Ⅰ 設計無線感測器網路的節點部署方案時必須考慮哪些問題
設計無線感測器網路節點需要遵循以下幾個主要的原則。
(1)微型化與低成本
由於無線感測器網路節點數量大,只有實現節點的微型化與低成本才有可能大規模部署與應用。因此節點的微型化與低成本一直是研究人員追求的主要目標之一。對於目標跟蹤與位置服務一類的應用來說,部署的無線感測器節點越密,定位精度就越高。對於醫療監控類的應用來說,微型節點容易被穿戴。實現節點的微型化與低成本需要考慮硬體與軟體兩個方面的因素,而關鍵是研製專用的片上系統(System on Chip,SoC)晶元。對於傳統的個人計算機,內存2GB、硬碟100GB已經是常見的配置,而一個典型的無線感測器節點的內存只有4kB、程序存儲空間只有10kB。正是因為感測器節點硬體配置的限制,所以節點的操作系統、應用軟體結構的設計與軟體編程都必須注意節約計算資源,不能夠超出節點硬體可能支持的范圍。
(2)低功耗
感測器節點在使用過程中受到電池能量的限制。在實際應用中,通常要求感測器節點數量很多,但是每個節點的體積很小,攜帶的電池能量十分有限。同時,由於無線感測器網路的節點數量多、成本低廉、部署區域的環境復雜,有些區域甚至人員不能到達,因此感測器節點通過更換電池來補充能源是不現實的。如何高效使用有限的電池能量,來最大化網路生命周期是無線感測器網路面臨的最大的挑戰。
感測器節點消耗能量的模塊包括:感測器模塊、處理器模塊和無線通信模塊。隨著集成電路工藝的進步,處理器和感測器模塊的功耗變得很低。圖2-43給出了感測器節點各部分能量消耗情況。從圖中可以看出,感測器節點能量的絕大部分消耗在無線通信模塊。感測器節點發送信息消耗的電能比計算更大,傳輸1bit信號到相距100m的其他節點需要的能量相當於執行3000條計算指令消耗的能量。
圖2-43感測器節點各部分能量消耗情況無線通信模塊存在四種狀態:發送、接收、空閑和休眠。無線通信模塊在空閑狀態一直監聽無線信道的使用情況,檢查是否有數據發送給自己,而在休眠狀態則關閉通信模塊。從圖中可以看到,無線通信模塊在發送狀態的能量消耗最大;在空閑狀態和接收狀態的能量消耗接近,但略少於發送狀態的能量消耗;在休眠狀態的能量消耗最少。為讓網路通信更有效率,必須減少不必要的轉發和接收,不需要通信時盡快進入休眠狀態,這是設計無線感測器網路協議時需要重點考慮的問題。
(3)靈活性與可擴展性
無線感測器網路節點的靈活性與可擴展性表現在適應不同的應用系統,或部署在不同的應用場景中。例如,感測器節點可以用於森林防火的無線感測器網路中,也可以用於天然氣管道安全監控的無線感測器網路中;可以用於沙漠乾旱環境下天然氣管道安全監控,也可以用於沼澤地潮濕環境的安全監控;可以適應單一聲音感測器精確位置測量的應用,也可以適應溫度、濕度與聲音等多種感測器的應用;節點可以按照不同的應用需求,將不同的功能模塊自由配置到系統中,而不需重新設計新的感測器節點;節點的硬體設計必須考慮提供的外部介面,可以方便地在現有的節點上直接接入新的感測器。軟體設計必須考慮到可裁剪,可以方便地擴充功能,可以通過網路自動更新應用軟體。
(4)魯棒性
普通的計算機或PDA、智能手機可以通過經常性的人機交互來保證系統的正常運行。而無線感測器節點與傳統信息設備最大的區別是無人值守,一旦大量無線感測器節點被飛機拋灑或人工安置後,就需要獨立運行。即使是用於醫療健康的可穿戴節點,也需要獨立工作,使用者無法與其交互。對於普通的計算機,如果出現故障,人們可以通過重啟來恢復系統的工作狀態。而在無線感測器網路的設計中,如果一個節點崩潰,那麼剩餘的節點將按照自組網的思路,重新組成具有新拓撲的自組網。當剩餘的節點不能夠組成新的網路時,這個無線感測器網路就失效了。因此感測器節點的魯棒性是實現無線感測器網路長時間工作重要的保證。更多http://www.big-bit.com/news/list-75.html
Ⅱ 無線區域網有哪兩種組網模式各有什麼特點
無線區域網有兩種組網模式,Ad-hoc模式(點對點無線網路)和Infrastructure模式(集中控制式網路)。
1、Ad-hoc模式(點對點無線網路)
點對點無線網路是一種點對點的對等式移動網路,沒有有線基礎設施的支持,網路中的節點均由移動主機構成。網路中不存在無線AP(無線接入點),通過多張無線網卡自由的組網實現通信。
2、Infrastructure模式(集中控制式網路)
集中控制式模式網路,是一種整合有線與無線區域網架構的應用模式。在這種模式中,無線網卡與無線AP進行無線連接,再通過無線AP與有線網路建立連接。實際上Infrastructure模式網路還可以分為兩種模式:一種是無線路由器+無線網卡建立連接的模式;一種是無線AP+無線網卡建立連接的模式。
(2)無限感測網路如何組網擴展閱讀:
WLAN的實現協議有很多,其中最為著名也是應用最為廣泛的當屬無線保真技術——Wi-Fi,它實際上提供了一種能夠將各種終端都使用無線進行互聯的技術,為用戶屏蔽了各種終端之間的差異性。
在實際應用中,WLAN的接入方式很簡單,以家庭WLAN為例,只需一個無線接入設備-路由器,一個具備無線功能的計算機或終端(手機或PAD),沒有無線功能的計算機只需外插一個無線網卡即可。
有了以上設備後,具體操作如下:使用路由器將熱點(其他已組建好且在接收范圍的無線網路)或有線網路接入家庭,按照網路服務商提供的說明書進行路由配置,
配置好後在家中覆蓋范圍內(WLAN穩定的覆蓋范圍大概在20 m~50 m之間)放置接收終端,打開終端的無線功能,輸入服務商給定的用戶名和密碼即可接入WLAN。
Ⅲ 無線感測器網路的組成(三個部分,詳細介紹)
很詳細,你可以到書店去買這類的書看即可。
以下是來自網路:http://www.sensorexpert.com.cn/Article/wuxianchanganqiwang_1.html。
無線感測器網路組成和特點
發表時間:2012-11-14 14:28:00
文章出處:感測器專家網
相關專題:感測器基礎
無線感測器網路的構想最初是由美國軍方提出的,美國國防部高級研究所計劃署(DARPA)於1978年開始資助卡耐基-梅隆大學進行分布式感測器網路的研究,這被看成是無線感測器網路的雛形。從那以後,類似的項目在全美高校間廣泛展開,著名的有UCBerkeley的SmartDuST項目,UCLA的WINS項目,以及多所機構聯合攻關的SensIT計劃,等等。在這些項目取得進展的同時,其應用也從軍用轉向民用。在森林火災、洪水監測之類的環境應用中,在人體生理數據監測、葯品管理之類的醫療應用中,在家庭環境的智能化應用以及商務應用中都已出現了它的身影。目下,無線感測器網路的商業化應用也已逐步興起。美國Crossbow公司就利用SMArtDust項目的成果開發出了名為Mote的智能感測器節點,還有用於研究機構二次開發的MoteWorkTM開發平台。這些產品都很受使用者的歡迎。
無線感測器網路可以看成是由數據獲取網路、數據分布網路和控制管理中心三部分組成的。其主要組成部分是集成有感測器、數據處理單元和通信模塊的節點,各節點通過協議自組成一個分布式網路,再將採集來的數據通過優化後經無線電波傳輸給信息處理中心。
因為節點的數量巨大,而且還處在隨時變化的環境中,這就使它有著不同於普通感測器網路的獨特「個性」。首先是無中心和自組網特性。在無線感測器網路中,所有節點的地位都是平等的,沒有預先指定的中心,各節點通過分布式演算法來相互協調,在無人值守的情況下,節點就能自動組織起一個測量網路。而正因為沒有中心,網路便不會因為單個節點的脫離而受到損害。
其次是網路拓撲的動態變化性。網路中的節點是處於不斷變化的環境中,它的狀態也在相應地發生變化,加之無線通信信道的不穩定性,網路拓撲因此也在不斷地調整變化,而這種變化方式是無人能准確預測出來的。
第三是傳輸能力的有限性。無線感測器網路通過無線電波進行數據傳輸,雖然省去了布線的煩惱,但是相對於有線網路,低帶寬則成為它的天生缺陷。同時,信號之間還存在相互干擾,信號自身也在不斷地衰減,諸如此類。不過因為單個節點傳輸的數據量並不算大,這個缺點還是能忍受的。
第四是能量的限制。為了測量真實世界的具體值,各個節點會密集地分布於待測區域內,人工補充能量的方法已經不再適用。每個節點都要儲備可供長期使用的能量,或者自己從外汲取能量(太陽能)。
第五是安全性的問題。無線信道、有限的能量,分布式控制都使得無線感測器網路更容易受到攻擊。被動竊聽、主動入侵、拒絕服務則是這些攻擊的常見方式。因此,安全性在網路的設計中至關重要。
Ⅳ ZigBee無線感測器網路拓撲結構有哪幾種
ZigBee技術具有強大的組網能力,可以形成星型、樹型和網狀網,可以根據實際項目需要來選擇合適的網路結構;星型和族樹型網路適合點多多點、距離相對較近的應用。
ZigBee節點是可以組建Mesh網路的,設置一個ZigBee節點為網路協調器,其他每個ZigBee節點都可以當做路由節點來使用,也可以設置為終端節點但是就失去了路由功能。由於ZIGBEE一般都是用2。4G頻段傳輸,其實際應用中傳輸距離及穿透性都很差,一般只能傳輸幾十米到上百米。
(4)無限感測網路如何組網擴展閱讀:
相較於傳統式的網路和其他感測器相比,無線感測器網路有以下特點:
(1)組建方式自由。無線網路感測器的組建不受任何外界條件的限制,組建者無論在何時何地,都可以快速地組建起一個功能完善的無線網路感測器網路,組建成功之後的維護管理工作也完全在網路內部進行。
(2)網路拓撲結構的不確定性。從網路層次的方向來看,無線感測器的網路拓撲結構是變化不定的,例如構成網路拓撲結構的感測器節點可以隨時增加或者減少,網路拓撲結構圖可以隨時被分開或者合並。
Ⅳ 如何mesh無線組網
Mesh網路即」無線網格網路」,是「多跳(multi-hop)」網路,是由ad hoc網路發展而來,是解決「最後一公里」問題的關鍵技術之一。
在向下一代網路演進的過程中,無線是一個不可缺的技術。無線mesh可以與其它網路協同通信,是一個動態的可以不斷擴展的網路架構,任意的兩個設備均可以保持無線互聯。
無線 Mesh 網路憑借多跳互連和網狀拓撲特性,已經演變為適用於寬頻家庭網路、社區網路、企業網路和城域網路等多種無線接入網路的有效解決方案。無線 Mesh路由器以多跳互連的方式形成自組織網路,為 WMN 組網提供了更高的可靠性、更廣的服務覆蓋范圍和更低的前期投入成本。
雙頻MESH組網:
雙頻組網中每個節點的回傳和接入均使用兩個不同的頻段,如本地接入服務用2.4 GHz 802.1l b/g信道,骨幹Mesh回傳網路使用5.8 GHz 802.11a信道,互不存在干擾。這樣每個Mesh AP就可以在服務本地接入用戶的同時,執行回傳轉發功能。雙頻組網相比單頻組網,解決了回傳和接入的信道干擾問題,大大提高了網路性能。
但在實際環境和大規模組網中,回傳鏈路之間由於採用同樣的頻段,仍無法完全保證信道之間沒有干擾,因此隨著跳數的增加,每個Mesh AP分配到的帶寬仍存在下降的趨勢,離Root AP遠的Mesh AP將處於信道接入劣勢,故雙頻組網的跳數也應該謹慎設置。
Ⅵ 無線感測器網路可能採用哪些無線通信方式
基於XL.SN智能感測網路的無線感測器數據採集傳輸系統,可以實現對溫度,壓力,氣體,溫濕度,液位,流量,光照,降雨量,振動,轉速等數據參數的實時採集,無線傳輸,無線監控與預警。在實際應用中,無線感測器數據採集傳輸系統常見的包括深圳信立科技農業物聯網智能大棚環境監控系統,智慧養殖環境監控系統,智慧管網管溝監控系統,倉儲館藏環境監控系統,機房實驗室環境監控系統,危險品倉庫環境監控系統,大氣環境監控系統,智能製造運行過程監控系統,能源管理系統,電力監控系統等。
無線感測器數據採集傳輸系統,比較常用的的無線數據傳輸組網技術包括433MHZ,Zigbee(2.4G),運營商網路(GPRS)等三種方式,其中433MHZ,Zigbee(2.4G)屬於近距離無線通訊技術,並且都使用ISM免執照頻段。運營商網路(GPRS)屬於遠距離無線通訊技術,按數據流量收費。
1、基於Zigbee(2.4G)的智能感測網路
ZigBee的特點是低功耗、高可靠性、強抗干擾性,布網容易,通過無線中繼器可以非常方便地將網路覆蓋范圍擴展至數十倍,因此從小空間到大空間、從簡單空間環境到復雜空間環境的場合都可以使用。但相比於WiFi技術,Zigbee是定位於低傳輸速率的應用,因此Zigbee顯然不適合於高速上網、大文件下載等場合。對於餐飲行業的無線點餐應用,由於其數據傳輸量一般來說都不是很大,因此Zigbee技術是非常適合該應用的。
2、基於433MHz的智能感測網路
433MHz技術使用433MHz無線頻段,因此相比於WiFi和Zigbee,433MHz的顯著優勢是無線信號的穿透性強、能夠傳播得更遠。但其缺點也是很明顯的,就是其數據傳輸速率只有9600bps,遠遠小於WiFi和Zigbee的數據速率,因此433Mhz技術一般只適用於數據傳輸量較少的應用場合。從通訊可靠性的角度來講,433Mhz技術和WiFi一樣,只支持星型網路的拓撲結構,通過多基站的方式實現網路覆蓋空間的擴展,因此其無線通訊的可靠性和穩定性也遜於Zigbee技術。另外,不同於Zigbee和WiFi技術中所採用的加密功能,433Mhz網路中一般採用數據透明傳輸協議,因此其網路安全可靠性也是較差的。
3、基於運營商的智能感測網路
GPRS無線傳輸設備主要針對工業級應用,是一款內嵌GSM/GPRS核心單元的無線Modem,採用GSM/GPRS網路為傳輸媒介,是一款基於移動GSM短消息平台和GPRS數據業務的工業級通訊終端。它利用GSM 移動通信網路的簡訊息和GPRS業務為用戶搭建了一個超遠距離的數據傳輸平台。
標准工業規格設計,提供RS232標准介面,直接與用戶設備連接,實現中英文簡訊功能,彩信功能,GPRS數據傳輸功能。具有完備的電源管理系統,標準的串列數據介面。外觀小巧,軟體介面簡單易用。可廣泛應用於工業簡訊收發、GPRS實時數據傳輸等諸多工業與民用領域。
Ⅶ 無線感測器網路體系結構包括哪些部分,各部分的
結構
感測器網路系統通常包括感測器節點EndDevice、匯聚節點Router和管理節點Coordinator。
大量感測器節點隨機部署在監測區域內部或附近,能夠通過自組織方式構成網路。感測器節點監測的數據沿著其他感測器節點逐跳地進行傳輸,在傳輸過程中監測數據可能被多個節點處理,經過多跳後路由到匯聚節點,最後通過互聯網或衛星到達管理節點。用戶通過管理節點對感測器網路進行配置和管理,發布監測任務以及收集監測數據。
感測器節點
處理能力、存儲能力和通信能力相對較弱,通過小容量電池供電。從網路功能上看,每個感測器節點除了進行本地信息收集和數據處理外,還要對其他節點轉發來的數據進行存儲、管理和融合,並與其他節點協作完成一些特定任務。
匯聚節點
匯聚節點的處理能力、存儲能力和通信能力相對較強,它是連接感測器網路與Internet 等外部網路的網關,實現兩種協議間的轉換,同時向感測器節點發布來自管理節點的監測任務,並把WSN收集到的數據轉發到外部網路上。匯聚節點既可以是一個具有增強功能的感測器節點,有足夠的能量供給和更多的、Flash和SRAM中的所有信息傳輸到計算機中,通過匯編軟體,可很方便地把獲取的信息轉換成匯編文件格式,從而分析出感測節點所存儲的程序代碼、路由協議及密鑰等機密信息,同時還可以修改程序代碼,並載入到感測節點中。
管理節點
管理節點用於動態地管理整個無線感測器網路。感測器網路的所有者通過管理節點訪問無線感測器網路的資源。
無線感測器測距
在無線感測器網路中,常用的測量節點間距離的方法主要有TOA(Time of Arrival),TDOA(Time Difference of Arrival)、超聲波、RSSI(Received Sig nalStrength Indicator)和TOF(Time of Light)等。
Ⅷ 如何設置兩個無線路由器組網
物理連接:
第一個路由器 進線插上進線 按常規設置
從第一個路由器上引出一根線插在第2個路由器的LAN口上 不要插 WAN口 第2路由器不要任何設置 同上電 直接做交換機使用 網關同是192.168.1.1
無線連接:
如果你無線路由有WDS with ap 模式 就將兩個無線路由 配置為 WDS with ap 模式 相互填寫對方 MAC 地址 並且 SSID authentication channel 這三個必須相同 將其中一個 無線路由與mode LAN 口連接 即可
例如:
無線路由器A的MAC地址為:11-11-11-11-11-11
無線路由器B的MAC地址為:22-22-22-22-22-22
無線路由器A:
LAN口地址設為:192.168.1.1
接入ADSL,正常設置PPPOE,打開DHCP功能
SSID 設為ABC
打開無線橋接功能,橋接AP MAC地址表中輸入無線路由器B的MAC地址22-22-22-22-22-22
保存重啟
無線路由器B:
LAN口地址設為:192.168.1.2
WAN口和LAN口均不接,關閉DHCP功能
SSID 設為ABC
打開無線橋接功能,橋接AP MAC地址表中輸入無線路由器A的MAC地址11-11-11-11-11-11
保存重啟
除以上配置外,兩台無線路由器的無線參數的其他配置都是一樣的
如果你想利用無線橋接功能擴大路由器信號覆蓋范圍SSID請設置一樣,如果你想讓另一台無線路由器也能上網,SSID不一樣也是可以的.
WR340G+路由器橋接,無線加密僅支持128位的WEP,不支持WPA或更高
Ⅸ 無線mesh組網方式是怎樣的
mesh組網是一個動態的可以不斷擴展的網路架構,任意的兩個設備均可以保持無線互聯。Mesh系統會根據節點數量和絡情況,動構建最優的絡環境。可根據戶型和擺放位置,動組成星狀、鏈狀或是菊花狀絡,使得絡中的設備在任何位置都可以有極佳的信號覆蓋和速絡。
即使其中個節點故障,Mesh絡也會動重新建起最優的絡環境。也是無線中繼模式無法做到,線中繼的絡拓撲結構是固定的,是由戶設置之初就已經定義好的,整個絡法保證是最優的效果。台離線後,可能導致此節點後所有的節點癱瘓,而無法自動修復。
(9)無限感測網路如何組網擴展閱讀
無線Mesh網路的很多技術特點和優勢來自於其Mesh網狀連接和尋路,而路由轉發的設計則直接決定Mesh網路對其網狀連接的利用效率,影響網路的性能。
在設計無線Mesh網路路由協議時要注意,首先,不能僅根據「最小跳數」來進行路由選擇,而要綜合考慮多種性能度量指標,綜合評估後進行路由選擇;其次,要提供網路容錯性和健壯性支持,能夠在無線鏈路失效時,迅速選擇替代鏈路避免業務提供中斷。
要求能同時支持MP和Mesh STA。常用的無線Mesh路由協議可參照Ad Hoc網路的路由協議,幾種典型的路由協議包括:動態源路由協議(DSR)、目的序列距離矢量路由協議(DSDV)、臨時按序路由演算法(TORA)和Ad Hoc按需距離矢量路由協議等。特點是採用積極的緩存策略以及從源路由中提取拓撲信息,通過比對,實現路由創建。
Ⅹ 無線感測器網路系統主要有什麼組成
感測器網路系統通常包括感測器節點(sensor)、匯聚節點(sink node)和管理節點。大量感測器節點隨機部署在監測區域(sensor field)內部或附近,能夠通過自組織方式構成網路。感測器節點監測的數據沿著其他感測器節點逐跳地進行傳輸,在傳輸過程中監測數據可能被多個節點處理,經過多跳後路由到匯聚節點,最後通過互聯網或衛星到達管理節點。用戶通過管理節點對感測器網路進行配置和管理,發布監測任務以及收集監測數據。
感測器網路節點的組成和功能包括如下四個基本單元:感測單元(由感測器和模數轉換功能模塊組成)、處理單元(由嵌入式系統構成,包括CPU、存儲器、嵌入式操作系統等)、通信單元(由無線通信模塊組成)、以及電源部分。此外,可以選擇的其它功能單元包括:定位系統、運動系統以及發電裝置等。