經網路。卷積神經網路是受生物學上感受野的機制而提出。 感受野(Receptive Field) 主要是指聽覺、視覺等神經系統中一些神經元的特性,即 神經元只接受其所支配的刺激區域內的信號 。
卷積神經網路最早是主要用來處理圖像信息。如果用全連接前饋網路來處理圖像時,會存在以下兩個問題:
目前的卷積神經網路一般是由卷積層、匯聚層和全連接層交叉堆疊而成的前饋神經網路,使用反向傳播演算法進行訓練。 卷積神經網路有三個結構上的特性:局部連接,權重共享以及匯聚 。這些特性使卷積神經網路具有一定程度上的平移、縮放和旋轉不變性。
卷積(Convolution)是分析數學中一種重要的運算。在信號處理或圖像處理中,經常使用一維或二維卷積。
一維卷積經常用在信號處理中,用於計算信號的延遲累積。假設一個信號發生器每個時刻t 產生一個信號 ,其信息的衰減率為 ,即在 個時間步長後,信息為原來的 倍。假設 ,那麼在時刻t收到的信號 為當前時刻產生的信息和以前時刻延遲信息的疊加:
我們把 稱為 濾波器(Filter)或卷積核(Convolution Kernel) 。假設濾波器長度為 ,它和一個信號序列 的卷積為:
信號序列 和濾波器 的卷積定義為:
一般情況下濾波器的長度 遠小於信號序列長度 ,下圖給出一個一維卷積示例,濾波器為 :
二維卷積經常用在圖像處理中。因為圖像為一個兩維結構,所以需要將一維卷積進行擴展。給定一個圖像 和濾波器 ,其卷積為:
下圖給出一個二維卷積示例:
注意這里的卷積運算並不是在圖像中框定卷積核大小的方框並將各像素值與卷積核各個元素相乘並加和,而是先把卷積核旋轉180度,再做上述運算。
在圖像處理中,卷積經常作為特徵提取的有效方法。一幅圖像在經過卷積操作後得到結果稱為 特徵映射(Feature Map) 。
最上面的濾波器是常用的高斯濾波器,可以用來對圖像進行 平滑去噪 ;中間和最下面的過濾器可以用來 提取邊緣特徵 。
在機器學習和圖像處理領域,卷積的主要功能是在一個圖像(或某種特徵)上滑動一個卷積核(即濾波器),通過卷積操作得到一組新的特徵。在計算卷積的過程中,需要進行卷積核翻轉(即上文提到的旋轉180度)。 在具體實現上,一般會以互相關操作來代替卷積,從而會減少一些不必要的操作或開銷。
互相關(Cross-Correlation)是一個衡量兩個序列相關性的函數,通常是用滑動窗口的點積計算來實現 。給定一個圖像 和卷積核 ,它們的互相關為:
互相關和卷積的區別僅在於卷積核是否進行翻轉。因此互相關也可以稱為不翻轉卷積 。當卷積核是可學習的參數時,卷積和互相關是等價的。因此,為了實現上(或描述上)的方便起見,我們用互相關來代替卷積。事實上,很多深度學習工具中卷積操作其實都是互相關操作。
在卷積的標準定義基礎上,還可以引入濾波器的 滑動步長 和 零填充 來增加卷積多樣性,更靈活地進行特徵抽取。
濾波器的步長(Stride)是指濾波器在滑動時的時間間隔。
零填充(Zero Padding)是在輸入向量兩端進行補零。
假設卷積層的輸入神經元個數為 ,卷積大小為 ,步長為 ,神經元兩端各填補 個零,那麼該卷積層的神經元數量為 。
一般常用的卷積有以下三類:
因為卷積網路的訓練也是基於反向傳播演算法,因此我們重點關注卷積的導數性質:
假設 。
, , 。函數 為一個標量函數。
則由 有:
可以看出, 關於 的偏導數為 和 的卷積 :
同理得到:
當 或 時, ,即相當於對 進行 的零填充。從而 關於 的偏導數為 和 的寬卷積 。
用互相關的「卷積」表示,即為(注意 寬卷積運算具有交換性性質 ):
在全連接前饋神經網路中,如果第 層有 個神經元,第 層有 個神經元,連接邊有 個,也就是權重矩陣有 個參數。當 和 都很大時,權重矩陣的參數非常多,訓練的效率會非常低。
如果採用卷積來代替全連接,第 層的凈輸入 為第 層活性值 和濾波器 的卷積,即:
根據卷積的定義,卷積層有兩個很重要的性質:
由於局部連接和權重共享,卷積層的參數只有一個m維的權重 和1維的偏置 ,共 個參數。參數個數和神經元的數量無關。此外,第 層的神經元個數不是任意選擇的,而是滿足 。
卷積層的作用是提取一個局部區域的特徵,不同的卷積核相當於不同的特徵提取器。
特徵映射(Feature Map)為一幅圖像(或其它特徵映射)在經過卷積提取到的特徵,每個特徵映射可以作為一類抽取的圖像特徵。 為了提高卷積網路的表示能力,可以在每一層使用多個不同的特徵映射,以更好地表示圖像的特徵。
在輸入層,特徵映射就是圖像本身。如果是灰度圖像,就是有一個特徵映射,深度 ;如果是彩色圖像,分別有RGB三個顏色通道的特徵映射,深度 。
不失一般性,假設一個卷積層的結構如下:
為了計算輸出特徵映射 ,用卷積核 分別對輸入特徵映射 進行卷積,然後將卷積結果相加,並加上一個標量偏置 得到卷積層的凈輸入 再經過非線性激活函數後得到輸出特徵映射 。
在輸入為 ,輸出為 的卷積層中,每個輸出特徵映射都需要 個濾波器以及一個偏置。假設每個濾波器的大小為 ,那麼共需要 個參數。
匯聚層(Pooling Layer)也叫子采樣層(Subsampling Layer),其作用是進行特徵選擇,降低特徵數量,並從而減少參數數量。
常用的匯聚函數有兩種:
其中 為區域 內每個神經元的激活值。
可以看出,匯聚層不但可以有效地減少神經元的數量,還可以使得網路對一些小的局部形態改變保持不變性,並擁有更大的感受野。
典型的匯聚層是將每個特徵映射劃分為 大小的不重疊區域,然後使用最大匯聚的方式進行下采樣。匯聚層也可以看做是一個特殊的卷積層,卷積核大小為 ,步長為 ,卷積核為 函數或 函數。過大的采樣區域會急劇減少神經元的數量,會造成過多的信息損失。
一個典型的卷積網路是由卷積層、匯聚層、全連接層交叉堆疊而成。
目前常用卷積網路結構如圖所示,一個卷積塊為連續 個卷積層和 個匯聚層( 通常設置為 , 為 或 )。一個卷積網路中可以堆疊 個連續的卷積塊,然後在後面接著 個全連接層( 的取值區間比較大,比如 或者更大; 一般為 )。
目前,整個網路結構 趨向於使用更小的卷積核(比如 和 )以及更深的結構(比如層數大於50) 。此外,由於卷積的操作性越來越靈活(比如不同的步長),匯聚層的作用變得也越來越小,因此目前比較流行的卷積網路中, 匯聚層的比例也逐漸降低,趨向於全卷積網路 。
在全連接前饋神經網路中,梯度主要通過每一層的誤差項 進行反向傳播,並進一步計算每層參數的梯度。在卷積神經網路中,主要有兩種不同功能的神經層:卷積層和匯聚層。而參數為卷積核以及偏置,因此 只需要計算卷積層中參數的梯度。
不失一般性,第 層為卷積層,第 層的輸入特徵映射為 ,通過卷積計算得到第 層的特徵映射凈輸入 ,第 層的第 個特徵映射凈輸入
由 得:
同理可得,損失函數關於第 層的第 個偏置 的偏導數為:
在卷積網路中,每層參數的梯度依賴其所在層的誤差項 。
卷積層和匯聚層中,誤差項的計算有所不同,因此我們分別計算其誤差項。
第 層的第 個特徵映射的誤差項 的具體推導過程如下:
其中 為第 層使用的激活函數導數, 為上采樣函數(upsampling),與匯聚層中使用的下采樣操作剛好相反。如果下采樣是最大匯聚(max pooling),誤差項 中每個值會直接傳遞到上一層對應區域中的最大值所對應的神經元,該區域中其它神經元的誤差項的都設為0。如果下采樣是平均匯聚(meanpooling),誤差項 中每個值會被平均分配到上一層對應區域中的所有神經元上。
第 層的第 個特徵映射的誤差項 的具體推導過程如下:
其中 為寬卷積。
LeNet-5雖然提出的時間比較早,但是是一個非常成功的神經網路模型。基於LeNet-5 的手寫數字識別系統在90年代被美國很多銀行使用,用來識別支票上面的手寫數字。LeNet-5 的網路結構如圖:
不計輸入層,LeNet-5共有7層,每一層的結構為:
AlexNet是第一個現代深度卷積網路模型,其首次使用了很多現代深度卷積網路的一些技術方法,比如採用了ReLU作為非線性激活函數,使用Dropout防止過擬合,使用數據增強來提高模型准確率等。AlexNet 贏得了2012 年ImageNet 圖像分類競賽的冠軍。
AlexNet的結構如圖,包括5個卷積層、3個全連接層和1個softmax層。因為網路規模超出了當時的單個GPU的內存限制,AlexNet 將網路拆為兩半,分別放在兩個GPU上,GPU間只在某些層(比如第3層)進行通訊。
AlexNet的具體結構如下:
在卷積網路中,如何設置卷積層的卷積核大小是一個十分關鍵的問題。 在Inception網路中,一個卷積層包含多個不同大小的卷積操作,稱為Inception模塊。Inception網路是由有多個inception模塊和少量的匯聚層堆疊而成 。
v1版本的Inception模塊,採用了4組平行的特徵抽取方式,分別為1×1、3× 3、5×5的卷積和3×3的最大匯聚。同時,為了提高計算效率,減少參數數量,Inception模塊在進行3×3、5×5的卷積之前、3×3的最大匯聚之後,進行一次1×1的卷積來減少特徵映射的深度。如果輸入特徵映射之間存在冗餘信息, 1×1的卷積相當於先進行一次特徵抽取 。