⑴ 網路的七個層,誰能用通俗的語言解釋一下,我是個初學者
分為7層的是網路的OSI參考模型第7層 應用層:OSI中的最高層。應用層確定進程之間通信的性質,以滿足用戶的需要。應用層不僅要提供應用進程所需要的信息交換和遠程操作,而且還要作為應用進程的用戶代理,來完成一些為進行信息交換所必需的功能。第6層 表示層:主要用於處理兩個通信系統中交換信息的表示方式。它包括數據格式交換、數據加密與解密、數據壓縮與恢復等功能;
第5層 會話層:—在兩個節點之間建立端連接。此服務包括建立連接是以全雙工還是以半雙工的方式進行設置,盡管可以在層4中處理雙工方式 ;
第4層 傳輸層:—常規數據遞送-面向連接或無連接。包括全雙工或半雙工、流控制和錯誤恢復服務;
第3層 網路層:—本層通過定址來建立兩個節點之間的連接,它包括通過互連網路來路由和中繼數據 ;
第2層 數據鏈路層:—在此層將數據分幀,並處理流控制。本層指定拓撲結構並提供硬體定址;
第1層 物理層:處於OSI參考模型的最底層。物理層的主要功能是利用物理傳輸介質為數據鏈路層提供物理連接,以便透明的傳送比特流。
⑵ 網路的七個層
OSI七層模型
ISO國際標准組織所定義的開放系統互連七層模型的定義和各層功能。它是網路技術入門者的敲門磚,也是分析、評判各種網路技術的依據—從此網路不再神秘,它也是有理可依,有據可循的。
建立七層模型主要是為解決異種網路互連時所遇到的兼容性問題。它的最大優點是將服務、介面和協議這三個概念明確地區分開來;也使網路的不同功能模塊分擔起不同的職責。
網路發展中一個重要里程碑便是ISO(Internet Standard Organization,國際標准組織)對OSI(Open System Interconnect,開放系統互連)七層網路模型的定義。它不但成為以前的和後續的各種網路技術評判、分析的依據,也成為網路協議設計和統一的參考模型。
建立七層模型的主要目的是為解決異種網路互連時所遇到的兼容性問題。它的最大優點是將服務、介面和協議這三個概念明確地區分開來:服務說明某一層為上一層提供一些什麼功能,介面說明上一層如何使用下層的服務,而協議涉及如何實現本層的服務;這樣各層之間具有很強的獨立性,互連網路中各實體採用什麼樣的協議是沒有限制的,只要向上提供相同的服務並且不改變相鄰層的介面就可以了。網路七層的劃分也是為了使網路的不同功能模塊(不同層次)分擔起不同的職責,從而帶來如下好處:
減輕問題的復雜程度,一旦網路發生故障,可迅速定位故障所處層次,便於查找和糾錯;
在各層分別定義標准介面,使具備相同對等層的不同網路設備能實現互操作,各層之間則相對獨立,一種高層協議可放在多種低層協議上運行; 能有效刺激網路技術革新,因為每次更新都可以在小范圍內進行,不需對整個網路動大手術; 便於研究和教學。
網路分層體現了在許多工程設計中都具有的結構化思想,是一種合理的劃分。
網路七層的功能
網路七層包括物理層、數據鏈路層、網路層、傳輸層、會話層、表示層和應用層。其中物理層、數據鏈路層和網路層通常被稱作媒體層,是網路工程師所研究的對象;傳輸層、會話層、表示層和應用層則被稱作主機層,是用戶所面向和關心的內容。
那麼,網路七層的具體定義和相應職責各是什麼呢?下圖便是OSI七層模型的協議堆棧示意,它們由下到上分別為:
第一層—物理層:物理層定義了通訊網路之間物理鏈路的電氣或機械特性,以及激活、維護和關閉這條鏈路的各項操作。物理層特徵參數包括:電壓、數據傳輸率、最大傳輸距離、物理連接媒體等。
第二層—數據鏈路層:實際的物理鏈路是不可靠的,總會出現錯誤,數據鏈路層的作用就是通過一定的手段(將數據分成幀,以數據幀為單位進行傳輸)將有差錯的物理鏈路轉化成對上層來說沒有錯誤的數據鏈路。它的特徵參數包括:物理地址、網路拓樸結構、錯誤警告機制、所傳數據幀的排序和流控等。其中物理地址是相對網路層地址而言的,它代表了數據鏈路層的節點標識技術;「拓樸」是網路中經常會碰到的術語,標記著各個設備以何種方式互連起來,如:匯流排型—所有設備都連在一條匯流排上,星型—所有設備都通過一個中央結點互連;錯誤警告是向上層協議報告數據傳遞中錯誤的發生;數據幀排序可將所傳數據重新排列;流控則用於調整數據傳輸速率,使接收端不至於過載。
層
第三層—網路層:網路層將數據分成一定長度的分組,並在分組頭中標識源和目的節點的邏輯地址,這些地址就象街區、門牌號一樣,成為每個節點的標識;網路層的核心功能便是根據這些地址來獲得從源到目的的路徑,當有多條路徑存在的情況下,還要負責進行路由選擇。
第四層—傳輸層:提供對上層透明(不依賴於具體網路)的可靠的數據傳輸。如果說網路層關心的是「點到點」的逐點轉遞,那麼可以說傳輸層關注的是「端到端」(源端到目的端)的最終效果。它的功能主要包括:流控、多路技術、虛電路管理和糾錯及恢復等。其中多路技術使多個不同應用的數據可以通過單一的物理鏈路共同實現傳遞;虛電路是數據傳遞的邏輯通道,在傳輸層建立、維護和終止;糾錯功能則可以檢測錯誤的發生,並採取措施(如重傳)解決問題。
第五層—會話層:在網路實體間建立、管理和終止通訊應用服務請求和響應等會話。
第六層—表示層:定義了一系列代碼和代碼轉換功能以保證源端數據在目的端同樣能被識別,比如大家所熟悉的文本數據的ASCII碼,表示圖象的GIF或表示動畫的MPEG等。
第七層——應用層:應用層是面向用戶的最高層,通過軟體應用實現網路與用戶的直接對話,如:找到通訊對方,識別可用資源和同步操作等。
網路七層的底三層(物理層、數據鏈路層和網路層)通常被稱作媒體層,它們不為用戶所見,默默地對網路起到支撐作用,是網路工程師所研究的對象;上四層(傳輸層、會話層、表示層和應用層)則被稱作主機層,是用戶所面向和關心的內容,這些程序常常將各層的功能綜合在一起,在用戶面前形成一個整體。大家所熟悉的網上應用WWW、FTP、TELNET等,都是這多層功能的綜合。
在數據的實際傳輸中,發送方將數據送到自己的應用層,加上該層的控制信息後傳給表示層;表示層如法炮製,再將數據加上自己的標識傳給會話層;以此類推,每一層都在收到的數據上加上本層的控制信息並傳給下一層;最後到達物理層時,數據通過實際的物理媒體傳到接收方。接收端則執行與發送端相反的操作,由下往上,將逐層標識去掉,重新還原成最初的數據。由此可見,數據通訊雙方在對等層必須採用相同的協議,定義同一種數據標識格式,這樣才可能保證數據的正確傳輸而不至走形。
OSI與實際應用模型
七層模型是一個理論模型,實際應用則千變萬化,完全可能發生變異。對大多數應用,我們只是將它的協議族(即協議堆棧)與七層模型作大致的對應,看看實際用到的特定協議是屬於七層中某個子層,還是包括了上下多層的功能。
網路中實際用到的協議是否嚴格按照這七層來定義呢?並非如此,七層模型是一個理論模型,實際應用則千變萬化,完全可能發生變異。何況有的應用由來已久,不可能在七層模型推出後又推翻重來。因此對大多數應用,我們只是將它的協議族(即協議堆棧)與七層模型作大致的對應,看看實際用到的特定協議是屬於七層中某個子層,還是包括了上下多層的功能。我們在以前的篇幅中曾介紹過的TCP/IP協議,它與七層模型的對應關系如下:
OSL與TCP/IP模型的對應關系(簡單圖二)
應用層 *
表示層 應用層
會話層 *
傳輸層 傳輸層
網路層 網路層
數據鏈路層 網路介面層
物理層 *
由圖二可看出,TCP/IP的多數應用協議將OSI應用層、表示層、會話層的功能合在一起,構成其應用層,典型協議有:HTTP、FTP、TELNET等;TCP/UDP協議對應OSI的傳輸層,提供上層數據傳輸保障;IP協議對應OSI的網路層,它定義了眾所周知的IP地址格式,做為網間網中查找路徑的依據;TCP/IP的最底層功能由網路介面層實現,相當於OSI的物理層和數據鏈路層,實際上TCP/IP對該層並未作嚴格定義,而是應用已有的底層網路實現傳輸,這就是它得以廣泛應用的原因。
⑶ OSI網路七層結構是什麼
網路七層協議:
1、應用層
與其它計算機進行通訊的一個應用,它是對應應用程序的通信服務的。例如,一個沒有通信功能的字處理程序就不能執行通信的代碼,從事字處理工作的程序員也不關心OSI的第7層。
2、表示層
這一層的主要功能是定義數據格式及加密。例如,FTP允許你選擇以二進制或ASCII格式傳輸。如果選擇二進制,那麼發送方和接收方不改變文件的內容。
3、會話層
它定義了如何開始、控制和結束一個會話,包括對多個雙向消息的控制和管理,以便在只完成連續消息的一部分時可以通知應用,從而使表示層看到的數據是連續的,在某些情況下,如果表示層收到了所有的數據,則用數據代表表示層。示例:RPC,SQL等。
4、傳輸層
這層的功能包括是否選擇差錯恢復協議還是無差錯恢復協議,及在同一主機上對不同應用的數據流的輸入進行復用,還包括對收到的順序不對的數據包的重新排序功能。
5、網路層
這層對端到端的包傳輸進行定義,它定義了能夠標識所有結點的邏輯地址,還定義了路由實現的方式和學習的方式。為了適應最大傳輸單元長度小於包長度的傳輸介質,網路層還定義了如何將一個包分解成更小的包的分段方法。
6、數據鏈路層
它定義了在單個鏈路上如何傳輸數據。這些協議與被討論的各種介質有關。
7、物理層
OSI的物理層規范是有關傳輸介質的特性,這些規范通常也參考了其他組織制定的標准。連接頭、幀、幀的使用、電流、編碼及光調制等都屬於各種物理層規范中的內容。物理層常用多個規范完成對所有細節的定義。
⑷ 網路七層到底什麼意思
7 應用層 6 表示層 5 會話層 4 傳輸層 3 網路層 2 數據鏈路層 1 物理層 其中高層,既7、6、5、4層定義了應用程序的功能,下面3層,既3、2、1層主要面向通過網路的端到端的數據流。
⑸ 什麼是網路七層協議
OSI是一個開放性的通信系統互連參考模型,它是一個定義得非常好的協議規范。
網路協議(OSI)模型有7層結構,每層都可以有幾個子層。 OSI的7層從上到下分別是:
物理層,為設備之間的數據通信提供傳輸媒體及互連設備,為數據傳輸提供可靠的環境;
數據鏈路層,可以粗略地理解為數據通道;
網路層,也是網路發展的結果,在聯機系統和線路交換的環境中,網路層的功能沒有太大意義,當數據終端增多時,產生的一種網路連接;
傳輸層,是兩台計算機經過網路進行數據通信時,第一個端到端的層次,具有緩沖作用;
會話層,提供的服務可使應用建立和維持會話,並能使會話獲得同步。;
表示層,作用之一是為異種機通信提供一種公共語言,以便能進行互操作;
應用層,向應用程序提供服務,這些服務按其向應用程序提供的特性分成組,並稱為服務元素。
其中高層(即7、6、5、4層)定義了應用程序的功能,下面3層(即3、2、1層)主要面向通過網路的端到端,點到點的數據流。
點擊查看網路:網路七層協議
⑹ OSI網路七層的定義是什麼
[物理層][鏈路層][網路層][傳輸層][會話層][表示層][應用層]
物理層:
物理層是OSI的第一層,它雖然處於最底層,卻是整個開放系統的基礎。物理層為設備之間
的數據通信提供傳輸媒體及互連設備,為數據傳輸提供可靠的環境。
a.媒體和互連設備
物理層的媒體包括架空明線、平衡電纜、光纖、無線信道等。通信用的互連設備指DTE和DCE
間的互連設備。DTE既數據終端設備,又稱物理設備,如計算機、終端等都包括在內。而DCE則
是數據通信設備或電路連接設備,如數據機等。數據傳輸通常是經過DTE——DCE,再經過
DCE——DTE的路徑。互連設備指將DTE、DCE連接起來的裝置,如各種插頭、插座。
LAN中的各種粗、細同軸電纜、T型接、插頭,接收器,發送器,中繼器等都屬物理層的媒體
和連接器。
b.物理層的主要功能
⑴為數據端設備提供傳送數據的通路,數據通路可以是一個物理媒體,也可以是多個物理媒
體連接而成.一次完整的數據傳輸,包括激活物理連接,傳送數據,終止物理連接.所謂激活,就是
不管有多少物理媒體參與,都要在通信的兩個數據終端設備間連接起來,形成一條通路.
⑵ 傳輸數據.物理層要形成適合數據傳輸需要的實體,為數據傳送服務.一是要保證數據能
在其上正確通過,二是要提供足夠的帶寬(帶寬是指每秒鍾內能通過的比特(BIT)數),以減少信
道上的擁塞.傳輸數據的方式能滿足點到點,一點到多點,串列或並行,半雙工或全雙工,同步或
非同步傳輸的需要.
⑶ 完成物理層的一些管理工作.
c.物理層的一些重要標准
物理層的一些標准和協議早在OSI/TC97/C16 分技術委員會成立之前就已制定並在應用了,
OSI也制定了一些標准並採用了一些已有的成果.下面將一些重要的標准列出,以便讀者查閱.
ISO2110:稱為"數據通信----25芯DTE/DCE介面連接器和插針分配".它與EIA(美國電子工業
協會)的"RS-232-C"基本兼容.
ISO2593:稱為"數據通信----34芯DTE/DCE----介面連接器和插針分配".
ISO4092:稱為"數據通信----37芯DTE/DEC----介面連接器和插針分配".與EIARS-449兼容.
CCITT V.24:稱為"數據終端設備(DTE)和數據電路終接設備之間的介面電路定義表".其功
能與EIARS-232-C及RS-449兼容於100序列線上.
數據鏈路層:
數據鏈路可以粗略地理解為數據通道。物理層要為終端設備間的數據通信提供傳輸媒體及其
連接.媒體是長期的,連接是有生存期的.在連接生存期內,收發兩端可以進行不等的一次或多次數
據通信.每次通信都要經過建立通信聯絡和拆除通信聯絡兩過程.這種建立起來的數據收發關系就
叫作數據鏈路.而在物理媒體上傳輸的數據難免受到各種不可靠因素的影響而產生差錯,為了彌補
物理層上的不足,為上層提供無差錯的數據傳輸,就要能對數據進行檢錯和糾錯.數據鏈路的建立,
拆除,對數據的檢錯,糾錯是數據鏈路層的基本任務.
⑴鏈路層的主要功能
鏈路層是為網路層提供數據傳送服務的,這種服務要依靠本層具備的功能來實現。鏈路層應
具備如下功能:
① 鏈路連接的建立,拆除,分離.
② 幀定界和幀同步.鏈路層的數據傳輸單元是幀,協議不同,幀的長短和界面也有差別,但
無論如何必須對幀進行定界.
③ 順序控制,指對幀的收發順序的控制.
④ 差錯檢測和恢復。還有鏈路標識,流量控制等等.差錯檢測多用方陣碼校驗和循環碼校
驗來檢測信道上數據的誤碼,而幀丟失等用序號檢測.各種錯誤的恢復則常靠反饋重發
技術來完成.
⑵數據鏈路層的主要協議
數據鏈路層協議是為發對等實體間保持一致而制定的,也為了順利完成對網路層的服務。主
要協議如下:
a. ISO1745--1975:"數據通信系統的基本型控制規程".這是一種面向字元的標准,利用10
個控制字元完成鏈路的建立,拆除及數據交換.對幀的收發情況及差錯恢復也是靠這些
字元來完成.ISO1155, ISO1177, ISO2626, ISO2629等標準的配合使用可形成多種鏈路
控制和數據傳輸方式.
b. ISO3309--1984:稱為"HDLC 幀結構".ISO4335--1984:稱為"HDLC 規程要素 ".
ISO7809--1984:稱為"HDLC 規程類型匯編".這3個標准都是為面向比特的數據傳輸控制
而制定的.有人習慣上把這3個標准組合稱為高級鏈路控制規程.
c. ISO7776:稱為"DTE數據鏈路層規程".與CCITT X.25LAB"平衡型鏈路訪問規程"相兼容.
⑶鏈路層產品
獨立的鏈路產品中最常見的當屬網卡,網橋也是鏈路產品。MODEM的某些功能有人認為屬於鏈
路層,對些還有爭議.
數據鏈路層將本質上不可靠的傳輸媒體變成可靠的傳輸通路提供給網路層。在IEEE802.3情況
下,數據鏈路層分成了兩個子層,一個是邏輯鏈路控制,另一個是媒體訪問控制。
圖2所示為IEEE802.3LAN體系結構。
AUI=連接單元介面 PMA=物理媒體連接
MAU=媒體連接單元 PLS=物理信令
MDI=媒體相關介面
網路層:
網路層的產生也是網路發展的結果.在聯機系統和線路交換的環境中,網路層的功能沒有太
大意義.當數據終端增多時.它們之間有中繼設備相連.此時會出現一台終端要求不只是與唯一的
一台而是能和多台終端通信的情況,這就是產生了把任意兩台數據終端設備的數據鏈接起來的問
題,也就是路由或者叫尋徑.另外,當一條物理信道建立之後,被一對用戶使用,往往有許多空閑時
間被浪費掉.人們自然會希望讓多對用戶共用一條鏈路,為解決這一問題就出現了邏輯信道技術
和虛擬電路技術.
⑴網路層主要功能
網路層為建立網路連接和為上層提供服務,應具備以下主要功能.
① 路由選擇和中繼.
② 激活,終止網路連接.
③ 在一條數據鏈路上復用多條網路連接,多採取分時復用技術.
④ 差錯檢測與恢復.
⑤ 排序,流量控制.
⑥ 服務選擇.
⑦ 網路管理.
⑵網路層標准簡介
網路層的一些主要標准如下.
ISO.DIS8208:稱為"DTE用的X.25分組級協議".
ISO.DIS8348:稱為"CO 網路服務定義"(面向連接).
ISO.DIS8349:稱為"CL 網路服務定義"(面向無連接).
ISO.DIS8473:稱為"CL 網路協議".
ISO.DIS8348:稱為"網路層定址".
除上述標准外,還有許多標准。這些標准都只是解決網路層的部分功能,所以往往需要在網路
層中同時使用幾個標准才能完成整個網路層的功能.由於面對的網路不同,網路層將會採用不同的
標准組合.
在具有開放特性的網路中的數據終端設備,都要配置網路層的功能.現在市場上銷售的網路硬
設備主要有網關和路由器.
傳輸層:
傳輸層是兩台計算機經過網路進行數據通信時,第一個端到端的層次,具有緩沖作用。當網路層服務質量不能滿足要求時,它將服務加以提高,以滿足高層的要求;當網路層服務質量較好時,它只用很少的工作。傳輸層還可進行復用,即在一個網路連接上創建多個邏輯連接。
傳輸層也稱為運輸層.傳輸層只存在於端開放系統中,是介於低3層通信子網系統和高3層之間的一層,但是很重要的一層.因為它是源端到目的端對數據傳送進行控制從低到高的最後一層.
有一個既存事實,即世界上各種通信子網在性能上存在著很大差異.例如電話交換網,分組交換網,公用數據交換網,區域網等通信子網都可互連,但它們提供的吞吐量,傳輸速率,數據延遲通信費用各不相同.對於會話層來說,卻要求有一性能恆定的界面.傳輸層就承擔了這一功能.它採用分流/合流,復用/介復用技術來調節上述通信子網的差異,使會話層感受不到.此外傳輸層還要具備差錯恢復,流量控制等功能,以此對會話層屏蔽通信子網在這些方面的細節與差異.傳輸層面對的數據對象已不是網路地址和主機地址,而是和會話層的界面埠.
上述功能的最終目的是為會話提供可靠的,無誤的數據傳輸.傳輸層的服務一般要經歷傳輸連接建立階段,數據傳送階段,傳輸連接釋放階段3個階段才算完成一個完整的服務過程.而在數據傳送階段又分為一般數據傳送和加速數據傳送兩種。傳輸層服務分成5種類型.基本可以滿足對傳送質量,傳送速度,傳送費用的各種不同需要.
傳輸層的協議標准有以下幾種.
ISO8072:稱為"面向連接的傳輸服務定義".
ISO8072:稱為"面向連接的傳輸協議規范
會話層:
會話層提供的服務可使應用建立和維持會話,並能使會話獲得同步。會話層使用校驗點可使通信會話在通信失效時從校驗點繼續恢復通信。這種能力對於傳送大的文件極為重要。
會話層,表示層,應用層構成開放系統的高3層,面對應用進程提供分布處理,對話管理,信息表示,恢復最後的差錯等. 會話層同樣要擔負應用進程服務要求,而運輸層不能完成的那部分工作,給運輸層功能差距以彌補.主要的功能是對話管理,數據流同步和重新同步。要完成這些功能,需要由大量的服務單元功能組合,已經制定的功能單元已有幾十種.現將會話層主要功能介紹如下.
⑴為會話實體間建立連接
為給兩個對等會話服務用戶建立一個會話連接,應該做如下幾項工作.
① 將會話地址映射為運輸地址.
② 選擇需要的運輸服務質量參數(QOS).
③ 對會話參數進行協商.
④ 識別各個會話連接.
⑤ 傳送有限的透明用戶數據.
⑵數據傳輸階段
這個階段是在兩個會話用戶之間實現有組織的,同步的數據傳輸.用戶數據單元為SSDU,而協議數據單元為SPDU.會話用戶之間的數據傳送過程是將SSDU轉變成SPDU進行的.
⑶連接釋放
連接釋放是通過"有序釋放","廢棄","有限量透明用戶數據傳送"等功能單元來釋放會話連接的.
會話層標准為了使會話連接建立階段能進行功能協商,也為了便於其它國際標准參考和引用,定義了12種功能單元.各個系統可根據自身情況和需要,以核心功能服務單元為基礎,選配其他功能單元組成合理的會話服務子集.
會話層的主要標准有"DIS8236:會話服務定義"和"DIS8237:會話協議規范".
表示層:
表示層的作用之一是為異種機通信提供一種公共語言,以便能進行互操作。這種類型的服務之所以需要,是因為不同的計算機體系結構使用的數據表示法不同。例如,IBM主機使用EBCDIC編碼,而大部分PC機使用的是ASCII碼。在這種情況下,便需要會話層來完成這種轉換。
通過前面的介紹,我們可以看出,會話層以下5層完成了端到端的數據傳送,並且是可靠,無差錯的傳送.但是數據傳送只是手段而不是目的,最終是要實現對數據的使用.由於各種系統對數據的定義並不完全相同,最易明白的例子是鍵盤,其上的某些鍵的含義在許多系統中都有差異.這自然給利用其它系統的數據造成了障礙.表示層和應用層就擔負了消除這種障礙的任務.
對於用戶數據來說,可以從兩個側面來分析,一個是數據含義被稱為語義,另一個是數據的表示形式,稱做語法.像文字,圖形,聲音,文種,壓縮,加密等都屬於語法范疇.表示層設計了3類15種功能單位,其中上下文管理功能單位就是溝通用戶間的數據編碼規則,以便雙方有一致的數據形式,能夠互相認識.
ISO表示層為服務,協議,文本通信符制定了DP8822,DP8823,DIS6937/2等一系列標准.
應用層:
應用層向應用程序提供服務,這些服務按其向應用程序提供的特性分成組,並稱為服務元素。
有些可為多種應用程序共同使用,有些則為較少的一類應用程序使用。
應用層是開放系統的最高層,是直接為應用進程提供服務的。其作用是在實現多個系統應用進
程相互通信的同時,完成一系列業務處理所需的服務.其服務元素分為兩類:公共應用服務元素CASE
和特定應用服務元素SASE.
CASE提供最基本的服務,它成為應用層中任何用戶和任何服務元素的用戶,主要為應用進程通
信,分布系統實現提供基本的控制機制.
特定服務SASE則要滿足一些特定服務,如文卷傳送,訪問管理,作業傳送,銀行事務,訂單輸入等.
這些將涉及到虛擬終端,作業傳送與操作,文卷傳送及訪問管理,遠程資料庫訪問,圖形核心系統,開
放系統互連管理等等.
應用層的標准有DP8649"公共應用服務元素",DP8650"公共應用服務元素用協議",文件傳送,訪
問和管理服務及協議.