導航:首頁 > 網路問題 > 人工神經網路涉及哪些領域

人工神經網路涉及哪些領域

發布時間:2023-07-04 04:43:19

① 人工神經網路概述(更新中)

智能: 從感覺到記憶再到思維的過程稱為「智慧」,智慧的結果是語言和行為。行為和語言予以表達稱為「能力」。智慧和能力的總稱為「智能」。感覺、記憶、思維、行為、語言的過程稱為「智能過程」。

人工智慧: 人工構建的智能系統。

人工智慧是研究和開發用於模擬、延伸和擴展人類智能的理論、方法、技術及應用的技術學科,其主要研究內容可以歸納為以下四個方面。

人工神經網路是基於生物神經元網路機制提出的一種計算結構,是生物神經網路的某種模擬、簡化和抽象。神經元是這一網路的「節點」,即「處理單元」。

人工神經網路可用於逼近非線性映射、分類識別、優化計算以及知識挖掘。近年來,人工神經網路在模式識別、信號處理、控制工程和優化計算領域得到了廣泛的應用。

M-P模型由心理學家McCulloch和數學家W. Pitts在1943年提出。

M-P模型結構是一個多輸入、單輸出的非線性元件。其I/O關系可推述為

其中, 表示從其他神經元傳來的輸入信號; 表示從神經元 到神經元 的連接權值; 表示閾值; 表示激勵函數或轉移函數; 表示神經元 的輸出信號。

作為一種最基本的神經元數學模型,M-P模型包括了加權、求和和激勵(轉移)三部分功能。

神經元的數據模型主要區別於採用了不同的激勵函數。

概率型函數的輸入和輸出之間的關系是不確定的。分布律如下

其中, 被稱為溫度參數。

感知機(Perceptron)是美國學者Rosenblatt於1957年提出的一種用於模式分類的神經網路模型。

M-P模型通常叫做單輸出的感知機。按照M-P模型的要求,該人工神經元的激活函數為階躍函數。為了方便表示,M-P模型表示為下圖所示的結構。

用多個這樣的單輸入感知機可以構成一個多輸出的感知機,其結構如下

對於二維平面,當輸入/輸出為 線性可分 集合時,一定可以找到一條直線將模式分成兩類。此時感知機的結構圖3所示,顯然通過調整感知機的權值及閾值可以修改兩類模式的分界線:

線性可分: 這里的線性可分是指兩類樣本可以用直線、平面或超平面分開,否則稱為線性不可分。

感知機的基本功能是對外部信號進行感知和識別,這就是當外部 個刺激信號或來自其它 個神經元(的信號)處於一定的狀態時,感知機就處於興奮狀態,而外部 個信號或 個神經元的輸出處於另一個狀態時,感知機就呈現抑制狀態。

如果 、 是 中兩個互不相交的集合,且有如下方程成立

則稱集合 為感知機的 學習目標 。根據感知機模型,學習演算法實際上是要尋找權重 、 滿足下述要求:

感知機的訓練過程是感知機權值的逐步調整過程,為此,用 表示每一次調整的序號。 對應於學習開始前的初始狀態,此時對應的權值為初始化值。

② 人工神經網路涉及什麼專業

人工神經網路不是一個專業,而是數學領域的一個研究方向。一般應用數學專業里有授課,但也不完全確定,看學校不同而不同。
此外,部分涉及到的工程類專業也有授課。

③ 人工神經網路的應用分析

經過幾十年的發展,神經網路理論在模式識別、自動控制、信號處理、輔助決策、人工智慧等眾多研究領域取得了廣泛的成功。下面介紹神經網路在一些領域中的應用現狀。 在處理許多問題中,信息來源既不完整,又包含假象,決策規則有時相互矛盾,有時無章可循,這給傳統的信息處理方式帶來了很大的困難,而神經網路卻能很好的處理這些問題,並給出合理的識別與判斷。
1.信息處理
現代信息處理要解決的問題是很復雜的,人工神經網路具有模仿或代替與人的思維有關的功能, 可以實現自動診斷、問題求解,解決傳統方法所不能或難以解決的問題。人工神經網路系統具有很高的容錯性、魯棒性及自組織性,即使連接線遭到很高程度的破壞, 它仍能處在優化工作狀態,這點在軍事系統電彎搜肆子設備中得到廣泛的應用。現有的智能信息系統有智能儀器、自動跟蹤監測儀器系統、自動控制制導系統、自動故障診斷和報警系統等。
2. 模式識別
模式識別是對表徵事物或現象的各種形式的信息進行處理和分析,來對事物或現象進行描述、辨認、分類和解釋的過程。該技術以貝葉斯概率論和申農的資訊理論為理論基礎,對信息的處理過程更接近人類大腦的邏輯思維過程。現在有兩種基本的模式識別方法,即統計模式識別方法和結構模式識別方法。人工神經網路是模式識別中的常用方法,近年來發展起來的人工神經網路模式的識別方法逐漸取代傳統的模式識別方法。經過多年的研究和發展,模式識別已成為當前比較先進的技術,被廣泛應用到文字識別、語音識別、指紋識別、遙感圖像識別、人臉識別、手寫體字元的識別、工業故障檢測、精確制導等方面。 由於人體和疾病的復雜性、不可預測性,在生物信號與信息的表現形式上、變化規律(自身變化與醫學干預後變化)上,對其進行檢測與信號表達,獲取的數據及信息的分析、決策等諸多方面都存在非常復雜的非線性聯系,適合人工神經網路的應用。目前的研究幾乎涉及從基礎醫學到臨床醫學的各個方面,主要應用在生物信號的檢測與自動分析,醫學專家系統等。
1. 生物信號的檢測與分析
大部分醫學檢測設備都是以連續波形的方式輸出數據的,這些波形是診斷的依據。人工神經網路是由大量的簡單處理單元連接而成的自適應動力學系統, 具有巨量並行性,分布式存貯,自適應學習的自組織等功能,可以用它來解決生物醫學信號分析處理中常規法難以解決或無法解決的問題漏吵。神經網路在生物醫學信號檢測與處理中的應用主要集中在對腦電信號的分析,聽覺誘發電位信號的提取、肌電和胃腸電等信號的識別,心電信號的壓縮,醫學圖像的識別和處理等。
2. 醫學專家系統
傳統的專家系統,是把專家的經驗和知識以規則的形式存儲在計算機中,建立知識庫,用邏輯推理的方式進行醫療診斷。但是在實際應用中,隨著資料庫規模的增大,將導致知識「爆炸」,在知識獲取途徑中也存在「瓶頸」問題,致使工作效率很低。以非線性並行處理為基礎的神經網路為專家系統的研究指明了新的發展方向, 解決了專家系統的以上問題,並提高了知識的推理、自組織、自學習能力,從而神經網路在醫學專家系統中得到廣泛的應用和發展。在麻醉與危重醫學等相關領域的研究中,涉及到多生理變數的分析與預埋轎測,在臨床數據中存在著一些尚未發現或無確切證據的關系與現象,信號的處理,干擾信號的自動區分檢測,各種臨床狀況的預測等,都可以應用到人工神經網路技術。 1. 市場價格預測
對商品價格變動的分析,可歸結為對影響市場供求關系的諸多因素的綜合分析。傳統的統計經濟學方法因其固有的局限性,難以對價格變動做出科學的預測,而人工神經網路容易處理不完整的、模糊不確定或規律性不明顯的數據,所以用人工神經網路進行價格預測是有著傳統方法無法相比的優勢。從市場價格的確定機制出發,依據影響商品價格的家庭戶數、人均可支配收入、貸款利率、城市化水平等復雜、多變的因素,建立較為准確可靠的模型。該模型可以對商品價格的變動趨勢進行科學預測,並得到准確客觀的評價結果。
2. 風險評估
風險是指在從事某項特定活動的過程中,因其存在的不確定性而產生的經濟或財務的損失、自然破壞或損傷的可能性。防範風險的最佳辦法就是事先對風險做出科學的預測和評估。應用人工神經網路的預測思想是根據具體現實的風險來源, 構造出適合實際情況的信用風險模型的結構和演算法,得到風險評價系數,然後確定實際問題的解決方案。利用該模型進行實證分析能夠彌補主觀評估的不足,可以取得滿意效果。 從神經網路模型的形成開始,它就與心理學就有著密不可分的聯系。神經網路抽象於神經元的信息處理功能,神經網路的訓練則反映了感覺、記憶、學習等認知過程。人們通過不斷地研究, 變化著人工神經網路的結構模型和學習規則,從不同角度探討著神經網路的認知功能,為其在心理學的研究中奠定了堅實的基礎。近年來,人工神經網路模型已經成為探討社會認知、記憶、學習等高級心理過程機制的不可或缺的工具。人工神經網路模型還可以對腦損傷病人的認知缺陷進行研究,對傳統的認知定位機制提出了挑戰。
雖然人工神經網路已經取得了一定的進步,但是還存在許多缺陷,例如:應用的面不夠寬闊、結果不夠精確;現有模型演算法的訓練速度不夠高;演算法的集成度不夠高;同時我們希望在理論上尋找新的突破點, 建立新的通用模型和演算法。需進一步對生物神經元系統進行研究,不斷豐富人們對人腦神經的認識。

閱讀全文

與人工神經網路涉及哪些領域相關的資料

熱點內容
網路共享中心沒有網卡 瀏覽:512
電腦無法檢測到網路代理 瀏覽:1363
筆記本電腦一天會用多少流量 瀏覽:541
蘋果電腦整機轉移新機 瀏覽:1367
突然無法連接工作網路 瀏覽:1023
聯通網路怎麼設置才好 瀏覽:1212
小區網路電腦怎麼連接路由器 瀏覽:998
p1108列印機網路共享 瀏覽:1202
怎麼調節台式電腦護眼 瀏覽:660
深圳天虹蘋果電腦 瀏覽:899
網路總是異常斷開 瀏覽:602
中級配置台式電腦 瀏覽:956
中國網路安全的戰士 瀏覽:622
同志網站在哪裡 瀏覽:1402
版觀看完整完結免費手機在線 瀏覽:1448
怎樣切換默認數據網路設置 瀏覽:1098
肯德基無線網無法訪問網路 瀏覽:1274
光纖貓怎麼連接不上網路 瀏覽:1439
神武3手游網路連接 瀏覽:955
局網列印機網路共享 瀏覽:990