導航:首頁 > 網路問題 > 神經網路的發展趨勢如何

神經網路的發展趨勢如何

發布時間:2023-05-17 04:20:04

A. 神經網路計算機的面臨新問題

已取得重要的進展,但仍存在許多亟待解決的問題。如處理精確度不高,抗雜訊頌敗干擾能力差,光學互連的雙極性和可編程問題以及系統的集成化和小型化問題等。這些問題直接關繫到神經網路計算機的進一步發展、性能的完善及廣泛的實用化。
神經碼豎網路計算機 神經網路的整體性能與網路中的神經元數有密切關系。雖然光學互連的高度並行性在原則上提供了實現大規模神經網路的可能性,但隨著神經元數目的增加,互連數將會按平方律增加。在系統尺寸一定的條件下,神經元數必然受
到空間帶寬積、衍射和畸變的限制。因此大規模神經網路的實現將對光學設計、離軸光學、衍射野模顫光學、二元光學器件、集成光學器件以及計算機制全息器件提出更高的要求。 光學神經網路中的非線性操作目前仍採用電子學或計算機處理的方法。這就違背了神經網路的並行性要求。並行光學非線性運算的實現,要求有閾值可調、響應函數形式可調的非線性器件,這也是一個亟待解決的復雜問題。另外,隨著光學神經網路研究的不斷深入,對硬體的實用性要求也在不斷提高。系統的集成化與小型化勢在必行。這方面,光電混合集成晶元的研製成功是令人鼓舞的。由此可見,對於神經網路的實現來說,光學與電子學技術都各有其長處。充分發揮二者的優勢,形成一個光電混合處理的硬體系統,將是未來神經網路計算機發展的重要趨勢。

B. 人工神經網路的發展

現代意義上對神經網路(特指人工神經網路)的研究一般認為從1943年美國芝加哥大學的生理學家W.S. McCulloch和W.A. Pitts提出M-P神經元模型開始,到今年正好六十年。在這六十年中,神經網路的發展走過了一段曲折的道路。1965年M. Minsky和S. Papert在《感知機》一書中指出感知機的缺陷並表示出對這方面研究的悲觀態度,使得神經網路的研究從興起期進入了停滯期,這是神經網路發展史上的第一個轉折。到了20世紀80年代初,J.J. Hopfield的工作和D. Rumelhart等人的PDP報告顯示出神經網路的巨大潛力,使得該領域的研究從停滯期進入了繁榮期,這是神經網路發展史上的第二個轉折。
到了20世紀90年代中後期,隨著研究者們對神經網路的局限有了更清楚的認識,以及支持向量機等似乎更有前途的方法的出現,「神經網路」這個詞不再象前些年那麼「火爆」了。很多人認為神經網路的研究又開始陷入了低潮,並認為支持向量機將取代神經網路。有趣的是,著名學者C.-J. Lin於2003年1月在德國馬克斯·普朗克研究所所做的報告中說,支持向量機雖然是一個非常熱門的話題,但目前最主流的分類工具仍然是決策樹和神經網路。由著名的支持向量機研究者說出這番話,顯然有一種特殊的意味。
事實上,目前神經網路的境遇與1965年之後真正的低潮期相比有明顯的不同。在1965年之後的很長一段時期里,美國和前蘇聯沒有資助任何一項神經網路的研究課題,而今天世界各國對神經網路的研究仍然有大量的經費支持;1965年之後90%以上的神經網路研究者改變了研究方向,而今天無論是國際還是國內都有一支相對穩定的研究隊伍。實際上,神經網路在1965年之後陷入低潮是因為當時該領域的研究在一定意義上遭到了否定,而今天的相對平靜是因為該領域已經走向成熟,很多技術開始走進生產和生活,從而造成了原有研究空間的縮小。
在科學研究中通常有這么一個現象,當某個領域的論文大量涌現的時候,往往正是該領域很不成熟、研究空間很大的時候,而且由於這時候人們對該領域研究的局限缺乏清楚的認識,其熱情往往具有很大的盲目性。從這個意義上說,過去若干年裡各領域研究者一擁而上、各種專業刊物滿眼「神經網路」的風光,其實是一種畸形繁榮的景象,而對神經網路的研究現在才進入了一個比較理智、正常的發展期。在這段時期中,通過對以往研究中存在的問題和局限進行反思,並適當借鑒相關領域的研究進展,將可望開拓新的研究空間,為該領域的進一步發展奠定基礎。

C. 深度學習的現狀和趨勢

論壇

活動

招聘

專題

打開CSDN APP
Copyright © 1999-2020, CSDN.NET, All Rights Reserved

搜索博文/帖子/用戶
登錄

喜歡打醬油的老鳥
關注
深度學習技術發展趨勢淺析 轉載
2019-04-09 08:37:11
1點贊

喜歡打醬油的老鳥

碼齡2年

關注
https://mp.weixin.qq.com/s/FtIhKiENv483iHE053RPkg

當前,人工智慧發展藉助深度學習技術突破得到了全面關注和助力推動,各國政府高度重視、資本熱潮仍在加碼,各界對其成為發展熱點也達成了共識。本文旨在分析深度學習技術現狀,研判深度學習發展趨勢,並針對我國的技術水平提出發展建議。

一、深度學習技術現狀

深度學習是本輪人工智慧爆發的關鍵技術。人工智慧技術在計算機視覺和自然語言處理等領域取得的突破性進展,使得人工智慧迎來新一輪爆發式發展。而深度學習是實現這些突破性進展的關鍵技術。其中,基於深度卷積網路的圖像分類技術已超過人眼的准確率,基於深度神經網路的語音識別技術已達到95%的准確率,基於深度神經網路的機器翻譯技術已接近人類的平均翻譯水平。准確率的大幅提升使得計算機視覺和自然語言處理進入產業化階段,帶來新產業的興起。

深度學習是大數據時代的演算法利器,成為近幾年的研究熱點。和傳統的機器學習演算法相比,深度學習技術有著兩方面的優勢。一是深度學習技術可隨著數據規模的增加不斷提升其性能,而傳統機器學習演算法難以利用海量數據持續提升其性能。二是深度學習技術可以從數據中直接提取特徵,削減了對每一個問題設計特徵提取器的工作,而傳統機器學習演算法需要人工提取特徵。因此,深度學習成為大數據時代的熱點技術,學術界和產業界都對深度學習展開了大量的研究和實踐工作。

深度學習各類模型全面賦能基礎應用。卷積神經網路和循環神經網路是兩類獲得廣泛應用的深度神經網路模型。計算機視覺和自然語言處理是人工智慧兩大基礎應用。卷積神經網路廣泛應用於計算機視覺領域,在圖像分類、目標檢測、語義分割等任務上的表現大大超越傳統方法。循環神經網路適合解決序列信息相關問題,已廣泛應用於自然語言處理領域,如語音識別、機器翻譯、對話系統等。

二、深度學習發展趨勢

深度神經網路呈現層數越來越深,結構越來越復雜的發展趨勢。為了不斷提升深度神經網路的性能,業界從網路深度和網路結構兩方面持續進行探索。神經網路的層數已擴展到上百層甚至上千層,隨著網路層數的不斷加深,其學習效果也越來越好,2015年微軟提出的ResNet以152層的網路深度在圖像分類任務上准確率首次超過人眼。新的網路設計結構不斷被提出,使得神經網路的結構越來越復雜。如:2014年穀歌提出了Inception網路結構、2015年微軟提出了殘差網路結構、2016年黃高等人提出了密集連接網路結構,這些網路結構設計不斷提升了深度神經網路的性能。

深度神經網路節點功能不斷豐富。為了克服目前神經網路存在的局限性,業界探索並提出了新型神經網路節點,使得神經網路的功能越來越豐富。2017年,傑弗里•辛頓提出了膠囊網路的概念,採用膠囊作為網路節點,理論上更接近人腦的行為,旨在克服卷積神經網路沒有空間分層和推理能力等局限性。2018年,DeepMind、谷歌大腦、MIT的學者聯合提出了圖網路的概念,定義了一類新的模塊,具有關系歸納偏置功能,旨在賦予深度學習因果推理的能力。

深度神經網路工程化應用技術不斷深化。深度神經網路模型大都具有上億的參數量和數百兆的佔用空間,運算量大,難以部署到智能手機、攝像頭和可穿戴設備等性能和資源受限的終端類設備。為了解決這個問題,業界採用模型壓縮技術降低模型參數量和尺寸,減少運算量。目前採用的模型壓縮方法包括對已訓練好的模型做修剪(如剪枝、權值共享和量化等)和設計更精細的模型(如MobileNet等)兩類。深度學習演算法建模及調參過程繁瑣,應用門檻高。為了降低深度學習的應用門檻,業界提出了自動化機器學習(AutoML)技術,可實現深度神經網路的自動化設計,簡化使用流程。

D. 深度學習為神經網路的發展帶來了哪些變化

深度學習是一種基於神經網路的機器學習方法,它為神經網路的發展帶來了許多變化。

總之,深度學習為神經網路的發展帶來了革命性變化,並且在人工智慧領頌哪扒域發揮著越來越重要的作用。

E. 圖神經網路是大數據時代發展的必然(原創)

        大數據的核心是數據智能。數據智能的本質是在大量樣本中發現、評估若干概念之間的關聯性,歸納形成數學表達,再利用數學表達進行推理運算,從而完成對未知樣本的判斷決策。這就需要發現海量數據背後的規律,解決數據表徵問題。數據智能先後經歷了專家系統、傳統機器學習和神經網路三個階段,輸入的知識從具體到抽象,從規則到特徵再到模式,越來越宏觀,智能化處理效率越來越高,對底層的感知和模型的可解釋性越來越弱化。隨著專家系統逐漸淡出,傳統機器學習和神經網路成為數據智能的兩大常見技術。實踐證明,隨著數據集樣本的增多,傳統機器學習的性能不及神經網路(見圖一)。這主要歸結於前者的表達能力不如後者。Goodfellow在2013年ICML(國際機器學習大會)上發表了論文《MaxoutNetworks》(最大輸出網路)。在這篇論文中證明了MaxoutNetworks能夠無限逼近任意連續函數。也即是說,神經網路能夠擬合任意連續函數,與傳統機器學習相比,神經網路具有突出的表達能力優勢。

         (上圖):橫軸代表數據量,縱軸代表演算法精度     

        我們看到幾個純余趨勢:行業數據量指數級增長、以GPU為代表的專業晶元算力增長、新型演算法層出不窮、學術界的前沿研究、投資界的資金投入、工商業的多種場景,這些因素都促進了神經網路快速發展。神經網路的發展形態有兩種方向:一是以DNN深度全連接和CNN卷積神經網路為代表的縱向發展,即層數增多的縱向迭代,典型應用是CV計算機視覺;二是以RNN循環神經網路為代表的橫向發展,即神經元之間的橫向迭代,典型應用是以NLP自然語言理解為代表的序列處理。神經網路技術同時呈現兩種發展形態,並在多個領域有廣泛應用,就說明這個技術已經進入成熟期了。下一步往哪個方向發展?很有可能是:將縱向發展和橫向發展進行結合,滲透到更多的應用領域。這看似順水推舟的事情。事實證明,這個判斷是正確的,圖神經網路就是二者的結合。

        縱觀技術圈的發展歷史,可以總結出這樣的事實:一個理論技術能否在更多的領域推廣,關鍵取決於它能否真實地刻畫現實世界的實體特徵和關系。如果它刻畫得越真實,那麼它的應用場景就越多。比如馬爾科夫鏈這個理論,就真實地刻畫了現實世界中的時序對象的特徵和依賴關系,因此它廣泛應用在語音理解、機器翻譯、國民經濟、事件預測等領域;再如概唯褲森率圖理論,用圖來表示事件概率的依存關系,也是真實刻畫了現實世界中的實體關系,因此它也廣泛應用在反欺詐、圖像理解、事件預測等領域。從方法論看,要刻畫現實世界的實體,就必須在模型中置入代表這個實體的節點,並且設計出實體之間的依賴關系轉化。但無論是馬爾科夫鏈還是概率圖等方法,都弱化了嵌入表示,從而丟失了一些隱語義信息,是有缺憾的。

圖神經網路(GraphNeural Networks,GNN)的問世,使事情出現了轉機。在圖神經網路中,存在兩種網路。一種是拓撲結構網路,通常描述眾多實體及其關系;另一種是特徵變換神經網路,通常用於節點、邊、圖或子圖的特徵轉化。前者完成信息橫向傳播,實現圖信號的拓撲關系傳遞,理論依據是圖論;後者完成信息縱向傳播,實現原始特徵向嵌入表示的轉化,理論依據是深度學習。圖神經網路是圖論與深度學習的完美結合,它既考慮了實體關系,又考慮了實體特徵。與傳統圖方法和傳統深度學習相比,圖神經網路具有明顯的優勢:建模來源數據更充分,更能反映現實世界中實體之間的真實關系,它既能從圖結構代表的非歐式空間數據中學習到語義表示,又能讓學習到的語義表示最大限度地符合圖結構的實體關系。

        現實世界中80%以上的數據更適合用圖結構來刻畫,比如交通數據、社交數據、分子結構數據、行業經濟數據等。圖神經網路能適應這樣的數據,在分布式學習架構下,圖神經網路能處理的數據規模非常龐大,非常適合處理數億節點的產業數據。因此圖神經網路的應用場景更為廣泛。近三年來,各種國際頂會關於圖神經網路的論文頻頻發布,眾多互聯網科技公司(如阿里、網路、位元組跳動)花重金在這一領域布局,並取得重大進展,廣泛應用於關聯搜索、實時推薦、風險防控、異常檢測、行為預測、模式識別等。這些現象無疑說明了圖神經網路是未來技術發展的重要領域方向。

        綜上所述,在行業數據、演算法理論、算力支持、市場需求、資本湧入等背景下,圖神經網路的指畝迅速崛起是大數據時代發展的必然。

F. 神經網路優缺點,

優點:

(1)具有自學習功能。例如實現圖像識別時,只在先把許多不同的圖像樣板和對應的應識別的結果輸入人工神經網路,網路就會通過自學習功能,慢慢學會識別類似的圖像。

自學習功能對於預測有特別重要的意義。預期未來的人工神經網路計算機將為人類提供經濟預測、市場預測、效益預測,其應用前途是很遠大的。

(2)具有聯想存儲功能。用人工神經網路的反饋網路就可以實現這種聯想。

(3)具有高速尋找優化解的能力。尋找一個復雜問題的優化解,往往需要很大的計算量,利用一個針對某問題而設計的反饋型人工神經網路,發揮計算機的高速運算能力,可能很快找到優化解。

缺點:

(1)最嚴重的問題是沒能力來解釋自己的推理過程和推理依據。

(2)不能向用戶提出必要的詢問,而且當數據不充分的時候,神經網路就無法進行工作。

(3)把一切問題的特徵都變為數字,把一切推理都變為數值計算,其結果勢必是丟失信息。

(4)理論和學習演算法還有待於進一步完善和提高。

(6)神經網路的發展趨勢如何擴展閱讀:

神經網路發展趨勢

人工神經網路特有的非線性適應性信息處理能力,克服了傳統人工智慧方法對於直覺,如模式、語音識別、非結構化信息處理方面的缺陷,使之在神經專家系統、模式識別、智能控制、組合優化、預測等領域得到成功應用。

人工神經網路與其它傳統方法相結合,將推動人工智慧和信息處理技術不斷發展。近年來,人工神經網路正向模擬人類認知的道路上更加深入發展,與模糊系統、遺傳演算法、進化機制等結合,形成計算智能,成為人工智慧的一個重要方向,將在實際應用中得到發展。

將信息幾何應用於人工神經網路的研究,為人工神經網路的理論研究開辟了新的途徑。神經計算機的研究發展很快,已有產品進入市場。光電結合的神經計算機為人工神經網路的發展提供了良好條件。

神經網路在很多領域已得到了很好的應用,但其需要研究的方面還很多。其中,具有分布存儲、並行處理、自學習、自組織以及非線性映射等優點的神經網路與其他技術的結合以及由此而來的混合方法和混合系統,已經成為一大研究熱點。

由於其他方法也有它們各自的優點,所以將神經網路與其他方法相結合,取長補短,繼而可以獲得更好的應用效果。目前這方面工作有神經網路與模糊邏輯、專家系統、遺傳演算法、小波分析、混沌、粗集理論、分形理論、證據理論和灰色系統等的融合。

參考資料:網路-人工神經網路

G. 人工神經網路的發展趨勢

人工神經網路特有的非線性適應性信息處理能力,克服了傳統人工智慧方法對於直覺,如模式、語音識別、非結構化信息處理方面的缺陷,使之在神經專家系統、模式識別、智能控制、組合優化、預測等領域得到成功應用。人工神經網路與其它傳統方法相結合,將推動人工智慧和信息處理技術不斷發展。近年來,人工神經網路正向模擬人類認知的道路上更加深入發展,與模糊系統、遺傳演算法、進化機制等結合,形成計算智能,成為人工智慧的一個重要方向,將在實際應用中得到發展。將信息幾何應用於人工神經網路的研究,為人工神經網路的理論研究開辟了新的途徑。神經計算機的研究發展很快,已有產品進入市場。光電結合的神經計算機為人工神經網路的發展提供了良好條件。
神經網路在很多領域已得到了很好的應用,但其需要研究的方面還很多。其中,具有分布存儲、並行處理、自學習、自組織以及非線性映射等優點的神經網路與其他技術的結合以及由此而來的混合方法和混合系統,已經成為一大研究熱點。由於其他方法也有它們各自的優點,所以將神經網路與其他方法相結合,取長補短,繼而可以獲得更好的應用效果。目前這方面工作有神經網路與模糊邏輯、專家系統、遺傳演算法、小波分析、混沌、粗集理論、分形理論、證據理論和灰色系統等的融合。
下面主要就神經網路與小波分析、混沌、粗集理論、分形理論的融合進行分析。
與小波分析的結合
1981年,法國地質學家Morlet在尋求地質數據時,通過對Fourier變換與加窗Fourier變換的異同、特點及函數構造進行創造性的研究,首次提出了小波分析的概念,建立了以他的名字命名的Morlet小波。1986年以來由於YMeyer、S.Mallat及IDaubechies等的奠基工作,小波分析迅速發展成為一門新興學科。Meyer所著的小波與運算元,Daubechies所著的小波十講是小波研究領域最權威的著作。
小波變換是對Fourier分析方法的突破。它不但在時域和頻域同時具有良好的局部化性質,而且對低頻信號在頻域和對高頻信號在時域里都有很好的解析度,從而可以聚集到對象的任意細節。小波分析相當於一個數學顯微鏡,具有放大、縮小和平移功能,通過檢查不同放大倍數下的變化來研究信號的動態特性。因此,小波分析已成為地球物理、信號處理、圖像處理、理論物理等諸多領域的強有力工具。
小波神經網路將小波變換良好的時頻局域化特性和神經網路的自學習功能相結合,因而具有較強的逼近能力和容錯能力。在結合方法上,可以將小波函數作為基函數構造神經網路形成小波網路,或者小波變換作為前饋神經網路的輸入前置處理工具,即以小波變換的多解析度特性對過程狀態信號進行處理,實現信噪分離,並提取出對加工誤差影響最大的狀態特性,作為神經網路的輸入。
小波神經網路在電機故障診斷、高壓電網故障信號處理與保護研究、軸承等機械故障診斷以及許多方面都有應用,將小波神經網路用於感應伺服電機的智能控制,使該系統具有良好的跟蹤控制性能,以及好的魯棒性,利用小波包神經網路進行心血管疾病的智能診斷,小波層進行時頻域的自適應特徵提取,前向神經網路用來進行分類,正確分類率達到94%。
小波神經網路雖然應用於很多方面,但仍存在一些不足。從提取精度和小波變換實時性的要求出發,有必要根據實際情況構造一些適應應用需求的特殊小波基,以便在應用中取得更好的效果。另外,在應用中的實時性要求,也需要結合DSP的發展,開發專門的處理晶元,從而滿足這方面的要求。
混沌神經網路
混沌第一個定義是上世紀70年代才被Li-Yorke第一次提出的。由於它具有廣泛的應用價值,自它出現以來就受到各方面的普遍關注。混沌是一種確定的系統中出現的無規則的運動,混沌是存在於非線性系統中的一種較為普遍的現象,混沌運動具有遍歷性、隨機性等特點,能在一定的范圍內按其自身規律不重復地遍歷所有狀態。混沌理論所決定的是非線性動力學混沌,目的是揭示貌似隨機的現象背後可能隱藏的簡單規律,以求發現一大類復雜問題普遍遵循的共同規律。
1990年Kaihara、T.Takabe和M.Toyoda等人根據生物神經元的混沌特性首次提出混沌神經網路模型,將混沌學引入神經網路中,使得人工神經網路具有混沌行為,更加接近實際的人腦神經網路,因而混沌神經網路被認為是可實現其真實世界計算的智能信息處理系統之一,成為神經網路的主要研究方向之一。
與常規的離散型Hopfield神經網路相比較,混沌神經網路具有更豐富的非線性動力學特性,主要表現如下:在神經網路中引入混沌動力學行為;混沌神經網路的同步特性;混沌神經網路的吸引子。
當神經網路實際應用中,網路輸入發生較大變異時,應用網路的固有容錯能力往往感到不足,經常會發生失憶現象。混沌神經網路動態記憶屬於確定性動力學運動,記憶發生在混沌吸引子的軌跡上,通過不斷地運動(回憶過程)一一聯想到記憶模式,特別對於那些狀態空間分布的較接近或者發生部分重疊的記憶模式,混沌神經網路總能通過動態聯想記憶加以重現和辨識,而不發生混淆,這是混沌神經網路所特有的性能,它將大大改善Hopfield神經網路的記憶能力。混沌吸引子的吸引域存在,形成了混沌神經網路固有容錯功能。這將對復雜的模式識別、圖像處理等工程應用發揮重要作用。
混沌神經網路受到關注的另一個原因是混沌存在於生物體真實神經元及神經網路中,並且起到一定的作用,動物學的電生理實驗已證實了這一點。
混沌神經網路由於其復雜的動力學特性,在動態聯想記憶、系統優化、信息處理、人工智慧等領域受到人們極大的關注。針對混沌神經網路具有聯想記憶功能,但其搜索過程不穩定,提出了一種控制方法可以對混沌神經網路中的混沌現象進行控制。研究了混沌神經網路在組合優化問題中的應用。
為了更好的應用混沌神經網路的動力學特性,並對其存在的混沌現象進行有效的控制,仍需要對混沌神經網路的結構進行進一步的改進和調整,以及混沌神經網路演算法的進一步研究。
基於粗集理論
粗糙集(Rough Sets)理論是1982年由波蘭華沙理工大學教授Z.Pawlak首先提出,它是一個分析數據的數學理論,研究不完整數據、不精確知識的表達、學習、歸納等方法。粗糙集理論是一種新的處理模糊和不確定性知識的數學工具,其主要思想就是在保持分類能力不變的前提下,通過知識約簡,導出問題的決策或分類規則。目前,粗糙集理論已被成功應用於機器學習、決策分析、過程式控制制、模式識別與數據挖掘等領域。
粗集和神經網路的共同點是都能在自然環境下很好的工作,但是,粗集理論方法模擬人類的抽象邏輯思維,而神經網路方法模擬形象直覺思維,因而二者又具有不同特點。粗集理論方法以各種更接近人們對事物的描述方式的定性、定量或者混合性信息為輸入,輸入空間與輸出空間的映射關系是通過簡單的決策表簡化得到的,它考慮知識表達中不同屬性的重要性確定哪些知識是冗餘的,哪些知識是有用的,神經網路則是利用非線性映射的思想和並行處理的方法,用神經網路本身結構表達輸入與輸出關聯知識的隱函數編碼。
在粗集理論方法和神經網路方法處理信息中,兩者存在很大的兩個區別:其一是神經網路處理信息一般不能將輸入信息空間維數簡化,當輸入信息空間維數較大時,網路不僅結構復雜,而且訓練時間也很長;而粗集方法卻能通過發現數據間的關系,不僅可以去掉冗餘輸入信息,而且可以簡化輸入信息的表達空間維數。其二是粗集方法在實際問題的處理中對雜訊較敏感,因而用無雜訊的訓練樣本學習推理的結果在有雜訊的環境中應用效果不佳。而神經網路方法有較好的抑制雜訊干擾的能力。
因此將兩者結合起來,用粗集方法先對信息進行預處理,即把粗集網路作為前置系統,再根據粗集方法預處理後的信息結構,構成神經網路信息處理系統。通過二者的結合,不但可減少信息表達的屬性數量,減小神經網路構成系統的復雜性,而且具有較強的容錯及抗干擾能力,為處理不確定、不完整信息提供了一條強有力的途徑。
目前粗集與神經網路的結合已應用於語音識別、專家系統、數據挖掘、故障診斷等領域,將神經網路和粗集用於聲源位置的自動識別,將神經網路和粗集用於專家系統的知識獲取中,取得比傳統專家系統更好的效果,其中粗集進行不確定和不精確數據的處理,神經網路進行分類工作。
雖然粗集與神經網路的結合已應用於許多領域的研究,為使這一方法發揮更大的作用還需考慮如下問題:模擬人類抽象邏輯思維的粗集理論方法和模擬形象直覺思維的神經網路方法更加有效的結合;二者集成的軟體和硬體平台的開發,提高其實用性。
與分形理論的結合
自從美國哈佛大學數學系教授Benoit B. Mandelbrot於20世紀70年代中期引入分形這一概念,分形幾何學(Fractal geometry)已經發展成為科學的方法論--分形理論,且被譽為開創了20世紀數學重要階段。現已被廣泛應用於自然科學和社會科學的幾乎所有領域,成為現今國際上許多學科的前沿研究課題之一。
由於在許多學科中的迅速發展,分形已成為一門描述自然界中許多不規則事物的規律性的學科。它已被廣泛應用在生物學、地球地理學、天文學、計算機圖形學等各個領域。
用分形理論來解釋自然界中那些不規則、不穩定和具有高度復雜結構的現象,可以收到顯著的效果,而將神經網路與分形理論相結合,充分利用神經網路非線性映射、計算能力、自適應等優點,可以取得更好的效果。
分形神經網路的應用領域有圖像識別、圖像編碼、圖像壓縮,以及機械設備系統的故障診斷等。分形圖像壓縮/解壓縮方法有著高壓縮率和低遺失率的優點,但運算能力不強,由於神經網路具有並行運算的特點,將神經網路用於分形圖像壓縮/解壓縮中,提高了原有方法的運算能力。將神經網路與分形相結合用於果實形狀的識別,首先利用分形得到幾種水果輪廓數據的不規則性,然後利用3層神經網路對這些數據進行辨識,繼而對其不規則性進行評價。
分形神經網路已取得了許多應用,但仍有些問題值得進一步研究:分形維數的物理意義;分形的計算機模擬和實際應用研究。隨著研究的不斷深入,分形神經網路必將得到不斷的完善,並取得更好的應用效果。?

H. 為什麼說神經網路控制具有潛在的發展前景

神經網路控制的特點說明神經網路控制具有潛在的發展前景。根據查詢相關資料顯示,神經網肢簡神絡控制具有學習功能、聯想存儲功能及高速尋找優歷虧化解的能力,未咐桐來有無限的發展能力。

I. 神經網路的研究方向

神經網路的研究可以分為理論研究和應用研究兩大方面。
理論研究可分為以下兩類:
1、利用神經生理與認知科學研究人類思維以及智能機理。
2、利用神經基礎理襪困論的研究成果告游念,用數理方法探索功能更加完善、性能更加優越的神經網路模型,深入研究網路演算法和性能,如:穩定性、收斂性、容錯性、魯棒性等;開發新的網路數理理論,如:神經網路動力學、非線性神經場等。
應用研究可分為以下兩類:
1、磨伍神經網路的軟體模擬和硬體實現的研究。
2、神經網路在各個領域中應用的研究。這些領域主要包括:
模式識別、信號處理、知識工程、專家系統、優化組合、機器人控制等。隨著神經網路理論本身以及相關理論、相關技術的不斷發展,神經網路的應用定將更加深入。

閱讀全文

與神經網路的發展趨勢如何相關的資料

熱點內容
網路共享中心沒有網卡 瀏覽:513
電腦無法檢測到網路代理 瀏覽:1364
筆記本電腦一天會用多少流量 瀏覽:548
蘋果電腦整機轉移新機 瀏覽:1368
突然無法連接工作網路 瀏覽:1030
聯通網路怎麼設置才好 瀏覽:1213
小區網路電腦怎麼連接路由器 瀏覽:1006
p1108列印機網路共享 瀏覽:1203
怎麼調節台式電腦護眼 瀏覽:667
深圳天虹蘋果電腦 瀏覽:906
網路總是異常斷開 瀏覽:603
中級配置台式電腦 瀏覽:963
中國網路安全的戰士 瀏覽:623
同志網站在哪裡 瀏覽:1404
版觀看完整完結免費手機在線 瀏覽:1449
怎樣切換默認數據網路設置 瀏覽:1099
肯德基無線網無法訪問網路 瀏覽:1275
光纖貓怎麼連接不上網路 瀏覽:1445
神武3手游網路連接 瀏覽:956
局網列印機網路共享 瀏覽:991