導航:首頁 > 網路問題 > 怎麼由神經網路擬合經驗公式

怎麼由神經網路擬合經驗公式

發布時間:2023-03-29 15:07:08

1. 通過哪些參數看神經網路擬合出來的函數效果神經網路擬合時如何確定隱藏的節點數

主要看均方誤差和其百分比(准確率)。假如你擬合出來是ui,計算(yi-ui)^2的平均值,然後計算這個平均值與yi平均值的比(也就是均方誤差百分比),當然用1減去這個百分比就是准確率了。一般也會畫一幅圖,把yi和ui分別用不同的顏色或者符號表示出來握檔,直觀對比。
擬合時的隱含層節點數目前沒有一個通行的公式進行確定,只能憑借經驗和試湊。一般情況下,問題的復雜程度(非線性程度和維度)越高,隱含層節點數越多。這里介紹一個小晌皮譽經驗:先用不太大的節點數進行預測,如果增加節點數測試集准確宴段率和訓練集准確率都有所提升,則應該繼續增加。如果增加節點數測試集准確率增加很不明顯,而訓練集准確率還是有所提升,則不應該繼續增加,當前的就是很理想的,繼續增加節點數只會起到反效果。

2. 兩組數據,用神經網路擬合,訓練後,怎麼通過這些參數得到函數關系式呀謝謝

這個是做不到的。神經網路的非線性函數擬合是指非線性映射,並非對具體數學表達式進行求解。這也是神經網路的特點,即不需要精確的數學表達式,即可實現許多功能。非線性關系昌鬧賣是自然界的普遍特性。大腦的智慧就是一種非線性現耐逗象。人工神經元處於激活或抑制二種不同的狀態,這種行為彎戚在數學上表現為一種非線性關系。具有閾值的神經元構成的網路具有更好的性能,可以提高容錯性和存儲容量。

3. 用MATLAB神經網路進行函數擬合後,擬合的函數表達式有嗎

神經網路一般是沒有表達式的哈,但是只要你的參數每次都給的一樣,在多次運行後它的多次結果會有一定的相似,這就是我們可以用它做擬合後基埋的預測的原理,因為神經網路一般塵鋒裂每次初始值都是隨機值,所以結果也會有區別的。在表達擬合函數的時候,我們只要要列出它的參數取值及擬合模型即可,例如BP中的losig模型,隱層神經元個數,下降派閉速率採用的方法traindx,學習速率0.05,訓練最小誤差0.001等等。

4. 神經網路:欠擬合和過擬合

以我們前面講述的線性回歸為例,比如我們在訓練集上訓練出最優的模型,但是當我們將其使用到測試集時,測試的誤差很大,我們該怎麼辦? 

我們一般採取的措施主要包括以下6種:

增加訓練樣本的數目(該方法適用於過擬合現象時,解決高方差。一般都是有效的,但是代價較大,如果下面的方法有效,可以優先採用下面的方式);

嘗試減少特徵的數量(該方法適用於過擬合現象時,解決高方差);

嘗試獲得更多的特徵(該方法適用於欠擬合現象時,解決高偏差);

嘗試增加多項式特徵(該方法適用於欠擬合現象時,解決高偏差);

嘗試減小正則化程度λ(該方法適用於欠擬合現象時,解決高偏差);

嘗試增加正則化程度λ(該方法適用於過擬合現象時,解決高方差);

上面的方法不是隨機選擇,是在合適的情況下(過擬合和欠擬合)選擇合適的方法,對於怎麼判斷一個模型是過擬合還是欠擬合,我們會在下面給出一些機器學習診斷法。

如何對一個假設進行評估?  

我們前面在講述線性回歸和邏輯回歸時,只是注重針對訓練數據集訓練出一個最優的參數,但是我們訓練處的模型對於測試集的性能好壞我們沒有進行判斷,我們只是訓練的模型使得損失函數最小,我們前面也討論過,在訓練數據集上損失函數最小並不能代表對於給定的測試數據,測試數據的評估非常准確,比如過擬合現象發生時,那我們如何評價一個假設的好壞呢? 

主要的方法包括兩種: 

1.對於簡答的模型,我們可以採用將hθ(x)的圖像畫出,來判斷模型的好壞,但是這種方法對於特徵變數不是一個時,這種方法很難實現或者不可能實現。例如我們曾經看到過這樣的圖像,可以通過hθ(x)的圖像明顯可以看出,該假設存在著過擬合現象。 

2.另一種評估假設的方法為:將原來的數據集分為訓練集和測試集,一般我們是從原來的數據集中隨機選取(保證訓練集和測試集中都含有各種類型的數據)70%的數據作為訓練集,剩下的30%的樣本作為測試集。同時這種將原來數據集劃分為訓練集和測試集的方法可以用於幫助特徵選擇、多項式次數的選擇以及正則化參數的選擇等。數據集劃分的過程如下: 

以上面數據集為例,選取前7個為訓練集,後3個為測試集。用前7個數據集做訓練訓練出一個最優的模型,評價這個訓練出的模型的好壞可以使用測試集來進行判斷,判斷的標准可以使用測試集的損失函數來進行定量的衡量。 

對於回歸問題,測試集的損失函數計算公式如下: 

Jtest(θ)=12mtest∑i=1mtest(hθ(x(i)test)−y(i)test)2

而對於分類問題,測試集的損失函數計算公式如下: 

這種測量方式,如果測試樣本損失函數很大,則代表訓練出的模型泛化能力不好。 

對於分類問題,還有另外一種測量的方式,稱為誤分類率,它對於每一個測試樣本進行計算,計算的公式如下: 

error=1mtest∑i=1mtesterr(hθ(x(i)test),y(i)))

其中, 

模型的選擇和交叉驗證集:  

上述我們是在模型選擇好了之後進行訓練的,也就是上述我們都是確定了假設進行訓練的,但是我們怎麼對模型進行選擇呢,這一節我們來討論一下模型的選擇,以及和交叉驗證集的關系。 

模型選擇主要包括以下內容:1.怎樣選擇正確的特徵來構造學習演算法?2.怎樣選擇學習演算法中正則化參數λ?等問題。 

首先我們結合一個例子來引出模型的選擇和驗證集: 

例如我們有上面十個模型,我們對於給定的數據集選擇哪種模型呢?按照我們上面討論的將數據集劃分為訓練集和測試集,使用訓練集對上述模型進行訓練,然後使用測試集來進行選擇最佳的模型,比如最優的為第五個模型,但是這並不能衡量這個模型的泛化能力,因為測試集已經用於選擇最優的模型,這個模型對於其他未知數據的泛化能力還是未知的。 

所以針對上述問題我們可以將數據集劃分為訓練集、交叉驗證集和測試集。一般情況下,訓練集占總樣本的60%,交叉驗證集佔20%,測試集佔20%。其中訓練集用於訓練,交叉驗證集用於選擇最優的模型,測試集用於測試模型的泛化能力。 

模型選擇方法為: 

1. 使用訓練集訓練10個模型; 

2. 用10個模型分別對交叉驗證集計算出交叉驗證誤差(代價函數的值),其中計算公式為: 

3. 選取交叉驗證誤差最小的模型作為選擇的模型; 

4. 用測試集對選擇出的模型計算泛化能力(測試樣本的損失函數),計算公式如上文中討論的一樣。

假設對診斷偏差和方差(即過擬合還是欠擬合)的影響  

利用上述方法學習到的演算法性能不好一般會有兩種情況: 

1.會出現過擬合,也就是所謂的方差很大; 

2.會出現欠擬合,也就是所謂的偏差很大; 

首先應該確定演算法性能的不好,是由哪種原因造成的,然後針對不同的情況採取不同的改進策略,可以有效的改進當前的演算法。下面我們來講述一下怎麼判斷是過擬合還是欠擬合。 

以下面例子為例,來進行討論: 

我們可以通過繪制出訓練集的代價函數和交叉驗證驗證集的代價函數與方次d的關系來進行判斷是上述哪種情況的一種: 

對於訓練集,當d較小時,模型的擬合程度不是很好,所以訓練樣本集的代價函數比較大;隨著d的增加,模型的擬合程度不斷提高,代價函數不斷的減小; 

對於交叉驗證集,由於d比較小時,模型的擬合程度不是很好,對於新來的樣本預測結果會偏差很大,所以交叉驗證集的代價函數在初始階段會很大,而隨著d的增加會出現一個比較好的方次d,使得模型的擬合程度最佳,同時對於新來的樣本泛化能力很強,所以會有一個代價函數最小的點出現(該轉折點即是模型開始由欠擬合轉向過擬合的點),隨後隨著d的增加,由於過擬合,會存在對新的樣本預測結果不良的現象,所以代價函數會逐漸增大。 

當我們繪制出上述曲線時,我們就可以判斷出什麼時候是過擬合什麼時候欠擬合,判斷的標准如下: 

1. 當訓練誤差與交叉驗證集誤差接近時,並且都很大時,該模型高偏差(欠擬合); 

2. 當訓練誤差遠小於驗證集誤差時,並且訓練誤差很小時,該模型高方差(過擬合)。 

判斷出該模型是過擬合或者欠擬合之後,然後使用上述提到的過擬合和欠擬合的解決方法,對演算法進行改進。

正則化對偏差和方差的影響  

我們前面講述過正則化可以有效的處理過擬合現象,但是我們上述所說的處理過擬合是在合適的λ情況下,那麼λ值的大小對模型的性能是怎樣影響的呢?我們採用上述與方次d對性能的影響相同的方式來分析λ的值對性能的影響。 

我們首先選擇一系列的λ值,通常λ的選擇是0~10之間呈現二倍關系的值(如:0,0.01,0.02,0.04,0.08,0.15,0.32,0.64,1.28,5.26,5.12,10) 

構建方式如下: 

選擇λ的方法如下: 

1.使用訓練集訓練處12個不同程度正則化模型; 

2.用12個模型分別對交叉驗證集計算出交叉驗證誤差; 

3.選擇得出交叉驗證誤差最小的模型; 

4.運用步驟3選出的模型對測試集計算得出推廣誤差

我們同樣可以將訓練集和交叉驗證集模型的代價函數與λ的值繪制在一張圖上。對於訓練集、驗證集和測試集的代價函數計算公式為: 

需要注意的是,當計算訓練集、交叉驗證集和測試集誤差時,不計算正則項,然後繪制出訓練集和交叉驗證集代價函數與λ值的關系,如下圖所示: 

1. 當λ較小時,訓練誤差較小(過擬合)而交叉驗證集誤差較大; 

2. 隨著λ的增加(從過擬合到欠擬合的過程),訓練集誤差逐漸增大(欠擬合),而交叉驗證集誤差則是先減小後增大。

學習曲線  

學習曲線也是一種可以判斷演算法是否處於過擬合還是欠擬合的情況,學習曲線是將訓練集誤差和交叉驗證集誤差作為訓練集實例數量(m)的函數繪制的圖像。學習曲先不僅可以幫助我們是不是處於過擬合或者欠擬合,它還可以幫助我們判斷是否為了提高演算法的性能需要我們收集多的數據。 

假設我們有100行數據,我們從第一行數據開始,逐漸增加數據進行訓練,得到每次訓練數據的代價函數值。當數據很少時,訓練模型能夠非常完美的擬合很少的數據,但是訓練出的模型卻不能泛化其他的數據,所以當數據很少時,訓練集的代價函數很小,但是交叉驗證集的代價函數很大,隨著樣本的增加,訓練集的代價函數逐漸增大,交叉驗證集的代價函數逐漸減小。繪制的曲線如下圖所示: 

1. 如何用學習曲線識別欠擬合: 

假設我們的模型處於欠擬合的情況下,擬合曲線如下圖所示: 

我們可以看出,無論我們怎樣增加樣本數據,誤差都不會有很大改觀。同時在欠擬合的情況下,會出現隨著樣本的增加,訓練集代價函數和交叉驗證集代價函數都很大的情況,在這種情況下,就沒有必要花費時間在收集數據上了,同時這也是一種判斷模型是過擬合還是欠擬合的方法。 

2. 如何使用學習曲線識別過擬合: 

假設我們有一個非常高次的多項式模型(比如最高次項達到100次),並且正則化非常小時,從下圖可以看出,當交叉驗證集誤差遠大於訓練集誤差時,往訓練集增加更多數據可以提高模型的效果。 

對於過擬合現象時,會出現訓練集代價函數一直都很小(雖然是增加的趨勢),但是驗證集的損失函數會很大(雖然是減小的趨勢),同時訓練集代價函數和驗證集代價函數相差會很大,可以使用這種方法來判斷該模型處於過擬合階段。

對於神經網路我們在討論一下過擬合和欠擬合現象:  

使用較小的神經網路,類似於參數較少的情況,容易導致高偏差和欠擬合,但是計算代價小;使用較大的神經網路,類似於參數較多的情況,容易導致高方差和過擬合,雖然計算代價比較大,但是可以通過正則化手段來調整而更加適應數據。 

對於 神經網路的模型選擇 :我們一般選擇較大的神經網路並採用正則化處理,而不會選擇較小的神經網路。 

對於 神經網路隱藏層的層數選擇 ,一般我們從一層開始逐漸增加層數,為了更好的選擇出最佳的層數,可以針對不同隱藏層層數的神經網路進行訓練,然後選擇交叉驗證集代價函數最小的神經網路。

5. matlab中如何用神經網路求得數據擬合函數

我是做這個方向的,神經網路擬合出的曲線是沒有相應的函數的,他是根據許多的權重值,閥值世並和偏置值的訓練彎返嫌確定的曲線。埋手還有什麼相關問題可以問我,我的QQ378257104。

6. 訓練BP神經網路對函數進行擬合

  1. 去掉這一句:[Pn]=tramnmx(P,minp,maxp) 你這一句不開玩笑嗎?

  2. ??? Error using ==> network.subsasgn>network_subsasgn at 535
    "layers{1}.transferFcn" cannot be set to non-existing function "tasing'purelin"猜裂.

    這一錯誤是因為,你漏掉了逗號,而並衡且tansig拼錯了,應該是{'tansig','purelin'}


我直接幫你把代碼全部改好吧,復制到m文件或命令窗口運行即可:

clc,clear;
P=-pi/2+0.1:pi/10:pi/2-0.1;
T=tan(P);
plot(P,T,'-*');
[Pn,pps]=mapminmax(P,0,1);%p歸一化
[Tn,tps]=mapminmax(T,0,1);絕兆做%t歸一化
net=newff(minmax(Pn),[51],{'tansig','purelin'},'trainlm');
net.trainParam.show=10;
net.trainParam.lr=0.05;
net.trainParam.epochs=500;
net.trainParam.goal=0.01;
[net,tr]=train(net,Pn,Tn);
r=sim(net,Pn);
r=mapminmax('reverse',r,tps);%反歸一化
plot(P,r,'-ro',P,T,'-b*');

7. 神經網路演算法

20 世紀五、六⼗年代,科學家 Frank Rosenblatt其受到 Warren McCulloch 和 Walter Pitts早期的⼯作的影響,發明了感知機(Perceptrons)。

⼀個感知器接受⼏個⼆進制輸⼊, ,並產⽣⼀個⼆進制輸出:

如上圖所示的感知機有三個輸⼊: 。通常可以有更多或更少輸⼊。 我們再引⼊權重: ,衡量輸入對輸出的重要性。感知機的輸出為0 或者 1,則由分配權重後的總和 ⼩於等於或者⼤於閾值決定。和權重⼀樣,閾值(threshold)是⼀個實數,⼀個神經元的參數。⽤更精確的代數形式如下:

給三個因素設置權重來作出決定:

可以把這三個因素對應地⽤⼆進制變數 來表⽰。例如,如果天⽓好,我們把

,如果不好, 。類似地,如果你的朋友陪你去, ,否則 。 也類似。

這三個對於可能對你來說,「電影好不好看」對你來說最重要,而天氣顯得不是那麼的重要。所以你會這樣分配權值: ,然後定義閾值threshold=5。

現在,你可以使⽤感知器來給這種決策建⽴數學模型。

例如:

隨著權重和閾值的變化,你可以得到不同的決策模型。很明顯,感知機不是⼈做出決策使⽤的全部模型。但是這個例⼦說明了⼀個感知機如何能權衡不同的依據來決策。這看上去也可以⼤致解釋⼀個感知機⽹絡有時確實能夠做出一些不錯的決定。

現在我們隊上面的結構做一點變化,令b=-threshold,即把閾值移到不等號左邊,變成偏置, 那麼感知器的規則可以重寫為:

引⼊偏置只是我們描述感知器的⼀個很⼩的變動,但是我們後⾯會看到它引導更進⼀步的符號簡化。因此,我們不再⽤閾值,⽽總是使⽤偏置。

感知機是首個可以學習的人工神經網路,它的出現引起的神經網路的第一層高潮。需要指出的是,感知機只能做簡單的線性分類任務,而且Minsky在1969年出版的《Perceptron》書中,證明了感知機對XOR(異或)這樣的問題都無法解決。但是感知機的提出,對神經網路的發展是具有重要意義的。

通過上面的感知機的觀察我們發現一個問題,每個感知機的輸出只有0和1,這就意味著有時我們只是在單個感知機上稍微修改了一點點權值w或者偏置b,就可能造成最終輸出完全的反轉。也就是說,感知機的輸出是一個階躍函數。如下圖所示,在0附近的時候,輸出的變化是非常明顯的,而在遠離0的地方,我們可能調整好久參數也不會發生輸出的變化。

這樣階躍的跳變並不是我們想要的,我們需要的是當我們隊權值w或者偏置b做出微小的調整後,輸出也相應的發生微小的改變。這同時也意味值我們的輸出不再只是0和1,還可以輸出小數。由此我們引入了S型神經元。

S型神經元使用 S 型函數,也叫Sigmoid function函數,我們用它作為激活函數。其表達式如下:

圖像如下圖所示:

利⽤實際的 σ 函數,我們得到⼀個,就像上⾯說明的,平滑的感知器。 σ 函數的平滑特性,正是關鍵因素,⽽不是其細部形式。 σ 的平滑意味著權重和偏置的微⼩變化,即 ∆w 和 ∆b,會從神經元產⽣⼀個微⼩的輸出變化 ∆output。實際上,微積分告訴我們

∆output 可以很好地近似表⽰為:

上面的式子是⼀個反映權重、偏置變化和輸出變化的線性函數。這⼀線性使得我們可以通過選擇權重和偏置的微⼩變化來達到輸出的微⼩變化。所以當 S 型神經元和感知器本質上是相同的,但S型神經元在計算處理如何變化權重和偏置來使輸出變化的時候會更加容易。

有了對S型神經元的了解,我們就可以介紹神經網路的基本結構了。具體如下:

在⽹絡中最左邊的稱為輸⼊層,其中的神經元稱為輸⼊神經元。最右邊的,即輸出層包含有輸出神經元,在圖中,輸出層只有⼀個神經元。中間層,既然這層中的神經元既不是輸⼊也不是輸出,則被稱為隱藏層。

這就是神經網路的基本結構,隨著後面的發展神經網路的層數也隨之不斷增加和復雜。

我們回顧一下神經網路發展的歷程。神經網路的發展歷史曲折盪漾,既有被人捧上天的時刻,也有摔落在街頭無人問津的時段,中間經歷了數次大起大落。

從單層神經網路(感知機)開始,到包含一個隱藏層的兩層神經網路,再到多層的深度神經網路,一共有三次興起過程。詳見下圖。

我們希望有⼀個演算法,能讓我們找到權重和偏置,以⾄於⽹絡的輸出 y(x) 能夠擬合所有的 訓練輸⼊ x。為了量化我們如何實現這個⽬標,我們定義⼀個代價函數:

這⾥ w 表⽰所有的⽹絡中權重的集合, b 是所有的偏置, n 是訓練輸⼊數據的個數,
a 是表⽰當輸⼊為 x 時輸出的向量,求和則是在總的訓練輸⼊ x 上進⾏的。當然,輸出 a 取決於 x, w和 b,但是為了保持符號的簡潔性,我沒有明確地指出這種依賴關系。符號 ∥v∥ 是指向量 v 的模。我們把 C 稱為⼆次代價函數;有時也稱被稱為均⽅誤差或者 MSE。觀察⼆次代價函數的形式我們可以看到 C(w, b) 是⾮負的,因為求和公式中的每⼀項都是⾮負的。此外,代價函數 C(w,b)的值相當⼩,即 C(w; b) ≈ 0,精確地說,是當對於所有的訓練輸⼊ x, y(x) 接近於輸出 a 時。因

此如果我們的學習演算法能找到合適的權重和偏置,使得 C(w; b) ≈ 0,它就能很好地⼯作。相反,當 C(w; b) 很⼤時就不怎麼好了,那意味著對於⼤量地輸⼊, y(x) 與輸出 a 相差很⼤。因此我們的訓練演算法的⽬的,是最⼩化權重和偏置的代價函數 C(w; b)。換句話說,我們想要找到⼀系列能讓代價盡可能⼩的權重和偏置。我們將采⽤稱為梯度下降的演算法來達到這個⽬的。

下面我們將代價函數簡化為C(v)。它可以是任意的多元實值函數, 。
注意我們⽤ v 代替了 w 和 b 以強調它可能是任意的函數,我們現在先不局限於神經⽹絡的環境。

為了使問題更加簡單我們先考慮兩個變數的情況,想像 C 是⼀個只有兩個變數 和 的函數,我們的目的是找到 和 使得C最小。

如上圖所示,我們的目的就是找到局部最小值。對於這樣的一個問題,一種方法就是通過微積分的方法來解決,我們可以通過計算導數來求解C的極值點。但是對於神經網路來說,我們往往面對的是非常道的權值和偏置,也就是說v的維數不只是兩維,有可能是億萬維的。對於一個高維的函數C(v)求導數幾乎是不可能的。

在這種情況下,有人提出了一個有趣的演算法。想像一下一個小球從山頂滾下山谷的過程, 我們的⽇常經驗告訴我們這個球最終會滾到⾕底。我們先暫時忽略相關的物理定理, 對球體的⾁眼觀察是為了激發我們的想像⽽不是束縛我們的思維。因此與其陷進物理學⾥凌亂的細節,不如我們就這樣問⾃⼰:如果我們扮演⼀天的上帝,能夠構造⾃⼰的物理定律,能夠⽀配球體可以如何滾動,那麼我們將會採取什麼樣的運動學定律來讓球體能夠總是滾落到⾕底呢?

為了更精確地描述這個問題,讓我們思考⼀下,當我們在 和 ⽅向分別將球體移動⼀個很⼩的量,即 ∆ 和 ∆ 時,球體將會發⽣什麼情況。微積分告訴我們 C 將會有如下變化:

也可以用向量表示為

現在我們的問題就轉換為不斷尋找一個小於0的∆C,使得C+∆C不斷變小。

假設我們選取:

這⾥的 η 是個很⼩的正數(稱為學習速率),於是

由於 ∥∇C∥2 ≥ 0,這保證了 ∆C ≤ 0,即,如果我們按照上述⽅程的規則去改變 v,那麼 C
會⼀直減⼩,不會增加。

所以我們可以通過不斷改變v來C的值不斷下降,是小球滾到最低點。

總結⼀下,梯度下降演算法⼯作的⽅式就是重復計算梯度 ∇C,然後沿著相反的⽅向移動,沿著⼭⾕「滾落」。我們可以想像它像這樣:

為了使梯度下降能夠正確地運⾏,我們需要選擇合適的學習速率η,確保C不斷減少,直到找到最小值。

知道了兩個變數的函數 C 的梯度下降方法,我們可以很容易的把它推廣到多維。我們假設 C 是⼀個有 m 個變數 的多元函數。 ∆C 將會變為:

其中, ∇C為

∆v為:

更新規則為:

在回到神經網路中,w和b的更新規則為:

前面提到神經⽹絡如何使⽤梯度下降演算法來學習他們⾃⾝的權重和偏置。但是,這⾥還留下了⼀個問題:我們並沒有討論如何計算代價函數的梯度。這里就需要用到一個非常重要的演算法:反向傳播演算法(backpropagation)。

反向傳播演算法的啟示是數學中的鏈式法則。

四個方程:

輸出層誤差方程:

當前層誤差方程:

誤差方程關於偏置的關系:

誤差方程關於權值的關系

演算法描述:

檢視這個演算法,你可以看到為何它被稱作反向傳播。我們從最後⼀層開始向後計算誤差向量δ。這看起來有點奇怪,為何要從後⾯開始。但是如果你認真思考反向傳播的證明,這種反向移動其實是代價函數是⽹絡輸出的函數的結果。為了理解代價隨前⾯層的權重和偏置變化的規律,我們需要重復作⽤鏈式法則,反向地獲得需要的表達式。

參考鏈接: http://neuralnetworksanddeeplearning.com/

閱讀全文

與怎麼由神經網路擬合經驗公式相關的資料

熱點內容
網路共享中心沒有網卡 瀏覽:513
電腦無法檢測到網路代理 瀏覽:1364
筆記本電腦一天會用多少流量 瀏覽:551
蘋果電腦整機轉移新機 瀏覽:1368
突然無法連接工作網路 瀏覽:1035
聯通網路怎麼設置才好 瀏覽:1213
小區網路電腦怎麼連接路由器 瀏覽:1010
p1108列印機網路共享 瀏覽:1203
怎麼調節台式電腦護眼 瀏覽:671
深圳天虹蘋果電腦 瀏覽:909
網路總是異常斷開 瀏覽:603
中級配置台式電腦 瀏覽:967
中國網路安全的戰士 瀏覽:623
同志網站在哪裡 瀏覽:1404
版觀看完整完結免費手機在線 瀏覽:1449
怎樣切換默認數據網路設置 瀏覽:1099
肯德基無線網無法訪問網路 瀏覽:1275
光纖貓怎麼連接不上網路 瀏覽:1449
神武3手游網路連接 瀏覽:956
局網列印機網路共享 瀏覽:991