⑴ 卷積神經網路
關於花書中卷積網路的筆記記錄於 https://www.jianshu.com/p/5a3c90ea0807 。
卷積神經網路(Convolutional Neural Network,CNN或ConvNet)是一種具有 局部連接、權重共享 等特性的深層前饋神經網路。卷積神經網路是受生物學上感受野的機制而提出。 感受野(Receptive Field) 主要是指聽覺、視覺等神經系統中一些神經元的特性,即 神經元只接受其所支配的刺激區域內的信號 。
卷積神經網路最早是主要用來處理圖像信息。如果用全連接前饋網路來處理圖像時,會存在以下兩個問題:
目前的卷積神經網路一般是由卷積層、匯聚層和全連接層交叉堆疊而成的前饋神經網路,使用反向傳播演算法進行訓練。 卷積神經網路有三個結構上的特性:局部連接,權重共享以及匯聚 。這些特性使卷積神經網路具有一定程度上的平移、縮放和旋轉不變性。
卷積(Convolution)是分析數學中一種重要的運算。在信號處理或圖像處理中,經常使用一維或二維卷積。
一維卷積經常用在信號處理中,用於計算信號的延遲累積。假設一個信號發生器每個時刻t 產生一個信號 ,其信息的衰減率為 ,即在 個時間步長後,信息為原來的 倍。假設 ,那麼在時刻t收到的信號 為當前時刻產生的信息和以前時刻延遲信息的疊加:
我們把 稱為 濾波器(Filter)或卷積核(Convolution Kernel) 。假設濾波器長度為 ,它和一個信號序列 的卷積為:
信號序列 和濾波器 的卷積定義為:
一般情況下濾波器的長度 遠小於信號序列長度 ,下圖給出一個一維卷積示例,濾波器為 :
二維卷積經常用在圖像處理中。因為圖像為一個兩維結構,所以需要將一維卷積進行擴展。給定一個圖像 和濾波器 ,其卷積為:
下圖給出一個二維卷積示例:
注意這里的卷積運算並不是在圖像中框定卷積核大小的方框並將各像素值與卷積核各個元素相乘並加和,而是先把卷積核旋轉180度,再做上述運算。
在圖像處理中,卷積經常作為特徵提取的有效方法。一幅圖像在經過卷積操作後得到結果稱為 特徵映射(Feature Map) 。
最上面的濾波器是常用的高斯濾波器,可以用來對圖像進行 平滑去噪 ;中間和最下面的過濾器可以用來 提取邊緣特徵 。
在機器學習和圖像處理領域,卷積的主要功能是在一個圖像(或某種特徵)上滑動一個卷積核(即濾波器),通過卷積操作得到一組新的特徵。在計算卷積的過程中,需要進行卷積核翻轉(即上文提到的旋轉180度)。 在具體實現上,一般會以互相關操作來代替卷積,從而會減少一些不必要的操作或開銷。
互相關(Cross-Correlation)是一個衡量兩個序列相關性的函數,通常是用滑動窗口的點積計算來實現 。給定一個圖像 和卷積核 ,它們的互相關為:
互相關和卷積的區別僅在於卷積核是否進行翻轉。因此互相關也可以稱為不翻轉卷積 。當卷積核是可學習的參數時,卷積和互相關是等價的。因此,為了實現上(或描述上)的方便起見,我們用互相關來代替卷積。事實上,很多深度學習工具中卷積操作其實都是互相關操作。
在卷積的標準定義基礎上,還可以引入濾波器的 滑動步長 和 零填充 來增加卷積多樣性,更靈活地進行特徵抽取。
濾波器的步長(Stride)是指濾波器在滑動時的時間間隔。
零填充(Zero Padding)是在輸入向量兩端進行補零。
假設卷積層的輸入神經元個數為 ,卷積大小為 ,步長為 ,神經元兩端各填補 個零,那麼該卷積層的神經元數量為 。
一般常用的卷積有以下三類:
因為卷積網路的訓練也是基於反向傳播演算法,因此我們重點關注卷積的導數性質:
假設 。
, , 。函數 為一個標量函數。
則由 有:
可以看出, 關於 的偏導數為 和 的卷積 :
同理得到:
當 或 時, ,即相當於對 進行 的零填充。從而 關於 的偏導數為 和 的寬卷積 。
用互相關的「卷積」表示,即為(注意 寬卷積運算具有交換性性質 ):
在全連接前饋神經網路中,如果第 層有 個神經元,第 層有 個神經元,連接邊有 個,也就是權重矩陣有 個參數。當 和 都很大時,權重矩陣的參數非常多,訓練的效率會非常低。
如果採用卷積來代替全連接,第 層的凈輸入 為第 層活性值 和濾波器 的卷積,即:
根據卷積的定義,卷積層有兩個很重要的性質:
由於局部連接和權重共享,卷積層的參數只有一個m維的權重 和1維的偏置 ,共 個參數。參數個數和神經元的數量無關。此外,第 層的神經元個數不是任意選擇的,而是滿足 。
卷積層的作用是提取一個局部區域的特徵,不同的卷積核相當於不同的特徵提取器。
特徵映射(Feature Map)為一幅圖像(或其它特徵映射)在經過卷積提取到的特徵,每個特徵映射可以作為一類抽取的圖像特徵。 為了提高卷積網路的表示能力,可以在每一層使用多個不同的特徵映射,以更好地表示圖像的特徵。
在輸入層,特徵映射就是圖像本身。如果是灰度圖像,就是有一個特徵映射,深度 ;如果是彩色圖像,分別有RGB三個顏色通道的特徵映射,深度 。
不失一般性,假設一個卷積層的結構如下:
為了計算輸出特徵映射 ,用卷積核 分別對輸入特徵映射 進行卷積,然後將卷積結果相加,並加上一個標量偏置 得到卷積層的凈輸入 再經過非線性激活函數後得到輸出特徵映射 。
在輸入為 ,輸出為 的卷積層中,每個輸出特徵映射都需要 個濾波器以及一個偏置。假設每個濾波器的大小為 ,那麼共需要 個參數。
匯聚層(Pooling Layer)也叫子采樣層(Subsampling Layer),其作用是進行特徵選擇,降低特徵數量,並從而減少參數數量。
常用的匯聚函數有兩種:
其中 為區域 內每個神經元的激活值。
可以看出,匯聚層不但可以有效地減少神經元的數量,還可以使得網路對一些小的局部形態改變保持不變性,並擁有更大的感受野。
典型的匯聚層是將每個特徵映射劃分為 大小的不重疊區域,然後使用最大匯聚的方式進行下采樣。匯聚層也可以看做是一個特殊的卷積層,卷積核大小為 ,步長為 ,卷積核為 函數或 函數。過大的采樣區域會急劇減少神經元的數量,會造成過多的信息損失。
一個典型的卷積網路是由卷積層、匯聚層、全連接層交叉堆疊而成。
目前常用卷積網路結構如圖所示,一個卷積塊為連續 個卷積層和 個匯聚層( 通常設置為 , 為 或 )。一個卷積網路中可以堆疊 個連續的卷積塊,然後在後面接著 個全連接層( 的取值區間比較大,比如 或者更大; 一般為 )。
目前,整個網路結構 趨向於使用更小的卷積核(比如 和 )以及更深的結構(比如層數大於50) 。此外,由於卷積的操作性越來越靈活(比如不同的步長),匯聚層的作用變得也越來越小,因此目前比較流行的卷積網路中, 匯聚層的比例也逐漸降低,趨向於全卷積網路 。
在全連接前饋神經網路中,梯度主要通過每一層的誤差項 進行反向傳播,並進一步計算每層參數的梯度。在卷積神經網路中,主要有兩種不同功能的神經層:卷積層和匯聚層。而參數為卷積核以及偏置,因此 只需要計算卷積層中參數的梯度。
不失一般性,第 層為卷積層,第 層的輸入特徵映射為 ,通過卷積計算得到第 層的特徵映射凈輸入 ,第 層的第 個特徵映射凈輸入
由 得:
同理可得,損失函數關於第 層的第 個偏置 的偏導數為:
在卷積網路中,每層參數的梯度依賴其所在層的誤差項 。
卷積層和匯聚層中,誤差項的計算有所不同,因此我們分別計算其誤差項。
第 層的第 個特徵映射的誤差項 的具體推導過程如下:
其中 為第 層使用的激活函數導數, 為上采樣函數(upsampling),與匯聚層中使用的下采樣操作剛好相反。如果下采樣是最大匯聚(max pooling),誤差項 中每個值會直接傳遞到上一層對應區域中的最大值所對應的神經元,該區域中其它神經元的誤差項的都設為0。如果下采樣是平均匯聚(meanpooling),誤差項 中每個值會被平均分配到上一層對應區域中的所有神經元上。
第 層的第 個特徵映射的誤差項 的具體推導過程如下:
其中 為寬卷積。
LeNet-5雖然提出的時間比較早,但是是一個非常成功的神經網路模型。基於LeNet-5 的手寫數字識別系統在90年代被美國很多銀行使用,用來識別支票上面的手寫數字。LeNet-5 的網路結構如圖:
不計輸入層,LeNet-5共有7層,每一層的結構為:
AlexNet是第一個現代深度卷積網路模型,其首次使用了很多現代深度卷積網路的一些技術方法,比如採用了ReLU作為非線性激活函數,使用Dropout防止過擬合,使用數據增強來提高模型准確率等。AlexNet 贏得了2012 年ImageNet 圖像分類競賽的冠軍。
AlexNet的結構如圖,包括5個卷積層、3個全連接層和1個softmax層。因為網路規模超出了當時的單個GPU的內存限制,AlexNet 將網路拆為兩半,分別放在兩個GPU上,GPU間只在某些層(比如第3層)進行通訊。
AlexNet的具體結構如下:
在卷積網路中,如何設置卷積層的卷積核大小是一個十分關鍵的問題。 在Inception網路中,一個卷積層包含多個不同大小的卷積操作,稱為Inception模塊。Inception網路是由有多個inception模塊和少量的匯聚層堆疊而成 。
v1版本的Inception模塊,採用了4組平行的特徵抽取方式,分別為1×1、3× 3、5×5的卷積和3×3的最大匯聚。同時,為了提高計算效率,減少參數數量,Inception模塊在進行3×3、5×5的卷積之前、3×3的最大匯聚之後,進行一次1×1的卷積來減少特徵映射的深度。如果輸入特徵映射之間存在冗餘信息, 1×1的卷積相當於先進行一次特徵抽取 。
⑵ 卷積神經網路CNN(Convolutional Neural Network)
上圖計算過程為,首先我們可以將右邊進行卷積的可以稱為過濾器也可以叫做核,覆蓋到左邊第一個區域,然後分別按照對應位置相乘再相加,3*1+1*1+2*1+0*0+0*0+0*0+1*(-1)+8*(-1)+2*(-1)=-5;
按照上述的計算方法逐步按右移一個步長(步長可以設定為1,2,...等),然後按往下移,逐漸計算相應的值,得出最終的值。
如上圖顯示,對於第一個圖像矩陣對應的圖,一邊是白色,一邊是黑色,那麼中間就會存在一個垂直的邊緣,我們可以選擇一個垂直邊緣檢測過濾器,如乘法右邊的矩陣,那麼兩者做卷積後得出的圖會顯示如等號右邊的結果矩陣對應的灰度圖中間會有一個白色的中間帶,也就是檢測出來的邊緣,那為什麼感覺中間邊緣帶會比較寬呢?而不是很細的一個局域呢?原因是我們輸入的圖像只有6*6,過於小了,如果我們選擇輸出更大的尺寸的圖,那麼結果來說就是相對的一個細的邊緣檢測帶,也就將我們的垂直邊緣特徵提取出來了。
上述都是人工選擇過濾器的參數,隨著神經網路的發展我們可以利用反向傳播演算法來學習過濾器的參數
我們可以將卷積的顧慮器的數值變成一個參數,通過反向傳播演算法去學習,這樣學到的過濾器或者說卷積核就能夠識別到很多的特徵,而不是依靠手工選擇過濾器。
- padding 操作,卷積經常會出現兩個問題:
1.每經過一次卷積圖像都會縮小,如果卷積層很多的話,後面的圖像就縮的很小了;
2.邊緣像素利用次數只有一次,很明顯少於位於中間的像素,因此會損失邊緣圖像信息。
為了解決上述的問題,我們可以在圖像邊緣填充像素,也就是 padding 操作了。
如果我們設置在圖像邊緣填充的像素數為p,那麼經過卷積後的圖像是:(n+2p-f+1)x(n+2p-f+1).
如何去選擇p呢
通常有兩種選擇:
-Valid:也就是說不填充操作(no padding),因此如果我們有nxn的圖像,fxf的過濾器,那麼我們進行卷積nxn fxf=(n-f+1)x(n-f+1)的輸出圖像;
-Same:也就是填充後是輸出圖像的大小的與輸入相同,同樣就有(n+2p)x(n+2p) fxf=nxn,那麼可以算,n+2p-f+1=n,得到p=(f-1)/2。
通常對於過濾器的選擇有一個默認的准則就是選擇過濾器的尺寸是奇數的過濾器。
- 卷積步長設置(Strided COnvolution)
卷積步長也就是我們進行卷積操作時,過濾器每次移動的步長,上面我們介紹的卷積操作步長默認都是1,也就是說每次移動過濾器時我們是向右移動一格,或者向下移動一格。
但是我們可以對卷積進行步長的設置,也就是我們能夠對卷積移動的格數進行設置。同樣假如我們的圖像是nxn,過濾器是fxf,padding設置是p,步長strided設置為s,那麼我們進行卷積操作後輸出的圖像為((n+2p-f)/s+1)x((n+2p-f)/s+1),那麼這樣就會出現一個問題,如果計算結果不是整數怎麼辦?
一般是選擇向下取整,也就是說明,只有當我們的過濾器完全在圖像上能夠覆蓋時才對它進行計算,這是一個慣例。
實際上上述所述的操作在嚴格數學角度來說不是卷積的定義,卷積的定義上我們計算的時候在移動步長之前也就是對應元素相乘之前是需要對卷積核或者說我們的過濾器進行鏡像操作的,經過鏡像操作後再把對應元素進行相乘這才是嚴格意義上的卷積操作,在數學角度上來說這個操作不算嚴格的卷積操作應該是屬於互相關操作,但是在深度學習領域中,大家按照慣例都省略了反轉操作,也把這個操作叫做卷積操作
我們知道彩色圖像有RGB三個通道,因此對於輸入來說是一個三維的輸入,那麼對三維輸入的圖像如何進行卷積操作呢?
例子,如上圖我們輸入圖像假設為6×6×3,3代表有RGB三個通道channel,或者可以叫depth深度,過濾器的選擇為3×3×3,其中需要規定的是,顧慮器的channel必須與輸入圖像的channel相同,長寬沒有限制,那麼計算過程是,我們將過濾器的立體覆蓋在輸入,這樣對應的27個數對應相乘後相加得到一個數,對應到我們的輸出,因此這樣的方式進行卷積後我們得出的輸出層為4×4×1。如果我們有多個過濾器,比如我們分別用兩個過濾器一個提取垂直特徵,一個提取水平特徵,那麼輸出圖4×4×2 。也就是代表我們輸出的深度或者說通道與過濾器的個數是相等的。
第l層的卷積標記如下:
加入我們的過濾器是3×3×3規格的,如果我們設定10個過濾器,那麼需要學習的參數總數為每個過濾器為27個參數然後加上一個偏差bias那麼每個過濾器的參數為28個,所以十個過濾器的參數為280個。從這里也就可以看出,不管我們輸入的圖片大小是多大,我們都只需要計算這些參數,因此參數共享也就很容易理解了。
為了縮減模型的大小,提高計算速度,同時提高所提取特徵的魯棒性,我們經常會使用池化層。池化層的計算方式與卷積類似,只是我們需要對每一個通道都進行池化操作。
池化的方式一般有兩種:Max Pooling和Average Pooling。
上面為Max Pooling,那麼計算方法與卷積類似,首先設定超參數比如過濾器的大小與步長,然後覆蓋到對應格子上面,用最大值取代其值作為輸出的結果,例如上圖為過濾器選擇2×2,步長選擇為2,因此輸出就是2×2的維度,每個輸出格子都是過濾器對應維度上輸入的最大值。如果為平均池化,那麼就是選擇其間的平均值作為輸出的值。
因此從上面的過程我們看到,通過池化操作能夠縮小模型,同時能讓特徵值更加明顯,也就提高了提取特徵的魯棒性。
⑶ 卷積神經網路Batch normalization
Batch Normalization 公式:
針對卷積神經網路,具體步驟是1)計算每個channel 的std.normaliza,輸入數據的(batch,channel,row,col)將(batch,row,col)看作一個整體求解std.normaliza,利用上面第一個公式,這樣每個channel有一個均值和方差,然後每一個batch有兩個新參數,scale和shift。
即,每一個batch有channel個均值和方差,兩個新參數。BN演算法只關注每一個channel,沒有關注channel之間的關系,可以說只關注了spacial信息沒有關注channel信息。
⑷ 卷積神經網路Convolutional Neural Network(CNNs/ConvNets)
cnn主要適合處理圖片,比如給圖片分類、給圖片自動打標簽、無人駕駛等。一般2D的cnn用來處理圖片,3D的cnn用來處理視頻。近來也有人開始用於nlp自然語言處理 (參考閱讀) 。cnn卷積神經網路是對傳統神經網路的改進,改進點包括:
1,提出卷積層convolutional layers layer和池化層max-pooling layer(subsampling layer),替代全連層fully connected layer。
2,將層之間的全連接改成非全連接,從而降低運算量,也降低過擬合的發生。
3,卷積層用的激活函數是ReLU或者tanh。
cnn的原理詳細介紹參見 (colah's blog)
cnn架構圖 ,
架構詳細分析 ,cnn的層有三類:Convolutional Layer, Pooling Layer和Fully-Connected Layer。其典型架構為[INPUT - CONV - RELU - POOL - FC]。
如何理解卷積的概念,可以參照 (這兒) 。更詳細更深入的解釋卷積參照 Chris Olah』s post on the topic 。卷積可以用來作圖片模糊處理、探測圖片邊緣。
也叫softmax layer,最後一層通常選用softmax激活函數。
cnn可以用於nlp自然語言處理,包括文本分類、情感分析、垃圾郵件監測、主題分類、關系抽取、信息抽取、信息推薦、等。cnn for nlp的原理參見 Understanding Convolutional Neural Networks for NLP 。
使用tensorflow實現一個文本分類cnn模型。具體參見 Implementing a CNN for Text Classification in TensorFlow 。
tensorflow實現cnn實例 (github源碼)
cnn用於文本分類實例 (github源碼)
sennchi
⑸ (7)卷積神經網路的基本結構
卷積神經網路主要結構有:卷積層、池化層、和全連接層。通過堆疊這些層結構形成一個卷積神經網路。將原始圖像轉化為類別得分,其中卷積層和全連接層擁有參數,激活層和池化層沒有參數。參數更新通過反向傳播實現。
(1)卷積層
卷積核是一系列的濾波器,用來提取某一種特徵
我們用它來處理一個圖片,當圖像特徵與過濾器表示的特徵相似時,卷積操作可以得到一個比較大的值。
當圖像特徵與過濾器不相似時,卷積操作可以得到一個比較小的值,實際上,卷積的結果特徵映射圖顯示的是對應卷積核所代表的特徵在原始特徵圖上的分布情況。
每個濾波器在空間上(寬度和高度)都比較小,但是深度和輸入數據保持一致(特徵圖的通道數),當卷積核在原圖像滑動時,會生成一個二維激活圖,激活圖上每個空間位置代表原圖像對該卷積核的反應。每個卷積層,會有一整個集合的卷積核,有多少個卷積核,輸出就有多少個通道。每個卷積核生成一個特徵圖,這些特徵圖堆疊起來組成整個輸出結果。
卷積核體現了參數共享和局部連接的模式。每個卷積核的大小代表了一個感受野的大小。
卷積後的特徵圖大小為(W-F+2*P)/s+1 ;P 為填充 s 為步長
(2)池化層
池化層本質上是下采樣,利用圖像局部相關性的原理(認為最大值或者均值代表了這個局部的特徵),對圖像進行子抽樣,可以減少數據處理量同時保留有用信息。這里池化有平均池化,L2範式池化,最大池化,經過實踐,最大池化的效果要好於平均池化(平均池化一般放在卷積神經網路的最後一層),最大池化有利於保存紋理信息,平均池化有利於保存背景信息。實際上(因為信息損失的原因)我們可以看到,通過在卷積時使用更大的步長也可以縮小特徵映射的尺寸,並不一定要用池化,有很多人不建議使用池化層。32*32在5*5卷積核步長為1下可得到28*28。
池化操作可以逐漸降低數據體的空間尺寸,這樣的話就能減少網路中參數的數量,使得計算資源耗費變少,也能有效控制過擬合。
(3)全連接層
通過全連接層將特徵圖轉化為類別輸出。全連接層不止一層,在這個過程中為了防止過擬合會引入DropOut。最新研究表明,在進入全連接層之前,使用全局平均池化可以有效降低過擬合。
(4)批歸一化BN——Batch Normal
隨著神經網路訓練的進行,每個隱層的參數變化使得後一層的輸入發生變化,從而每一批的訓練數據的分布也隨之改變,致使網路在每次迭代中都需要擬合不同的數據分布,增大訓練復雜度和過擬合的風險,只能採用較小的學習率去解決。
通常卷積層後就是BN層加Relu。BN已經是卷積神經網路中的一個標准技術。標准化的過程是可微的,因此可以將BN應用到每一層中做前向和反向傳播,同在接在卷積或者全連接層後,非線性層前。它對於不好的初始化有很強的魯棒性,同時可以加快網路收斂速度。
(5)DropOut
Dropout對於某一層神經元,通過定義的概率來隨機刪除一些神經元,同時保持輸入層與輸出層神經元的個數不變,然後按照神經網路的學習方法進行參數更新,下一次迭代中,重新隨機刪除一些神經元,直至訓練結束。
(6)softmax層
Softmax層也不屬於CNN中單獨的層,一般要用CNN做分類的話,我們習慣的方式是將神經元的輸出變成概率的形式,Softmax就是做這個的: 。顯然Softmax層所有的輸出相加為1,按照這個概率的大小確定到底屬於哪一類。
⑹ 卷積神經網路
1、二維互相關運算
二維互相關(cross-correlation)運算的輸入是一個二維輸入數組和一個二維核(kernel)數組,輸出也是一個二維數組,其中核數組通常稱為卷積核或過濾器(filter)。卷積核的尺寸通常小於輸入數組,卷積核在輸入數組上滑動,在每個位置上,卷積核與該位置處的輸入子數組按元素相乘並求和,得到輸出數組中相應位置的元素。圖1展示了一個互相關運算的例子,陰影部分分別是輸入的第一個計算區域、核數組以及對應的輸出。
2、二維卷積層
卷積層得名於卷積運算,但卷積層中用到的並非卷積運算而是互相關運算。我們將核數組上下翻轉、左右翻轉,再與輸入數組做互相關運算,這一過程就是卷積運算。由於卷積層的核數組是可學習的,所以使用互相關運算與使用卷積運算並無本質區別。
二維卷積層將輸入和卷積核做互相關運算,並加上一個標量偏置來得到輸出。卷積層的模型參數包括卷積核和標量偏置。
3、特徵圖與感受野
二維卷積層輸出的二維數組可以看作是輸入在空間維度(寬和高)上某一級的表徵,也叫特徵圖(feature map)。影響元素x的前向計算的所有可能輸入區域(可能大於輸入的實際尺寸)叫做x的感受野(receptive field)。
以圖1為例,輸入中陰影部分的四個元素是輸出中陰影部分元素的感受野。我們將圖中形狀為2×2的輸出記為Y,將Y與另一個形狀為2×2的核數組做互相關運算,輸出單個元素z。那麼,z在Y上的感受野包括Y的全部四個元素,在輸入上的感受野包括其中全部9個元素。可見,我們可以通過更深的卷積神經網路使特徵圖中單個元素的感受野變得更加廣闊,從而捕捉輸入上更大尺寸的特徵。
4、填充和步幅
我們介紹卷積層的兩個超參數,即填充和步幅,它們可以對給定形狀的輸入和卷積核改變輸出形狀。
4.1 填充(padding)
是指在輸入高和寬的兩側填充元素(通常是0元素),圖2里我們在原輸入高和寬的兩側分別添加了值為0的元素。
如果原輸入的高和寬是 和 ,卷積核的高和寬是 和 ,在高的兩側一共填充 行,在寬的兩側一共填充 列,則輸出形狀為:
)
我們在卷積神經網路中使用奇數高寬的核,比如3×3,5×5的卷積核,對於高度(或寬度)為大小為2k+1的核,令步幅為1,在高(或寬)兩側選擇大小為k的填充,便可保持輸入與輸出尺寸相同。
4.2 步幅(stride)
在互相關運算中,卷積核在輸入數組上滑動,每次滑動的行數與列數即是步幅(stride)。此前我們使用的步幅都是1,圖3展示了在高上步幅為3、在寬上步幅為2的二維互相關運算。
一般來說,當高上步幅為 ,寬上步幅為 時,輸出形狀為:
如果 ,那麼輸出形狀將簡化為:
更進一步,如果輸入的高和寬能分別被高和寬上的步幅整除,那麼輸出形狀將是:(nh/sh)×(nw/sw)
當 時,我們稱填充為p;當 時,我們稱步幅為s。
5、多輸入通道和多輸出通道
之前的輸入和輸出都是二維數組,但真實數據的維度經常更高。例如,彩色圖像在高和寬2個維度外還有RGB(紅、綠、藍)3個顏色通道。假設彩色圖像的高和寬分別是h和w(像素),那麼它可以表示為一個3×h×w的多維數組,我們將大小為3的這一維稱為通道(channel)維。
5.1 多輸入通道
卷積層的輸入可以包含多個通道,圖4展示了一個含2個輸入通道的二維互相關計算的例子。
5.2 多輸出通道
卷積層的輸出也可以包含多個通道,設卷積核輸入通道數和輸出通道數分別為ci和co,高和寬分別為kh和kw。如果希望得到含多個通道的輸出,我們可以為每個輸出通道分別創建形狀為ci×kh×kw的核數組,將它們在輸出通道維上連結,卷積核的形狀即co×ci×kh×kw。
對於輸出通道的卷積核,我們提供這樣一種理解,一個ci×kh×kw的核數組可以提取某種局部特徵,但是輸入可能具有相當豐富的特徵,我們需要有多個這樣的ci×kh×kw的核數組,不同的核數組提取的是不同的特徵。
5.3 1x1卷積層
最後討論形狀為1×1的卷積核,我們通常稱這樣的卷積運算為1×1卷積,稱包含這種卷積核的卷積層為1×1卷積層。圖5展示了使用輸入通道數為3、輸出通道數為2的1×1卷積核的互相關計算。
1×1卷積核可在不改變高寬的情況下,調整通道數。1×1卷積核不識別高和寬維度上相鄰元素構成的模式,其主要計算發生在通道維上。假設我們將通道維當作特徵維,將高和寬維度上的元素當成數據樣本,那麼1×1卷積層的作用與全連接層等價。
6、卷積層與全連接層的對比
二維卷積層經常用於處理圖像,與此前的全連接層相比,它主要有兩個優勢:
一是全連接層把圖像展平成一個向量,在輸入圖像上相鄰的元素可能因為展平操作不再相鄰,網路難以捕捉局部信息。而卷積層的設計,天然地具有提取局部信息的能力。
二是卷積層的參數量更少。不考慮偏置的情況下,一個形狀為(ci,co,h,w)的卷積核的參數量是ci×co×h×w,與輸入圖像的寬高無關。假如一個卷積層的輸入和輸出形狀分別是(c1,h1,w1)和(c2,h2,w2),如果要用全連接層進行連接,參數數量就是c1×c2×h1×w1×h2×w2。使用卷積層可以以較少的參數數量來處理更大的圖像。
X=torch.rand(4,2,3,5)
print(X.shape)
conv2d=nn.Conv2d(in_channels=2,out_channels=3,kernel_size=(3,5),stride=1,padding=(1,2))
Y=conv2d(X)
print('Y.shape: ',Y.shape)
print('weight.shape: ',conv2d.weight.shape)
print('bias.shape: ',conv2d.bias.shape)
輸出:
torch.Size([4, 2, 3, 5])
Y.shape: torch.Size([4, 3, 3, 5])
weight.shape: torch.Size([3, 2, 3, 5])
bias.shape: torch.Size([3])
7、池化
7.1 二維池化層
池化層主要用於緩解卷積層對位置的過度敏感性。同卷積層一樣,池化層每次對輸入數據的一個固定形狀窗口(又稱池化窗口)中的元素計算輸出,池化層直接計算池化窗口內元素的最大值或者平均值,該運算也分別叫做最大池化或平均池化。圖6展示了池化窗口形狀為2×2的最大池化。
二維平均池化的工作原理與二維最大池化類似,但將最大運算符替換成平均運算符。池化窗口形狀為p×q的池化層稱為p×q池化層,其中的池化運算叫作p×q池化。
池化層也可以在輸入的高和寬兩側填充並調整窗口的移動步幅來改變輸出形狀。池化層填充和步幅與卷積層填充和步幅的工作機制一樣。
在處理多通道輸入數據時,池化層對每個輸入通道分別池化,但不會像卷積層那樣將各通道的結果按通道相加。這意味著池化層的輸出通道數與輸入通道數相等。
CNN網路中另外一個不可導的環節就是Pooling池化操作,因為Pooling操作使得feature map的尺寸變化,假如做2×2的池化,假設那麼第l+1層的feature map有16個梯度,那麼第l層就會有64個梯度,這使得梯度無法對位的進行傳播下去。其實解決這個問題的思想也很簡單,就是把1個像素的梯度傳遞給4個像素,但是需要保證傳遞的loss(或者梯度)總和不變。根據這條原則,mean pooling和max pooling的反向傳播也是不同的。
7.2 mean pooling
mean pooling的前向傳播就是把一個patch中的值求取平均來做pooling,那麼反向傳播的過程也就是把某個元素的梯度等分為n份分配給前一層,這樣就保證池化前後的梯度(殘差)之和保持不變,還是比較理解的,圖示如下:
mean pooling比較容易讓人理解錯的地方就是會簡單的認為直接把梯度復制N遍之後直接反向傳播回去,但是這樣會造成loss之和變為原來的N倍,網路是會產生梯度爆炸的。
7.3 max pooling
max pooling也要滿足梯度之和不變的原則,max pooling的前向傳播是把patch中最大的值傳遞給後一層,而其他像素的值直接被舍棄掉。那麼反向傳播也就是把梯度直接傳給前一層某一個像素,而其他像素不接受梯度,也就是為0。所以max pooling操作和mean pooling操作不同點在於需要記錄下池化操作時到底哪個像素的值是最大,也就是max id。
源碼中有一個max_idx_的變數,這個變數就是記錄最大值所在位置的,因為在反向傳播中要用到,那麼假設前向傳播和反向傳播的過程就如下圖所示。
7.4 Pytorch 實現池化層
我們使用Pytorch中的nn.MaxPool2d實現最大池化層,關注以下構造函數參數:
kernel_size – the size of the window to take a max over
stride – the stride of the window. Default value is kernel_size
padding – implicit zero padding to be added on both sides
forward函數的參數為一個四維張量,形狀為 ,返回值也是一個四維張量,形狀為 ,其中N是批量大小,C,H,W分別表示通道數、高度、寬度。
X=torch.arange(32,dtype=torch.float32).view(1,2,4,4)
pool2d=nn.MaxPool2d(kernel_size=3,padding=1,stride=(2,1))
Y=pool2d(X)
print(X)
print(Y)
練習
1、假如你用全連接層處理一張256 \times 256256×256的彩色(RGB)圖像,輸出包含1000個神經元,在使用偏置的情況下,參數數量是:
答:圖像展平後長度為3×256×256,權重參數和偏置參數的數量是3× 256× 256 × 1000 + 1000 =196609000。
2、假如你用全連接層處理一張256×256的彩色(RGB)圖像,卷積核的高寬是3×3,輸出包含10個通道,在使用偏置的情況下,這個卷積層共有多少個參數:
答:輸入通道數是3,輸出通道數是10,所以參數數量是10×3×3×3+10=280。
3、conv2d = nn.Conv2d(in_channels=3, out_channels=4, kernel_size=3, padding=2),輸入一張形狀為3×100×100的圖像,輸出的形狀為:
答:輸出通道數是4,上下兩側總共填充4行,卷積核高度是3,所以輸出的高度是104 - 3 + 1=102104−3+1=102,寬度同理可得。
4、關於卷積層,以下哪種說法是錯誤的:
A.1×1卷積可以看作是通道維上的全連接
B.某個二維卷積層用於處理形狀為3×100×100的輸入,則該卷積層無法處理形狀為3×256×256的輸入
C.卷積層通過填充、步幅、輸入通道數、輸出通道數等調節輸出的形狀
D .兩個連續的3×3卷積核的感受野與一個5×5卷積核的感受野相同
答:選B,對於高寬維度,只要輸入的高寬(填充後的)大於或等於卷積核的高寬即可進行計算。
the first layer is a 3 × 3 convolution, the second is a fully connected layer on top of the 3 × 3 output grid of the first layer (see Figure 1). Sliding this small network over the input activation grid boils down to replacing the 5 × 5 convolution with two layers of 3 × 3 convolution.
我們假設圖片是5*5的
我們使用5*5的卷積核對其卷積,步長為1,得到的結果是:(5-5)/1+1=1
然後我們使用2個卷積核為3*3的,這里的兩個是指2層:
第一層3*3:
得到的結果是(5-3)/1+1=3
第二層3*3:
得到的結果是(3-3)/1+1=1
所以我們的最終得到結果感受野大小和用5*5的卷積核得到的結果大小是一樣的!!!
5、關於池化層,以下哪種說法是錯誤的:
A.池化層不參與反向傳播
B.池化層沒有模型參數
C.池化層通常會減小特徵圖的高和寬
D.池化層的輸入和輸出具有相同的通道數
答:A
選項1:錯誤,池化層有參與模型的正向計算,同樣也會參與反向傳播
選項2:正確,池化層直接對窗口內的元素求最大值或平均值,並沒有模型參數參與計算
選項3:正確
選項4:正確
參考文獻:
https://www.boyuai.com/
https://blog.csdn.net/qq_21578849/article/details/94667699
https://www.hu.com/question/265791259/answer/298610437
https://blog.csdn.net/zouxiaolv/article/details/97366681
⑺ 神經網路:卷積神經網路(CNN)
神經網路 最早是由心理學家和神經學家提出的,旨在尋求開發和測試神經的計算模擬。
粗略地說, 神經網路 是一組連接的 輸入/輸出單元 ,其中每個連接都與一個 權 相關聯。在學習階段,通過調整權值,使得神經網路的預測准確性逐步提高。由於單元之間的連接,神經網路學習又稱 連接者學習。
神經網路是以模擬人腦神經元的數學模型為基礎而建立的,它由一系列神經元組成,單元之間彼此連接。從信息處理角度看,神經元可以看作是一個多輸入單輸出的信息處理單元,根據神經元的特性和功能,可以把神經元抽象成一個簡單的數學模型。
神經網路有三個要素: 拓撲結構、連接方式、學習規則
神經網路的拓撲結構 :神經網路的單元通常按照層次排列,根據網路的層次數,可以將神經網路分為單層神經網路、兩層神經網路、三層神經網路等。結構簡單的神經網路,在學習時收斂的速度快,但准確度低。
神經網路的層數和每層的單元數由問題的復雜程度而定。問題越復雜,神經網路的層數就越多。例如,兩層神經網路常用來解決線性問題,而多層網路就可以解決多元非線性問題
神經網路的連接 :包括層次之間的連接和每一層內部的連接,連接的強度用權來表示。
根據層次之間的連接方式,分為:
1)前饋式網路:連接是單向的,上層單元的輸出是下層單元的輸入,如反向傳播網路,Kohonen網路
2)反饋式網路:除了單項的連接外,還把最後一層單元的輸出作為第一層單元的輸入,如Hopfield網路
根據連接的范圍,分為:
1)全連接神經網路:每個單元和相鄰層上的所有單元相連
2)局部連接網路:每個單元只和相鄰層上的部分單元相連
神經網路的學習
根據學習方法分:
感知器:有監督的學習方法,訓練樣本的類別是已知的,並在學習的過程中指導模型的訓練
認知器:無監督的學習方法,訓練樣本類別未知,各單元通過競爭學習。
根據學習時間分:
離線網路:學習過程和使用過程是獨立的
在線網路:學習過程和使用過程是同時進行的
根據學習規則分:
相關學習網路:根據連接間的激活水平改變權系數
糾錯學習網路:根據輸出單元的外部反饋改變權系數
自組織學習網路:對輸入進行自適應地學習
摘自《數學之美》對人工神經網路的通俗理解:
神經網路種類很多,常用的有如下四種:
1)Hopfield網路,典型的反饋網路,結構單層,有相同的單元組成
2)反向傳播網路,前饋網路,結構多層,採用最小均方差的糾錯學習規則,常用於語言識別和分類等問題
3)Kohonen網路:典型的自組織網路,由輸入層和輸出層構成,全連接
4)ART網路:自組織網路
深度神經網路:
Convolutional Neural Networks(CNN)卷積神經網路
Recurrent neural Network(RNN)循環神經網路
Deep Belief Networks(DBN)深度信念網路
深度學習是指多層神經網路上運用各種機器學習演算法解決圖像,文本等各種問題的演算法集合。深度學習從大類上可以歸入神經網路,不過在具體實現上有許多變化。
深度學習的核心是特徵學習,旨在通過分層網路獲取分層次的特徵信息,從而解決以往需要人工設計特徵的重要難題。
Machine Learning vs. Deep Learning
神經網路(主要是感知器)經常用於 分類
神經網路的分類知識體現在網路連接上,被隱式地存儲在連接的權值中。
神經網路的學習就是通過迭代演算法,對權值逐步修改的優化過程,學習的目標就是通過改變權值使訓練集的樣本都能被正確分類。
神經網路特別適用於下列情況的分類問題:
1) 數據量比較小,缺少足夠的樣本建立模型
2) 數據的結構難以用傳統的統計方法來描述
3) 分類模型難以表示為傳統的統計模型
缺點:
1) 需要很長的訓練時間,因而對於有足夠長訓練時間的應用更合適。
2) 需要大量的參數,這些通常主要靠經驗確定,如網路拓撲或「結構」。
3) 可解釋性差 。該特點使得神經網路在數據挖掘的初期並不看好。
優點:
1) 分類的准確度高
2)並行分布處理能力強
3)分布存儲及學習能力高
4)對噪音數據有很強的魯棒性和容錯能力
最流行的基於神經網路的分類演算法是80年代提出的 後向傳播演算法 。後向傳播演算法在多路前饋神經網路上學習。
定義網路拓撲
在開始訓練之前,用戶必須說明輸入層的單元數、隱藏層數(如果多於一層)、每一隱藏層的單元數和輸出層的單元數,以確定網路拓撲。
對訓練樣本中每個屬性的值進行規格化將有助於加快學習過程。通常,對輸入值規格化,使得它們落入0.0和1.0之間。
離散值屬性可以重新編碼,使得每個域值一個輸入單元。例如,如果屬性A的定義域為(a0,a1,a2),則可以分配三個輸入單元表示A。即,我們可以用I0 ,I1 ,I2作為輸入單元。每個單元初始化為0。如果A = a0,則I0置為1;如果A = a1,I1置1;如此下去。
一個輸出單元可以用來表示兩個類(值1代表一個類,而值0代表另一個)。如果多於兩個類,則每個類使用一個輸出單元。
隱藏層單元數設多少個「最好」 ,沒有明確的規則。
網路設計是一個實驗過程,並可能影響准確性。權的初值也可能影響准確性。如果某個經過訓練的網路的准確率太低,則通常需要採用不同的網路拓撲或使用不同的初始權值,重復進行訓練。
後向傳播演算法學習過程:
迭代地處理一組訓練樣本,將每個樣本的網路預測與實際的類標號比較。
每次迭代後,修改權值,使得網路預測和實際類之間的均方差最小。
這種修改「後向」進行。即,由輸出層,經由每個隱藏層,到第一個隱藏層(因此稱作後向傳播)。盡管不能保證,一般地,權將最終收斂,學習過程停止。
演算法終止條件:訓練集中被正確分類的樣本達到一定的比例,或者權系數趨近穩定。
後向傳播演算法分為如下幾步:
1) 初始化權
網路的權通常被初始化為很小的隨機數(例如,范圍從-1.0到1.0,或從-0.5到0.5)。
每個單元都設有一個偏置(bias),偏置也被初始化為小隨機數。
2) 向前傳播輸入
對於每一個樣本X,重復下面兩步:
向前傳播輸入,向後傳播誤差
計算各層每個單元的輸入和輸出。輸入層:輸出=輸入=樣本X的屬性;即,對於單元j,Oj = Ij = Xj。隱藏層和輸出層:輸入=前一層的輸出的線性組合,即,對於單元j, Ij =wij Oi + θj,輸出=
3) 向後傳播誤差
計算各層每個單元的誤差。
輸出層單元j,誤差:
Oj是單元j的實際輸出,而Tj是j的真正輸出。
隱藏層單元j,誤差:
wjk是由j到下一層中單元k的連接的權,Errk是單元k的誤差
更新 權 和 偏差 ,以反映傳播的誤差。
權由下式更新:
其中,△wij是權wij的改變。l是學習率,通常取0和1之間的值。
偏置由下式更新:
其中,△θj是偏置θj的改變。
Example
人類視覺原理:
深度學習的許多研究成果,離不開對大腦認知原理的研究,尤其是視覺原理的研究。1981 年的諾貝爾醫學獎,頒發給了 David Hubel(出生於加拿大的美國神經生物學家) 和Torsten Wiesel,以及Roger Sperry。前兩位的主要貢獻,是「發現了視覺系統的信息處理」, 可視皮層是分級的 。
人類的視覺原理如下:從原始信號攝入開始(瞳孔攝入像素Pixels),接著做初步處理(大腦皮層某些細胞發現邊緣和方向),然後抽象(大腦判定,眼前的物體的形狀,是圓形的),然後進一步抽象(大腦進一步判定該物體是只氣球)。
對於不同的物體,人類視覺也是通過這樣逐層分級,來進行認知的:
在最底層特徵基本上是類似的,就是各種邊緣,越往上,越能提取出此類物體的一些特徵(輪子、眼睛、軀乾等),到最上層,不同的高級特徵最終組合成相應的圖像,從而能夠讓人類准確的區分不同的物體。
可以很自然的想到:可以不可以模仿人類大腦的這個特點,構造多層的神經網路,較低層的識別初級的圖像特徵,若干底層特徵組成更上一層特徵,最終通過多個層級的組合,最終在頂層做出分類呢?答案是肯定的,這也是許多深度學習演算法(包括CNN)的靈感來源。
卷積神經網路是一種多層神經網路,擅長處理圖像特別是大圖像的相關機器學習問題。卷積網路通過一系列方法,成功將數據量龐大的圖像識別問題不斷降維,最終使其能夠被訓練。
CNN最早由Yann LeCun提出並應用在手寫字體識別上。LeCun提出的網路稱為LeNet,其網路結構如下:
這是一個最典型的卷積網路,由 卷積層、池化層、全連接層 組成。其中卷積層與池化層配合,組成多個卷積組,逐層提取特徵,最終通過若干個全連接層完成分類。
CNN通過卷積來模擬特徵區分,並且通過卷積的權值共享及池化,來降低網路參數的數量級,最後通過傳統神經網路完成分類等任務。
降低參數量級:如果使用傳統神經網路方式,對一張圖片進行分類,那麼,把圖片的每個像素都連接到隱藏層節點上,對於一張1000x1000像素的圖片,如果有1M隱藏層單元,一共有10^12個參數,這顯然是不能接受的。
但是在CNN里,可以大大減少參數個數,基於以下兩個假設:
1)最底層特徵都是局部性的,也就是說,用10x10這樣大小的過濾器就能表示邊緣等底層特徵
2)圖像上不同小片段,以及不同圖像上的小片段的特徵是類似的,也就是說,能用同樣的一組分類器來描述各種各樣不同的圖像
基於以上兩個假設,就能把第一層網路結構簡化
用100個10x10的小過濾器,就能夠描述整幅圖片上的底層特徵。
卷積運算的定義如下圖所示:
如上圖所示,一個5x5的圖像,用一個3x3的 卷積核 :
101
010
101
來對圖像進行卷積操作(可以理解為有一個滑動窗口,把卷積核與對應的圖像像素做乘積然後求和),得到了3x3的卷積結果。
這個過程可以理解為使用一個過濾器(卷積核)來過濾圖像的各個小區域,從而得到這些小區域的特徵值。在實際訓練過程中, 卷積核的值是在學習過程中學到的。
在具體應用中,往往有多個卷積核,可以認為, 每個卷積核代表了一種圖像模式 ,如果某個圖像塊與此卷積核卷積出的值大,則認為此圖像塊十分接近於此卷積核。如果設計了6個卷積核,可以理解為這個圖像上有6種底層紋理模式,也就是用6種基礎模式就能描繪出一副圖像。以下就是24種不同的卷積核的示例:
池化 的過程如下圖所示:
可以看到,原始圖片是20x20的,對其進行采樣,采樣窗口為10x10,最終將其采樣成為一個2x2大小的特徵圖。
之所以這么做,是因為即使做完了卷積,圖像仍然很大(因為卷積核比較小),所以為了降低數據維度,就進行采樣。
即使減少了許多數據,特徵的統計屬性仍能夠描述圖像,而且由於降低了數據維度,有效地避免了過擬合。
在實際應用中,分為最大值采樣(Max-Pooling)與平均值采樣(Mean-Pooling)。
LeNet網路結構:
注意,上圖中S2與C3的連接方式並不是全連接,而是部分連接。最後,通過全連接層C5、F6得到10個輸出,對應10個數字的概率。
卷積神經網路的訓練過程與傳統神經網路類似,也是參照了反向傳播演算法
第一階段,向前傳播階段:
a)從樣本集中取一個樣本(X,Yp),將X輸入網路;
b)計算相應的實際輸出Op
第二階段,向後傳播階段
a)計算實際輸出Op與相應的理想輸出Yp的差;
b)按極小化誤差的方法反向傳播調整權矩陣。
⑻ 利用Python實現卷積神經網路的可視化
在本文中,將探討如何可視化卷積神經網路(CNN),該網路在計算機視覺中使用最為廣泛。首先了解CNN模型可視化的重要性,其次介紹可視化的幾種方法,同時以一個用例幫助讀者更好地理解模型可視化這一概念。
正如上文中介紹的癌症腫瘤診斷案例所看到的,研究人員需要對所設計模型的工作原理及其功能掌握清楚,這點至關重要。一般而言,一名深度學習研究者應該記住以下幾點:
1.1 理解模型是如何工作的
1.2 調整模型的參數
1.3 找出模型失敗的原因
1.4 向消費者/終端用戶或業務主管解釋模型做出的決定
2.可視化CNN模型的方法
根據其內部的工作原理,大體上可以將CNN可視化方法分為以下三類:
初步方法:一種顯示訓練模型整體結構的簡單方法
基於激活的方法:對單個或一組神經元的激活狀態進行破譯以了解其工作過程
基於梯度的方法:在訓練過程中操作前向傳播和後向傳播形成的梯度
下面將具體介紹以上三種方法,所舉例子是使用Keras深度學習庫實現,另外本文使用的數據集是由「識別數字」競賽提供。因此,讀者想復現文中案例時,請確保安裝好Kears以及執行了這些步驟。
研究者能做的最簡單的事情就是繪制出模型結構圖,此外還可以標注神經網路中每層的形狀及參數。在keras中,可以使用如下命令完成模型結構圖的繪制:
model.summary()_________________________________________________________________Layer (type) Output Shape Param #
=================================================================conv2d_1 (Conv2D) (None, 26, 26, 32) 320_________________________________________________________________conv2d_2 (Conv2D) (None, 24, 24, 64) 18496_________________________________________________________________max_pooling2d_1 (MaxPooling2 (None, 12, 12, 64) 0_________________________________________________________________dropout_1 (Dropout) (None, 12, 12, 64) 0_________________________________________________________________flatten_1 (Flatten) (None, 9216) 0_________________________________________________________________dense_1 (Dense) (None, 128) 1179776_________________________________________________________________dropout_2 (Dropout) (None, 128) 0_________________________________________________________________preds (Dense) (None, 10) 1290
=================================================================Total params: 1,199,882Trainable params: 1,199,882Non-trainable params: 0
還可以用一個更富有創造力和表現力的方式呈現模型結構框圖,可以使用keras.utils.vis_utils函數完成模型體系結構圖的繪制。
另一種方法是繪制訓練模型的過濾器,這樣就可以了解這些過濾器的表現形式。例如,第一層的第一個過濾器看起來像:
top_layer = model.layers[0]plt.imshow(top_layer.get_weights()[0][:, :, :, 0].squeeze(), cmap='gray')
一般來說,神經網路的底層主要是作為邊緣檢測器,當層數變深時,過濾器能夠捕捉更加抽象的概念,比如人臉等。
為了理解神經網路的工作過程,可以在輸入圖像上應用過濾器,然後繪制其卷積後的輸出,這使得我們能夠理解一個過濾器其特定的激活模式是什麼。比如,下圖是一個人臉過濾器,當輸入圖像是人臉圖像時候,它就會被激活。
from vis.visualization import visualize_activation
from vis.utils import utils
from keras import activations
from matplotlib import pyplot as plt
%matplotlib inline
plt.rcParams['figure.figsize'] = (18, 6)
# Utility to search for layer index by name.
# Alternatively we can specify this as -1 since it corresponds to the last layer.
layer_idx = utils.find_layer_idx(model, 'preds')
# Swap softmax with linear
model.layers[layer_idx].activation = activations.linear
model = utils.apply_modifications(model)
# This is the output node we want to maximize.filter_idx = 0
img = visualize_activation(model, layer_idx, filter_indices=filter_idx)
plt.imshow(img[..., 0])
同理,可以將這個想法應用於所有的類別,並檢查它們的模式會是什麼樣子。
for output_idx in np.arange(10):
# Lets turn off verbose output this time to avoid clutter and just see the output.
img = visualize_activation(model, layer_idx, filter_indices=output_idx, input_range=(0., 1.))
plt.figure()
plt.title('Networks perception of {}'.format(output_idx))
plt.imshow(img[..., 0])
在圖像分類問題中,可能會遇到目標物體被遮擋,有時候只有物體的一小部分可見的情況。基於圖像遮擋的方法是通過一個灰色正方形系統地輸入圖像的不同部分並監視分類器的輸出。這些例子清楚地表明模型在場景中定位對象時,若對象被遮擋,其分類正確的概率顯著降低。
為了理解這一概念,可以從數據集中隨機抽取圖像,並嘗試繪制該圖的熱圖(heatmap)。這使得我們直觀地了解圖像的哪些部分對於該模型而言的重要性,以便對實際類別進行明確的區分。
def iter_occlusion(image, size=8):
# taken from https://www.kaggle.com/blargl/simple-occlusion-and-saliency-maps
occlusion = np.full((size * 5, size * 5, 1), [0.5], np.float32)
occlusion_center = np.full((size, size, 1), [0.5], np.float32)
occlusion_padding = size * 2
# print('padding...')
image_padded = np.pad(image, ( \ (occlusion_padding, occlusion_padding), (occlusion_padding, occlusion_padding), (0, 0) \ ), 'constant', constant_values = 0.0)
for y in range(occlusion_padding, image.shape[0] + occlusion_padding, size):
for x in range(occlusion_padding, image.shape[1] + occlusion_padding, size):
tmp = image_padded.()
tmp[y - occlusion_padding:y + occlusion_center.shape[0] + occlusion_padding, \
x - occlusion_padding:x + occlusion_center.shape[1] + occlusion_padding] \ = occlusion
tmp[y:y + occlusion_center.shape[0], x:x + occlusion_center.shape[1]] = occlusion_center yield x - occlusion_padding, y - occlusion_padding, \
tmp[occlusion_padding:tmp.shape[0] - occlusion_padding, occlusion_padding:tmp.shape[1] - occlusion_padding]i = 23 # for exampledata = val_x[i]correct_class = np.argmax(val_y[i])
# input tensor for model.predictinp = data.reshape(1, 28, 28, 1)# image data for matplotlib's imshowimg = data.reshape(28, 28)
# occlusionimg_size = img.shape[0]
occlusion_size = 4print('occluding...')heatmap = np.zeros((img_size, img_size), np.float32)class_pixels = np.zeros((img_size, img_size), np.int16)
from collections import defaultdict
counters = defaultdict(int)for n, (x, y, img_float) in enumerate(iter_occlusion(data, size=occlusion_size)):
X = img_float.reshape(1, 28, 28, 1)
out = model.predict(X)
#print('#{}: {} @ {} (correct class: {})'.format(n, np.argmax(out), np.amax(out), out[0][correct_class]))
#print('x {} - {} | y {} - {}'.format(x, x + occlusion_size, y, y + occlusion_size))
heatmap[y:y + occlusion_size, x:x + occlusion_size] = out[0][correct_class]
class_pixels[y:y + occlusion_size, x:x + occlusion_size] = np.argmax(out)
counters[np.argmax(out)] += 1
正如之前的坦克案例中看到的那樣,怎麼才能知道模型側重於哪部分的預測呢?為此,可以使用顯著圖解決這個問題。顯著圖首先在這篇文章中被介紹。
使用顯著圖的概念相當直接——計算輸出類別相對於輸入圖像的梯度。這應該告訴我們輸出類別值對於輸入圖像像素中的微小變化是怎樣變化的。梯度中的所有正值告訴我們,像素的一個小變化會增加輸出值。因此,將這些梯度可視化可以提供一些直觀的信息,這種方法突出了對輸出貢獻最大的顯著圖像區域。
class_idx = 0indices = np.where(val_y[:, class_idx] == 1.)[0]
# pick some random input from here.idx = indices[0]
# Lets sanity check the picked image.from matplotlib import pyplot as plt%matplotlib inline
plt.rcParams['figure.figsize'] = (18, 6)plt.imshow(val_x[idx][..., 0])
from vis.visualization import visualize_saliency
from vis.utils import utilsfrom keras import activations# Utility to search for layer index by name.
# Alternatively we can specify this as -1 since it corresponds to the last layer.
layer_idx = utils.find_layer_idx(model, 'preds')
# Swap softmax with linearmodel.layers[layer_idx].activation = activations.linear
model = utils.apply_modifications(model)grads = visualize_saliency(model, layer_idx, filter_indices=class_idx, seed_input=val_x[idx])
# Plot with 'jet' colormap to visualize as a heatmap.plt.imshow(grads, cmap='jet')
# This corresponds to the Dense linear layer.for class_idx in np.arange(10):
indices = np.where(val_y[:, class_idx] == 1.)[0]
idx = indices[0]
f, ax = plt.subplots(1, 4)
ax[0].imshow(val_x[idx][..., 0])
for i, modifier in enumerate([None, 'guided', 'relu']):
grads = visualize_saliency(model, layer_idx, filter_indices=class_idx,
seed_input=val_x[idx], backprop_modifier=modifier)
if modifier is None:
modifier = 'vanilla'
ax[i+1].set_title(modifier)
ax[i+1].imshow(grads, cmap='jet')
類別激活映射(CAM)或grad-CAM是另外一種可視化模型的方法,這種方法使用的不是梯度的輸出值,而是使用倒數第二個卷積層的輸出,這樣做是為了利用存儲在倒數第二層的空間信息。
from vis.visualization import visualize_cam
# This corresponds to the Dense linear layer.for class_idx in np.arange(10):
indices = np.where(val_y[:, class_idx] == 1.)[0]
idx = indices[0]f, ax = plt.subplots(1, 4)
ax[0].imshow(val_x[idx][..., 0])
for i, modifier in enumerate([None, 'guided', 'relu']):
grads = visualize_cam(model, layer_idx, filter_indices=class_idx,
seed_input=val_x[idx], backprop_modifier=modifier)
if modifier is None:
modifier = 'vanilla'
ax[i+1].set_title(modifier)
ax[i+1].imshow(grads, cmap='jet')
本文簡單說明了CNN模型可視化的重要性,以及介紹了一些可視化CNN網路模型的方法,希望對讀者有所幫助,使其能夠在後續深度學習應用中構建更好的模型。 免費視頻教程:www.mlxs.top
⑼ 卷積層在神經網路中如何運算
卷積神經網路(Convolutional Neural Networks, CNN)的核心是進行卷積運算操作。在實際應用中往往採用多層網路結構,因此又被稱為深度卷積神經網路。本文將從單個卷積的計算出發,帶大家掌握卷積層在神經網路中的運算方法。
2.1 單個卷積的計算
要想了解卷積層在神經網路中的計算過程,我們首先需要了解單個「卷積」是如何運作的。
想必大家在學習CNN的過程中都見過下圖( 出處在此 ,這上面有各種各樣的卷積gif圖):
input_shape=(5,5),kernelsize=(3,3),padding=『same』,stride=1,output_shape=(5,5)
在此圖中:
在此次計算中:
Ps: 在實際應用中,每一個輸出的特徵圖還會配備一個偏置s,在上圖中無表示。
2.2 卷積層在神經網路中的運算
了解完單個卷積是如何計算的之後,我們就可以從神經網路的角度來看『卷積層』的運算過程了。下圖展示的是輸入三通圖像(8*8*3)經一層卷積結構,輸出兩通特徵圖(8*8*2)的計算過程:
卷積參數:input_shape=(8,8,3),kernelsize=(3,3),padding=『same』,stride=1,output_shape=(8,8,2)
在此圖中:
在此次卷積層的運算中:
首先我們來關注一下輸入和輸出,他倆的尺度都是(8*8),而輸入是3通道,輸出是2通道(深度學習中不管幹啥一定要先看輸入輸出,對一層是這樣,對整個模型也是這樣)。
其次就准備進入我們最熟悉的卷積核計算了,可是在此之前我們得知道,這個運算過程中到底發生了幾次卷積核計算呢?有的朋友可能要說,卷積的一大特性就是『權值共享』,有幾通輸出就有幾個卷積核,每個卷積核把輸入特徵圖從頭掃到尾。然而這個其實是不對的!
實際上,在卷積核計算數量問題上,應該是「 有幾通道的輸出就有幾套卷積核,每套內的卷積核數量與輸入通道數相等 」,就像我在上圖中所畫的:
至此,這一個卷積層的運算就全部完成了。
2.3 「可訓練參數」驗證
畢竟空口無憑,下面我來通過「 可訓練參數 」的數量,來為大家驗證一下卷積層是不是按我說的這么運算的。大家應該知道,一個卷積層內的「可訓練參數」,其實就是指的卷積核里的那些值,以及要加的偏置量,那麼如果按照前面描述的計算方法來看,一個卷積層內的「可訓練參數有多少呢」?我們可知:
由此可得到:
那麼按理說可訓練參數量應為:
讓我們用keras的summary()來驗證一下:
很棒!
記住,普通卷積層的可訓練參數量為:
Ps: 還有一個衡量模型大小、復雜度的量叫做「理論計算量FLOPs」(floating point operations)。它通常只考慮Conv、FC等參數層的乘、加操作的數量,並且「純加」操作也會被忽略(例如bias)。卷積層運算中的FLOPs計算公式為:
Ps: 這里還要為大家明確一個「感受野」的概念,簡單來講就是卷積神經網路中的某一層特徵圖上的一個點,對應到原圖上可以關聯到多少個點,我們用一張圖來解釋一下:
上圖展示的是一個3層一維卷積,kernel_size=3,我們可以看到:頂層左一的像素與底層左起7個像素值有關,這時候就代表它的感受野有7。我們可以顯而易見的得出以下兩個結論:
這個感受野在後續的卷積的拆分講解中還要用到。
⑽ PART 4 W1 卷積神經網路介紹
一個是圖像分類:如貓臉識別等;一個是目標檢測:如無人駕駛技術中的各種交通信號檢測技術
1. 卷積操作及過濾器/卷積核的概念
如上圖所示:最左側矩陣是一個灰度圖像,中間是一個3*3的小矩陣,稱為「卷積核」或「過濾器」。
卷積:先把卷積核放到灰度圖像左上角(綠色框),蓋住灰度圖像上一個3*3的矩陣區域,然後9對對應的元素相乘,然後求和(得到0),然後把卷積核逐漸移動一行一行的「掃描」,最終得到最右側矩陣。上述操作叫做「卷積」,最右側矩陣是卷積的輸出。
2. 垂直邊緣檢測
仍以上圖為例,可以看到3*3的卷積核具體的數值構成為「左邊一列1,中間一列0,右邊一列-1」,這種卷積核在「掃描」灰度圖像時,可以檢測到灰度圖像的垂直邊緣。分析如下:
1)假設正在掃描的灰度區域沒有垂直邊緣,意味著區域內的值在左右方向上分布差不多,與卷積核做完運算後,左邊的乘1,右邊的乘-1,相加正好有一定的抵消作用,其實計算出來的結果會接近0。即:卷積結果接近0代表沒有邊緣。
2)有垂直邊緣分為兩種情況:目標區域「左邊值較大,右邊值較小」 或「左邊值較小,右邊值較大」。前一種情況在卷積操作後會得到一個較大的正值,後一種情況卷積操作後會得到一個較大的負值。
可以看出,較大的正值代表著目標區域的變化趨勢與卷積核相同,即檢測到的是與卷積核相同的邊緣,而較大的負值代表目標區域的變化趨勢與卷積核相反,即檢測到的是與卷積核相反的邊緣。
3. 卷積應用在卷積神經網路中
卷積操作如何應用於神經網路中?簡言之,卷積核本身就是網路要學習的參數。如上圖所示,我們並不是事先設定好要檢測垂直邊緣或水平邊緣或其它什麼邊緣,而是要網路去學習要檢測什麼東西。
1. padding的原因
在上節展示的卷積操作中,可以看出,假設輸入圖像的大小為n*n,而卷積核的大小為f*f,那麼卷積核從輸入圖像的左上角掃描到右下角,最終得到的結果大小為(n-f+1)*(n-f+1),意味著如果一次次進行卷積,那麼結果的尺寸會越來越小
另外,顯然輸入圖像邊緣的像素被使用的較少(最邊緣的像素僅被使用一次),這顯然會造成信息的丟失。
2. 如何進行padding
非常簡單:把輸入圖像的四周補充p = (f-1)/2 圈的0,這樣輸入的圖像尺寸變成了(n+2p)*(n+2p),因此卷積後的大小變成了(n+2p -f + 1)*(n+2p -f + 1)=n*n,即與原始的圖像有了相同的大小,且原始圖像邊緣的像素也被較多的利用到。
3. 幾點補充
(1)卷積核的尺寸設置為 奇數 :因為① 這樣(f-1)/2就恰好是整數了,方便進行padding,② 有中心像素,便於表徵卷積核的位置,等。
(2)根據是否進行padding,分為 普通卷積(valid) 和 同尺寸卷積(same)
1. 步長概念
在上文中講到卷積,即使用一個卷積核對輸入圖像進行「掃描」並進行相應計算時,提到這個「掃描」是逐個像素逐個像素的邁進的。但是,並不一定非得這樣,也可以每次跨越兩個或更多個像素,這就是「步長」的概念,一般用s表示
2. 卷積結果尺寸與步長的關系
前文提到,若輸入圖像尺寸為n*n,卷積核尺寸為f*f,則卷積結果尺寸為(n+f-1)*(n+f-1),若算上padding操作,則結果為(n+2p -f + 1)*(n+2p -f + 1)。這是在步長s=1的前提下成立。若步長不為1,則結果為floor((n+2p-f)/s+1)**2
3. 其它:數學中的卷積和神經網路中的卷積
需要說明的是,神經網路中所說的卷積和數學中說的卷積不是一回事,但數學中的卷積是啥就不追究了。
神經網路中的卷積操作,在數學的描述上,更像是一種「交叉相關性」的計算,可以看出,若目標區域與卷積核有類似的分布,則會計算出較大的正值(正相關),若有相反的分布,則會計算出較大的負值(負相關),若沒什麼關系,則會計算出接近0的值(不相關)。卷積操作的確很像一種相關性的計算。
1. RGB圖像的數學構成
灰度圖像是一個n*n的二維矩陣,彩色圖像則是n*n*3 的三維矩陣,最外圍的三個維度分別代表了RGB三原色的值,其中數字「3」在卷積神經網路中被稱為通道數或信道數
2. 對RGB圖像進行卷積
在對灰度圖像進行卷積時,使用的是f*f的二維卷積核。在對RGB圖像進行卷積時,則卷積核的維度也+1,變成了f*f*3。一次卷積的結果仍然是把所有的值加起來輸出一個值。即: 一個三維的圖像,和一個三維的卷積核,在進行完卷積操作後,輸出的是一個二維的矩陣(如上圖) 。
3. 當使用多個卷積核時的輸出
如上圖所示,可以使用多個卷積核(一個亮黃色,一個屎黃色)。根據前文描述,一個立體的卷積核在一個立體的矩陣上掃描完,結果是一個二維的。但當使用多個卷積核時,則輸出了多個二維矩陣,這些二維矩陣沿著第三個維度排列到一起,使得結果重新變成了三維。此時,第三個維度的尺寸,反應的是卷積核數,也就是說 卷積核數就是信道數 。直觀理解,每一個卷積核代表著檢測了某一種特徵,多個卷積核就是同時檢測了多種特徵,傳遞了多種信息。
1. 一個卷積層的數據的基本流
如上圖所示,由於卷積核本身就是一堆待學參數w,所以卷積操作本質還是「加權求和」,之後會加入偏置值,然後進行非線性變換,然後輸出(到下一層),可見還是那一套。
需要提一下的是,卷積的輸入不一定是原始圖像構成的矩陣,還有可能是上一個卷積的結果。原始圖像是彩色的,有多個通道。卷積時可以用多個卷積核,最終產生的結果也是立體的。因此原始的輸入與中間卷積層的輸出,在數學形式上是統一的。因此可以「輸入->卷積層->卷積層->...」這樣操作。
2. 卷積層的參數規模
一個卷積層總的參數規模(包括w,不包括b)為: ,即:卷積核的大小的平方*上層輸出的通道數)*本層所用的卷積核數。與上層輸入的大小無關(但與通道數有關)
3. 一個卷積層涉及到的超參
卷積核的大小、是否padding、步長、卷積核數。
1. 一個示例
上圖為一個簡單的卷積神經網路示例: 一層一層的卷積,最後把所有的元素展開成一個一維向量,然後加一個全連接層。
2. 注意以下幾點:
1⃣️ 實際上CNN會有卷積層、池化層、全連接層,而非僅有卷積和全連接;
2⃣️ 從數據的構成形式上看,按照網路從前往後的順序,圖片尺寸不斷減小,信道數量不斷增加。一般遵從這個趨勢。
1. 池化
如上圖所示,假設輸入是一個4*4的矩陣,現在我們把它分割成2*2四個子矩陣(或者說使用一個2*2的核以2為步長掃描矩陣),對四個子區域分別求最大值,最終得到一個值為9、2、6、3的2*2的矩陣輸出。這種操作就叫池化,具體為最大值池化。
2. 池化的作用
1⃣️ 一般來說,較大的值往往代表學到了一個重要或典型的特徵,把原始輸入以某種方式濾除掉一些不重要的值,只保留一些較大的值,相當於 強化了一些重要信息的表達 。2⃣️ 降低圖片的尺寸,可以節省空間、加速運算等。
3. 池化的特點
並沒有需要學習的參數(w、b之類的),也因此「池化層」一般並不被稱為單獨的一層。在卷積神經網路中,通常把一個卷積層+一個池化層的組合叫一層。
4. 池化的超參數及經驗值
池化層沒有要學習的參數,只有核心的兩個超參:池化核的大小、池化步長。此外還有池化所用的rece操作:最大或者平均(沒有其它選項)。
一般把池化核的大小設置為3或2,步長為2。注意:步長為2意味著把圖片減小到原來的一半。
rece操作最常用最大池化,偶爾用平均池化,不會用其它操作。
上圖為一個典型的卷積神經網路示例,描述如下:
輸入層 :彩色的手寫數字圖片,數學構成為32*32*3的矩陣,其中3為通道數。
Layer 1-卷積層 :1)使用6個5*5*3的卷積核,以步長為1對輸入層進行卷積,輸出28*28*6的矩陣,2)然後使用2*2的最大池化,步長為2,最終輸出14*14*6的矩陣。其中14為圖片尺寸,6為信道數。
Layer2-卷積層 :1)使用16個5*5*3的卷積核以步長1對上層輸出進行卷積,輸出10*10*16的矩陣,2)然後使用2*2的最大池化,步長為2,最終輸出5*5*16的矩陣。
Layer3-全連接層: 把上層輸出的5*5*16矩陣展開成1*400的一維向量,以120*400的權重矩陣送入本層120個神經元,激活後輸出。
Layer4-全連接層: 120->84,激活後輸出
輸出層 :84 -> 10,然後softmax後輸出。
1. 參數少
假如原始圖片尺寸為100*100*3,假設使用全連接,即使第二層僅用100個神經元,那也已經產生了100*100*3*100 = 300w個參數,難以想像。
假設使用卷積層,使用10個10*10*3的卷積核,那就是只有3000個參數,而能輸出的矩陣規模是91*91*10=81000
2. 參數少的原因
1)稀疏連接:卷積核掃描矩陣產生輸出,這個過程就從「神經元連接」的角度看,輸入的左上角只連著輸出的左上角,右上角只連右上角,而非「全連接」,參數就會少很多。2)參數共享:這么稀疏的連接,還是使用了同一套參數,進一步減少了參數的量。
3. 參數共享的其它好處
如果圖片上有一隻貓,那麼不管這個貓在圖片的什麼位置,都不改變「這是一張貓的照片」。使用參數共享時,相當於用同樣的特徵提取作用到整個圖片的各個區域,適應平移不變性,增強魯棒性。