㈠ Elman神經網路和回聲狀態網路哪個好
BP等前饋型神經網路是將動態時間建模問題變為靜態空間建模問題,同時還需對模型結構進行定介,特別是隨孫檔冊系統階次的增加或階次未知,迅速擴大的網路結構使網路學習的收斂速度減慢,並造則宏成網路蠢灶輸入節點過多、訓練困難及對外部雜訊敏感等弊病。
Elman回歸神經網路是在BP網路基本結構的基礎上,通過存儲內部狀態使其具備映射的動態特徵功能,從而使系統具有適應時變特性的能力。
㈡ 前饋式神經網路與反饋式神經網路有何不同
前饋式神經網路和反饋式神經網路是兩種主要的神經網路架構。
前饋式神經網路是信息在網路中單向流動的結構,它的信息只能從輸入層流向輸出層。常見的遲掘慎前饋式神經網路有多層感知器和卷積神經網路。
反饋散鎮式神經網路是信息在網路中雙碼敬向流動的結構,信息可以從輸入層流向輸出層,也可以從輸出層流回輸入層。常見的反饋式神經網路有循環神經網路和遞歸神經網路。
前饋式神經網路適用於靜態任務,而反饋式神經網路適用於動態任務。
㈢ resnet和vgg16哪個好
resnet。
經過CSDN博客官網查詢可知,ResNet是在VGG基礎上引入殘差連接和跳層連接結構的一種CNN(卷積神經網路結構),除此之外ResNet依舊繼承了Vgg的小卷積核等經典特點。與VGG相比,Resnet則更加出色,為後續的帶鎮研究做下鋪墊。
resnet又叫殘差網路,是由蠢液粗來自MicrosoftResearch的4位學者提出的卷積神經網路,在2015年的ImageNet大規模視埋粗覺識別競賽(,ILSVRC)中獲得了圖像分類和物體識別的優勝。殘差網路的特點是容易優化,並且能夠通過增加相當的深度來提高准確率。其內部的殘差塊使用了跳躍連接,緩解了在深度神經網路中增加深度帶來的梯度消失問題。
㈣ 有哪些深度神經網路模型
目前經常使用的深度神經網路模型主要有卷積神經網路(CNN) 、遞歸神經網路(RNN)、深信度網路(DBN) 、深度自動編碼器(AutoEncoder) 和生成對抗網路(GAN) 等。
遞歸神經網路實際.上包含了兩種神經網路。一種是循環神經網路(Recurrent NeuralNetwork) ;另一種是結構遞歸神經網路(Recursive Neural Network),它使用相似的網路結構遞歸形成更加復雜的深度網路。RNN它們都可以處理有序列的問題,比如時間序列等且RNN有「記憶」能力,可以「模擬」數據間的依賴關系。卷積網路的精髓就是適合處理結構化數據。
關於深度神經網路模型的相關學習,推薦CDA數據師的相關課程,課程以項目調動學員數據挖掘實用能力的場景式教學為主,在講師設計的業務場景下由講師不斷提出業務問題,再由學員循序漸進思考並操作解決問題的過程中,幫助學員掌握真正過硬的解決業務問題的數據挖掘能力。這種教學方式能夠引發學員的獨立思考及主觀能動性,學員掌握的技能知識可以快速轉化為自身能夠靈活應用的技能,在面對不同場景時能夠自由發揮。點擊預約免費試聽課。
㈤ 採用什麼手段使神經網路預測更加准確
優化神經網路結構。如BP神經網路改變隱層神經元數量、訓練演算法等;
使用其他神經網路。如Elman神經網路考慮了前一時刻的輸出,比較適合用於預測,預測效果往往更好。RBF神經網路的訓練速度很快,訓練效果也很好。
改進的神經網路演算法。例如BP神經網路增加動量項、自適應學習率等措施,防止陷入局部極小影響預測效果。
組合神經網路。取長補短,將全局搜索能力強的演算法與局部逼近快的演算法組合起來,如遺傳演算法優化初始權值,再訓練。這種方法比較靈活,可以和許多演算法融合。
全面考慮影響因素。未來的預測值受許多因素影響,所以應該在基於歷史數據的基礎上,充分考慮各種因素,考慮得越周全,預知信息越多,預測效果一般更好。
㈥ 前饋神經網路、BP神經網路、卷積神經網路的區別與聯系
區別:
一、計算方法不同
1、前饋神經網路:一種最簡單的神經網路,各神經元分層排列。每個神經元只與前一層的神經元相連。接收前一層的輸出,並輸出給下一層.各層間沒有反饋。
2、BP神經網路:是一種按照誤差逆向傳播演算法訓困啟練的多層前饋神經網路。
3、卷積神經網路:包含卷積計算且具有深度結構的前饋神經網路。
二、作用不同
1、前饋神經網路:扮亂結構簡單,應用廣泛,能夠以任意精度逼近任意廳尺檔連續函數及平方可積函數.而且可以精確實現任意有限訓練樣本集。
2、BP神經網路:具有很強的非線性映射能力和柔性的網路結構。網路的中間層數、各層的神經元個數可根據具體情況任意設定,並且隨著結構的差異其性能也有所不同。
3、卷積神經網路:具有表徵學習能力,能夠按其階層結構對輸入信息進行平移不變分類。
三、用途不同
1、前饋神經網路:主要應用包括感知器網路、BP網路和RBF網路。
2、BP神經網路:1)函數逼近:用輸入向量和相應的輸出向量訓練一個網路逼近一個函數;2)模式識別:用一個待定的輸出向量將它與輸入向量聯系起來;3)分類:把輸入向量所定義的合適方式進行分類;4)數據壓縮:減少輸出向量維數以便於傳輸或存儲。
3、卷積神經網路:可應用於圖像識別、物體識別等計算機視覺、自然語言處理、物理學和遙感科學等領域。
聯系:
BP神經網路和卷積神經網路都屬於前饋神經網路,三者都屬於人工神經網路。因此,三者原理和結構相同。
(6)什麼神經網路結構好擴展閱讀
人工神經網路的優點:
1、具有自學習功能。自學習功能對於預測有特別重要的意義。預期未來的人工神經網路計算機將為人類提供經濟預測、市場預測、效益預測,其應用前途是很遠大的。
2、具有聯想存儲功能。用人工神經網路的反饋網路就可以實現這種聯想。
3、具有高速尋找優化解的能力。尋找一個復雜問題的優化解,往往需要很大的計算量,利用一個針對某問題而設計的反饋型人工神經網路,發揮計算機的高速運算能力,可很快找到優化解。
㈦ 幾種常見的循環神經網路結構RNN、LSTM、GRU
傳統文本處理任務的方法中一般將TF-IDF向量作為特徵輸入。顯而易見,這樣的表示實際上丟失了輸入的文本序列中每個單詞的順序。在神經網路的建侍空模過程中,一般的前饋神經網路,如卷積神經網路,通常接受一個定長的向量作為輸入。卷積神經網路對文本數據建模時,輸入變長的字元串或者單詞串,然後通過滑動窗口加池化的方式將原先的輸入轉換成一個固定長度的向量表示,這樣做可以捕捉到原文本中的一些局部特徵,但是兩個單詞之間的長距離依賴關系還是很難被學習到。
循環神經網路卻能很好地處理文本數據變長並且有序的輸入序列。它模擬了人閱讀一篇文章的順序,從前到後閱讀文章中的每一個單詞,將前面閱讀到的有用信息編碼到狀態變數中去,從而擁有了一定的記憶能力,可以更好地理解之後的文本。
其網路結構如下圖所示:
由圖可見,t是時刻,x是輸入層,s是隱藏層,o是輸出層,矩陣W就是隱藏層上一次的值作為這一次的輸入的權重。
如果反復把式 2 帶入到式 1,將得到:
其中f和g為激活函數,U為輸入層到隱含層的權重矩陣,W為隱含層從上一時刻到下一時刻狀態轉移的權重矩陣。在文本分類任務中,f可以選取Tanh函數或者ReLU函數,g可以採用Softmax函數。
通過最小化損失誤差(即輸出的y與真實類別之間的距離),我們可以不斷訓練網路,使得得到的循環神經網路可以准確地預測文本所屬的類別,達到分類目的。相比於卷積神經網路等前饋神經網路,循環神經網路由於具備對序列順序信息的刻畫能力,往往能得到更准確的結果。
RNN的訓練演算法為:BPTT
BPTT的基本原理和BP演算法是一樣的,同樣是三步:
1.前向計算每個神經元的輸出值;
2.反向計算每個神經元的誤差項值,它是誤差函數E對神經元j的加權輸入的偏導數;
3.計算每個權重的梯度。
最後再用隨機梯度下降演算法更新權重。
具體參考: https://www.jianshu.com/p/39a99c88a565
最後由鏈式法則得到下面以雅可比矩陣來表達的每個權重的梯度:
由於預測的誤差是沿著神經網路的每一層反向傳播的,因此當雅克比矩陣的最大特徵值大於1時,隨著離輸出越來越遠,每層的梯度大小會呈指數增長,導致梯度爆炸;反之,若雅克比矩陣的最大特徵值小於1,梯度的大小會呈指數縮小,產生梯度消失。對於普通的前饋網路來說,梯度消失意味著無法通過加深網路層次來改善神經網路的預測效果,因為無論如何加深網路,只有靠近輸出的若干層才真正起到學習的作用。 這使得循環神經網路模型很難學習到輸入序列中的長距離依賴關系 。
關於RNN梯度下降的詳細推導可以參考: https://zhuanlan.hu.com/p/44163528
梯度爆凳缺炸的問題可以通過梯度裁剪來緩解,即當梯度的範式大於某個給定值時,對梯度進行等比收縮。而梯度消失問題相對比較棘手,需要對模型本身進行改進。深度殘差網路是對前饋神經網路的改進,通過殘差學習的方式緩解了梯度消失的現象,從而使得我們能夠學習到更深層的網路表示;而對於循環神經網路來說,長短時記憶模型及其變種門控循環單元等模型通過加入門控機制,很大程度上彌補了梯度消失所帶來的損失。
LSTM的網路機構圖如下所示:
與傳統的循環神經網路相比,LSTM仍然是基於xt和ht−1來計算ht,只不過對內部的結構進行了更加精心的設計,加入了輸入門it 、遺忘門ft以及輸出門ot三個門和一個內部記憶單元ct。輸入門控制當前計算的新狀態以多大程度更新到記憶單元中;遺老粗瞎忘門控制前一步記憶單元中的信息有多大程度被遺忘掉;輸出門控制當前的輸出有多大程度上取決於當前的記憶單元。
在經典的LSTM模型中,第t層的更新計算公式為
其中it是通過輸入xt和上一步的隱含層輸出ht−1進行線性變換,再經過激活函數σ得到的。輸入門it的結果是向量,其中每個元素是0到1之間的實數,用於控制各維度流過閥門的信息量;Wi 、Ui兩個矩陣和向量bi為輸入門的參數,是在訓練過程中需要學習得到的。遺忘門ft和輸出門ot的計算方式與輸入門類似,它們有各自的參數W、U和b。與傳統的循環神經網路不同的是,從上一個記憶單元的狀態ct−1到當前的狀態ct的轉移不一定完全取決於激活函數計算得到的狀態,還由輸入門和遺忘門來共同控制。
在一個訓練好的網路中,當輸入的序列中沒有重要信息時,LSTM的遺忘門的值接近於1,輸入門的值接近於0,此時過去的記憶會被保存,從而實現了長期記憶功能;當輸入的序列中出現了重要的信息時,LSTM應當把其存入記憶中,此時其輸入門的值會接近於1;當輸入的序列中出現了重要信息,且該信息意味著之前的記憶不再重要時,輸入門的值接近1,而遺忘門的值接近於0,這樣舊的記憶被遺忘,新的重要信息被記憶。經過這樣的設計,整個網路更容易學習到序列之間的長期依賴。
GRU是在LSTM上進行簡化而得到的,GRU的網路結構如下所示:
Zt代表更新門,更新門的作用類似於LSTM中的遺忘門和輸入門,它能決定要丟棄哪些信息和要添加哪些新信息。
Rt代表重置門,重置門用於決定丟棄先前信息的程度。
要注意的是,h只是一個變數,因此在每個時刻,包括最後的線性組合,h都是在用以前的自己和當前的備選答案更新自己。舉例來說,這一個變數好比一杯酒,每次我們要把一部分酒倒出去,並把倒出去的酒和新加入的原料混合,然後在倒回來,這里的reset控制的就是要倒出去的,並且混合好之後再倒回來的酒的比例,而update控制的則是用多大的比例混合新原料和倒出來的之前調制好的酒。同理,也可以以此理解LSTM,LSTM的遺忘門功能上和reset相似,而輸入門與update相似,不同之處在於LSTM還控制了當前狀態的exposure,也就是輸出門的功能,這是GRU所沒有的。
1.百面機器學習
2. https://zhuanlan.hu.com/p/45649187
3. https://www.jianshu.com/p/39a99c88a565
㈧ BP神經網路的梳理
BP神經網路被稱為「深度學習之旅的開端」,是神經網路的入門演算法。
各種高大上的神經網路都是基於BP網路出發的,最基礎的原理都是由BP網路而來 [1] ,另外由於BP神經網路結構簡單,演算法經典, 是神經網路中應用最廣泛的一種。
BP神經網路(back propagation neural network)全稱是反向傳播神經網路。
神經網路發展部分背景如下 [2] :
為解決非線性問題,BP神經網路應運而生。
那麼什麼是BP神經網路?稍微專業點的解釋要怎麼說呢?
很喜歡 最簡單的神經網路--Bp神經網路 一文對演算法原理的解釋,語言活潑,案例簡單,由淺入深。
文中提到所謂的 AI 技術,本質上是一種數據處理處理技術,它的強大來自於兩方面:1.互聯網的發展帶來的海量數據信息;2.計算機深度學習演算法的快速發展。AI 其實並沒有什麼神秘,只是在演算法上更為復雜 [3] 。
我們從上面的定義出發來解釋BP神經網路的原理。
BP神經網路整個網路結構包含了:一層輸入層,一到多層隱藏層,一層輸出層。
一般說L層神經網路,指的是有L個隱層,輸入層和輸出層都不計算在內的 [6] 。
BP神經網路模型訓練的學習過程由信號的 正向傳播 和誤差的 反向傳播 兩個過程組成。
什麼是信號的正向傳播?顧名思義,就是結構圖從左到右的運算過程。
我們來看看結構圖中每個小圓圈是怎麼運作的。我們把小圈圈叫做神經元,是組成神經網路的基本單元。
正向傳播就是輸入數據經過一層一層的神經元運算、輸出的過程,最後一層輸出值作為演算法預測值y'。
前面正向傳播的時候我們提到權重w、偏置b,但我們並不知道權重w、偏置b的值應該是什麼。關於最優參數的求解,我們在 線性回歸 、 邏輯回歸 兩章中有了詳細說明。大致來講就是:
BP神經網路全稱 back propagation neural network,back propagation反向傳播是什麼?
反向傳播的建設本質上就是尋找最優的參數組合,和上面的流程差不多,根據演算法預測值和實際值之間的損失函數L(y',y),來反方向地計算每一層的z、a、w、b的偏導數,從而更新參數。
對反向傳播而言,輸入的內容是預測值和實際值的誤差,輸出的內容是對參數的更新,方向是從右往左,一層一層的更新每一層的參數。
BP神經網路通過先正向傳播,構建參數和輸入值的關系,通過預測值和實際值的誤差,反向傳播修復權重;讀入新數據再正向傳播預測,再反向傳播修正,...,通過多次循環達到最小損失值,此時構造的模型擁有最優的參數組合。
以一個簡單的BP神經網路為例,由3個輸入層,2層隱藏層,每層2個神經元,1個輸出層組成。
【輸入層】傳入
【第一層隱藏層】
對於 神經元而言,傳入 ,加權求和加偏置激活函數處理後,輸出 ;
對於 神經元而言,傳入 ,加權求和加偏置函數處理後,輸出 ;
輸出:
【第二層隱藏層】
對於 神經元而言,傳入 ,加權求和加偏置激活函數處理後,輸出 ;
對於 神經元而言,傳入 ,加權求和加偏置激活函數處理後,輸出 ;
輸出:
【輸出層】
對於輸出層神經元而言,輸入 ,加權求和加偏置激活函數處理後,輸出 ,輸出的是一個值
第一次運行正向傳播這個流程時隨用隨機參數就好,通過反向傳播不斷優化。因此需要在一開始對 設置一個隨機的初始值。
首先計算正向傳播輸出值 與實際值的損失 ,是一個數值。所謂反向是從右到左一步步來的,先回到 ,修正參數 。
以此類推,通過對損失函數求偏導跟新參數 ,再跟新參數 。這時又回到了起點,新的數據傳入又可以開始正向傳播了。
keras可以快速搭建神經網路,例如以下為輸入層包含7129個結點,一層隱藏層,包含128個結點,一個輸出層,是二分類模型。
神經網路反向傳播的優化目標為loss,可以觀察到loss的值在不斷的優化。
可以通過model.get_layer().get_weights()獲得每一層訓練後的參數結果。通過model.predict()預測新數據。
至此,BP神經網路的整個運算流程已經過了一遍。之前提到BP神經網路是為解決非線性問題應運而生的,那麼為什麼BP神經網路可以解決非線性問題呢?
還記得神經元里有一個激活函數的操作嗎?神經網路通過激活函數的使用加入非線性因素。
通過使用非線性的激活函數可以使神經網路隨意逼近復雜函數,從而使BP神經網路既可以處理線性問題,也可以處理非線性問題。
為什麼激活函數的使用可以加入非線性因素 [7] ?
其實邏輯回歸演算法可以看作只有一個神經元的單層神經網路,只對線性可分的數據進行分類。
輸入參數,加權求和,sigmoid作為激活函數計算後輸出結果,模型預測值和實際值計算損失Loss,反向傳播梯度下降求編導,獲得最優參數。
BP神經網路是比 Logistic Regression 復雜得多的模型,它的擬合能力很強,可以處理很多 Logistic Regression處理不了的數據,但是也更容易過擬合。
具體用什麼演算法還是要看訓練數據的情況,沒有一種演算法是使用所有情況的。
常見的前饋神經網路有BP網路,RBF網路等。
BP神經網路的一個主要問題是:結構不好設計。
網路隱含層的層數和單元數的選擇尚無理論上的指導,一般是根據經驗或者通過反復實驗確定。
但是BP神經網路簡單、易行、計算量小、並行性強,目前仍是多層前向網路的首選演算法。
[1] 深度學習開端---BP神經網路: https://blog.csdn.net/Chile_Wang/article/details/100557010
[2] BP神經網路發展歷史: https://zhuanlan.hu.com/p/47998728
[3] 最簡單的神經網路--Bp神經網路: https://blog.csdn.net/weixin_40432828/article/details/82192709
[4] 神經網路的基本概念: https://blog.csdn.net/jinyuan7708/article/details/82466653
[5] 神經網路中的 「隱藏層」 理解: https://blog.csdn.net/nanhuaibeian/article/details/100183000
[6] AI學習筆記:神經元與神經網路: https://www.jianshu.com/p/65eb2fce0e9e
[7] 線性模型和非線性模型的區別: https://www.cnblogs.com/toone/p/8574294.html
[8] BP神經網路是否優於logistic回歸: https://www.hu.com/question/27823925/answer/38460833
㈨ (七)神經網路基本結構
目前為止,我們已經學習了2個機器學習模型。線性回歸一般用來處理線性問題,邏輯回歸用來處理2分類問題。雖然邏輯回歸也可以處理非線性的分類問題,但是當我們有非常多的特徵時,例如大於100個變數,將會有數量非常驚人的特徵組合。這對於一般的邏輯回歸來說需要計算的特徵太多了,負荷太大。而神經網路既可以答衫解決復雜的非線性分類問題,又可以避免龐大的計算量。
人工神經網路是由很多神經元(激活單元)構成的,神經元是神經網路的基本元素。
實際上,可以這樣理解神經元工作過程,當將輸入送進神經元後,神經元將輸入與權值線性組合(實際上就是θ T X)輸出一個線性表達式,再將這個表達式送嘩舉拿入激活函數中,便得到了神經元的真實輸出。
神經網路由好多個激活單元構成,如下圖所示:
激活函數的選擇是構建神經網路過程中的重要環節,下面簡要介紹常用的激活函數。
(1) 線性函數( Liner Function )
(2) 斜面函數( Ramp Function )**
(3) 閾值函數( Threshold Function )**
以上3個激活函數都屬於線性函數,下面介紹兩個常用的非線性激活函數。
(4) S形函數( Sigmoid Function )
S形函數與雙極S形函數的圖像如下:
雙極S形函數與S形函數主要區別在於函數的值域,雙極S形函數值域是(-1,1),而S形函數值域是(0,1)。由於S形函數與雙極S形函數都是 可導的 (導函數是連續函數),因此適合用在BP神經亂搭網路中。(BP演算法要求激活函數可導)
人工神經網路中,最常用的激活函數就是sigmoid函數
神經網路是由大量的神經元互聯而構成的網路。根據網路中神經元的互聯方式,常見網路結構主要可以分為下面3類:
前饋網路也稱前向網路,是最常見的神經網路,前文提到的都是前饋網路。稱之為前饋是因為它在輸出和模型本身之間沒有反饋,數據只能向前傳送,直到到達輸出層,層間沒有向後的反饋信號。
反饋型神經網路是一種從輸出到輸入具有反饋連接的神經網路,其結構比前饋網路要復雜得多。
自組織神經網路是一種無監督學習網路。它通過自動尋找樣本中的內在規律和本質屬性,自組織、自適應地改變網路參數與結構。
㈩ 傳統神經網路與卷積神經網路哪個收斂速度快
卷積神經網路。結構簡單的神經租灶網路,在學習時收斂的速度快,其中卷積神經網路的結構櫻察更加簡單,弊頌扮所以收斂速度更快,是一個非常重要的知識。