導航:首頁 > 網路問題 > 復雜網路介數中心性表示什麼

復雜網路介數中心性表示什麼

發布時間:2023-07-26 00:29:10

『壹』 腦網路分析的指標

1. 邊( link,edge) ,腦區間的功能連接

2. 節點(vertex 或 node)  ,腦區 

3. 節點度(degree) ,度ki,直接連接在一個節點的邊的個數, 節點的度越大則該節點的連接就越多, 節點在網路中的地位也就越重要. 

4. 度分布(degree distribution) , 度分布P(k) 是網路最基本的一個拓撲性質, 它表示在網路中等概率隨機選取的節點度值正好為k 的概率, 實際分析中一般用 網路中度值為k 的節點占總節點數的比例近似表示 . 擁有不同度分布形式的網路在面對網路攻擊時會表現出截然不同的網路行為。

5. 區域核心節點(provincial hub)   

6. 連接中樞點( connector hub)      

7. 中心度(centrality)  中間中心度bi(centrality). 一個節點對網路中其他節點的信息流的影響。中心度是一個用來 刻畫網路中節點作用和地位的統計指標 , 中心度最大的節點被認為是網路中的 核心節點(hub) .

8. 度中心度(degree centrality) ,最常用的 度中心度以節點度刻畫其在網路中的中心程度     

9. 介數中心度( betweenness centrality) ,介數中心度(betweenness centrality)則從信息流的角度出發定義節點的中心程度.  介數中心性用來確定網路中最中心的節點,即網路中起橋梁作用的節點。hub腦區大多數位於接受多個腦區信息的聯絡皮層,比如豆狀核,海馬,顳中回,頂上回,額上回等。 節點i 的介數 Bi 定義為通過該節點的最短路徑的數目。歸一化介數可通過如下公式計算:

介數越大的節點代表網路中越關鍵的節點(如 hub 節點),在該研究中我們定義網路的hub 節點為 bi 大於 1.5 倍的所有節點的介數平均值。

對於網路G 中的任意一點i, 其介數中心度的計算公式如下

10. 節點強度( node strength) , 加權網路中由於考慮了邊的權值,無權網路中的度與度的分布特徵在加權網路中進一步推廣為強度與強度的分布。與節點度相比, 節點強度不僅考慮了與節點連接的邊的數目,更進一步考慮了與節點連接的相應的邊的權值 ,能夠更加科學的衡量作者的局部網喊卜絡特徵,在採用累積頻次加權的作者合作加權網路中,節點強度是指作者與其合作對象的累積絕對合作頻次。

11. 最短路徑長度(shortest path length) ,最短路徑長度,(shortest path length).最短路徑鄭或穗對網路的信息傳輸起著重要的作用, 是描述網路內部結構非常重要的一個參數. 最短路徑刻畫了網路中某一節點的信息到達另一節點的最優路徑,通過最短路徑可以更快地傳輸信息, 從而節省系統資源. 兩個節點i,j之間邊數最少的一條通路稱為此兩點之間的最短路徑, 該通路所經過團慶的邊的數目即為節點i,j之間的最短路徑長度, lij. 網路最短路徑長度L 描述了網路中任意兩個節點間的最短路徑長度的平均值

12. 特徵路徑長度( characteristic path length) Lp ,網路整體路由效率的程度。對於特徵路徑長度的計算,有斷鍵重連的標准小世界網路方法和添加長鍵轉化小世界網路方法。 該指標衡量了網路的信息並行處理的能力或全局效率(1/ Lp),特徵路徑長度的增加說明了腦區之間的信息傳輸和交互效率降低。 一個網路的特徵路徑長度 Lp  , 是網路中任意兩節點的最短路徑的平均 :

13. 聚類系數( clustering coefficient) ,聚類系數Cp,網路的聚類程度,集群系數衡量的是網路的集團化程度, 是度量網路的另一個重要參數, 表示某一節點i 的鄰居間互為鄰居的可能. 節點i 的集群系數Ci的值等於該節點鄰居間實際連接的邊的數目(ei)與可能的最大連接邊數(ki(ki–1)/2)的比值。 該指標衡量了網路的局部聚集性或者信息傳輸的局部效率。 網路中所有節點集群系數的平均值為網路的集群系數。

14.局部效率(local efficiency) ,局部效率Eloc,衡量如何高效的傳播信息通過節點的直接相鄰節點,由於集群系數只考慮了鄰居節點間的直接連接, 後來有人提出局部效率(local efficiency)Eloc的概念. 集群系數和局部效率度量了網路的局部信息傳輸能力, 也在一定程度上反映了網路防禦隨機攻擊的能力。任意節點i 的局部效率為

 該指標描述了網路的容錯能力,表明當移除節點 i 後它直接相鄰的節點間的通信效率。

15.全局效率( global efficiency) ,全局效率 Eglob 描述了網路對於信息並行處理的能力,定義為任意兩節點的最短路徑的調和平均值的倒數,全局效率Eglob,衡量如何有效的通過整個網路傳播信息,通常最短路徑長度要在某一個連通圖中進行運算, 因為 如果網路中存在不連通的節點會導致這兩個節點間的最短路徑長度值為無窮 . 因此有人提出了全局效率(global efficiency)Eglob的概念。最短路徑長度和全局效率度量了網路的全局傳輸能力.  最短路徑長度越短, 網路全局效率越高, 則網路節點間傳遞信息的速率就越快. 全局效率的降低說明腦區之間的信息傳輸和交互效率降低。

16.外徑(Diameter) ,The longest of all the geodesics, and the geodesics is a shortest path between two nodes. If we are looking for the diameter of a network, we are really looking at all the shortest paths and then choosing the longest one.

17.平均最短路徑(Average path length) , It's calculated by finding the shortest path between all the nodes, adding them up, and then dividing by the total number of pairs. It will show us the number of steps on average it takes to get from one member to another in the network. For example, 721 million users with an average path length of just 4.74, in these network, we show that it is at once both global and local, it connects nodes which are far away but also has the dense local structure, and this is called the small world phenomena.

18.AAL模板,  AAL全稱是Anatomical Automatic Labeling,AAL分區是由 Montreal Neurological Institute (MNI)機構提供的。AAL模板一共有116個區域,但只有90個屬於大腦,剩餘26個屬於小腦結構,研究的較少。

19.MNI空間, 是Montreal Neurological Institute根據一系列正常人腦的磁共振圖像而建立的坐標系統。Native空間就是原始空間。圖像沒有做任何變換時就是在原始空間。在這個空間中圖像的維度、原點、voxel size等都是不同的, 不同被試的圖像之間不具有可比性 , 計算出來的任何特徵都不能進行統計分析 ,或是用於機器學習。所以 必須對所有被試的圖像進行配准標准化到同一個模板上,這樣所有被試的維度、原點、voxel size就一樣了。 使用MNI標准模板,就表示把圖像轉換至MNI空間了。 一般而言MNI模板是最常用的,研究的比較多。 標准空間的圖像也是指MNI空間的圖像。

20.Talairach空間, 和MNI空間的坐標有對應的關系,很多軟體都提供這個功能,如Mricron、REST等。Talairach空間只要是為了判別當前坐標在什麼結構上,注意Talairach atlas and Talairach coordinates 就是Stereotaxic space.

21.全局網路度Kp ,節點 i 的連接度 Ki 定義為與該節點直接相連的邊的數目,高度連接的節點的度較大。該指標用來描述一個網路的稀疏度。全局網路的度Kp 為網路中所有節點的度的平均:

22.小世界屬性,基於體素和基於腦區的研究都表明人腦功能網路都具有高效的小世界屬性。 For example, 721 million users with an average path length of just 4.74, in these network, we show that it is at once both global and local, it connects nodes which are far away but also has the dense local structure, and this is called t he small world phenomena . 小世界網路( small-world network) 網路的小世界屬性:高的聚類系數和短的特徵路徑長度。小世界的拓撲結構支持大腦信息處理的分化和整合功能,是一種經濟型的結構,支持高度復雜動態結構的同時,使得配線代價最低。具有小世界屬性的動態系統通常有較好的抗攻擊性,而且表現出比較高的信息傳輸速度,計算能力和同步性。

23. 攻擊性, 用來定量描述某個節點的失敗對網路行為的影響。節點 i 的攻擊性Vi 定義為: 當去掉節點 i 及其連接的邊後網路全局效率的變化 ,可通過如下公式計算:

其中 Eglob』表示去掉節點 i 及其連接的邊後網路的全局效率。 攻擊性同介數中心性一樣也是反映了節點在網路中的重要性。

24.節點效率ei, 衡量一個節點與其他節點通信的效率

25.結構性連接,

26.模塊化結構,

27.結構性腦網路( structural brain networks 或anatomical brain networks) 

28.功能性腦網路( functional brain networks)

29.因效性腦網路( effective brain networks) 

30.無標度網路( scale-free network) 

31.隨機網路( random network) 

32.規則網路( regular network) 

33.無向網路( undirected network)

34.加權網路( weighted network)

35.相位同步( phase synchronization) 

36.連接密度(connection density/cost) 

37.互相關分析( cross-correlation analysis) 

38.因果關系分析( Causality analysis) 

39.直接傳遞函數分析( Directed Transfer Function,DTF) 

40.部分定向相干分析( Partial Directed Coherence,PDC) 

多變數自回歸建模( multivariate autoregressivemodel,MVAR) 

獨立成分分析( independent component analysis,ICA) 

步似然性(synchronization likelihood, SL) 

結構方程建模(structural equationmodeling, SEM) 

動態因果建模(dynamic causalmodeling, DCM) 

心理生理交互作用模型(Psychophysiological interaction model) 

非度量多維定標(non-metric multidimensional scaling) 

體素形態學(voxel-based morphometry,VBM) 

統計參數映射(statistical parametric mapping,SPM) 

皮爾遜相關系數(Pearson correlation)

偏相關系數(Partial correlation) 

腦功能連接,度量空間上分離的不同腦區間在時間上和相關性和功能活動的統計依賴關系,是描述腦區之間協同工作模式的有效手段。

方法學:(1)定義被試的節點的方法:AAL模板和自動配准;(2)定義邊:確定性的纖維跟蹤演算法,HARDI,DSI,概率跟蹤演算法;(3)二值網和加權網的選擇;

最大連通子圖大小,SOBCC(Size of Biggest Connected Component),代表網路連通分量的大小。

『貳』 復雜網路 --- 社會網路分析

「社會網路」指的是社會成員及其相互關系的集合。社會網路中所說的「點」是各個社會成員,而社會網路中的「邊」指的是成員之間的各種社會關系。成員間的關系可以是有向的,也可以是無向的。同時,社會關系可以表現為多種形式,如人與人之間的朋友關系、上下級關系、科研合作關系等,組織成員之間的溝通關系,國家之間的貿易關系等。社會網路分析(Social Network Analysis)就是要對社會網路中行為者之間的關系進行量化研究,是社會網路理論中的一個具體工具。

因此,社會網路分析關注的焦點是關系和關系的模式,採用的方式和方法從概念上有別於傳統的統計分析和數據處理方法。

社會網路通常表達人類的個體通過各種關系連接起來,比如朋友、婚姻、商業等,這些連接宏觀上呈現出一定的模式。很早的時候,一些社會學家開始關注人們交往的模式。Ebel等進行了一個電子郵件版的小世界問題的實驗,完成了Kiel大學的5000個學生的112天電子郵件連接數據,節點為電子郵件地址,連接為消息的傳遞,得到帶指數截斷的冪律度分布,指數為r=1.18。同時證明,該網路是小世界的,平均分隔為4.94。

社會網路分析,可以解決或可以嘗試解決下列問題:

「中心性」是社會網路分析的重點之一,用於分析個人或組織在其社會網路中具有怎樣的權力,或者說居於怎樣的中心地位,這一思想是社會網路分析者最早探討的內容之一。

點度中心度表示與該點直接相連的點的個數,無向圖為(n-1),有向圖為(入度,出度)。

個體的中心度(Centrality)測量個體處於網路中心的程度,反映了該點在網路中的重要性程度。網路中每個個體都有一個中心度,刻畫了個體特性。除了計算網路中個體的中心度外,還可以計算整個網路的集中趨勢(可簡稱為中心勢,Centralization)。網路中心勢刻畫的是整個網路中各個點的差異性程度,一個網路只有一個中心勢。

根據計算方法的不同,中心度和中心勢都可以分為3種:點度中心度/點度中心勢、中間中心度/中間中心勢、接近中心度/接近中心勢。

在一個社會網路中,如果一個個體與其他個體之間存在大量的直接聯系,那麼該個體就居於中心地位,在該網路中擁有較大的「權力」。在這種思想的指導下,網路中一個點的點度中心性就可以用網路中與該點之間有聯系的點的數目來衡量,這就是點度中心度。

網路中心勢指的是網路中點的集中趨勢,其計算依據如下步驟:首先找到圖中的最大點度中心度的數值,然後計算該值與任何其他點的中心度的差值,再計算這些「差值」的總和,最後用這個總和除以各個「差值」總和的最大可能值。

在網路中,如果一個個體位於許多其他兩個個體之間的路徑上,可以認為該個體居於重要地位,因為他具有控制其他兩個個體之間的交往能力,這種特性用中間中心度描述,它測量的是個體對資源控制的程度。一個個體在網路中占據這樣的位置越多,代表它具有很高的中間中心性,就有越多的個體需要通過它才能發生聯系。

中間中心勢定義為網路中 中間中心性最高的節點的中間中心性與其他節點的中間中心性的差距,用於分析網路整體結構。中間中心勢越高,表示該網路中的節點可能分為多個小團體,而且過於依賴某一個節點傳遞關系,說明該節點在網路中處於極其重要的地位。

接近中心性用來描述網路中的個體不受他人「控制」的能力。在計算接近中心度的時候,我們關注的是捷徑,而不是直接關系。如果一個點通過比較短的路徑與許多其他點相連,我們就說該點具有較高的接近中心性。

對一個社會網路來說,接近中心勢越高,表明網路中節點的差異性越大;反之,則表明網路中節點間的差異越小。

註:以上公式都是針對無向圖,如果是有向圖則根據定義相應修改公式即可

當網路中某些個體之間的關系特別緊密,以至於結合成一個次級團體時,這樣的團體在社會網路分析中被稱為凝聚子群。分析網路中存在多少個這樣的子群,子群內部成員之間關系的特點,子群之間關系特點,一個子群的成員與另一個子群成員之間的關系特點等就是凝聚子群分析。

由於凝聚子群成員之間的關系十分緊密,因此有的學者也將凝聚子群分析形象地稱為「小團體分析」或「社區現象」。

常用的社區檢測方法主要有如下幾種:

(1)基於圖分割的方法,如Kernighan-Lin演算法,譜平分法等;

(2)基於層次聚類的方法,如GN演算法、Newman快速演算法等;

(3)基於模塊度優化的方法,如貪婪演算法、模擬退火演算法、Memetic演算法、PSO演算法、進化多目標優化演算法等。

凝聚子群密度(External-Internallndex,E-IIndex)主要用來衡量一個大的網路中小團體現象是否十分嚴重,在分析組織管理等問題時非常有效。

最差的情形是大團體很散漫,核心小團體卻有高度內聚力。另外一種情況是,大團體中有許多內聚力很高的小團體,很可能就會出現小團體間相互斗爭的現象。凝聚子群密度的取值范圍為[-1,+1]。該值越向1靠近,意味著派系林立的程度越大;該值越接近-1,意味著派系林立的程度越小;該值越接近0,表明關系越趨向於隨機分布,未出現派系林立的情形。

E-I Index可以說是企業管理者的一個重要的危機指數。當一個企業的E-I Index過高時,就表示該企業中的小團體有可能結合緊密而開始圖謀小團體私利,從而傷害到整個企業的利益。其實E-I Index不僅僅可以應用到企業管理領域,也可以應用到其他領域,比如用來研究某一學科領域學者之間的關系。如果該網路存在凝聚子群,並且凝聚子群的密度較高,說明處於這個凝聚子群內部的這部分學者之間聯系緊密,在信息分享和科研合作方面交往頻繁,而處於子群外部的成員則不能得到足夠的信息和科研合作機會。從一定程度上來說,這種情況也是不利於該學科領域發展的。

核心-邊緣(Core-Periphery)結構分析的目的是研究社會網路中哪些節點處於核心地位,哪些節點處於邊緣地位。核心-邊緣結構分析具有較廣的應用性,可用於分析精英網路、論文引用關系網路以及組織關系網路等多種社會現象。

根據關系數據的類型(定類數據和定比數據),核心—邊緣結構有不同的形式。定類數據和定比數據是統計學中的基本概念,一般來說,定類數據是用類別來表示的,通常用數字表示這些類別,但是這些數值不能用來進行數學計算;定比數據是用數值來表示的,可以用來進行數學計算。如果數據是定類數據,可以構建離散的核心-邊緣模型;如果數據是定比數據,可以構建連續的核心-邊緣模型。

離散的核心-邊緣模型,根據核心成員和邊緣成員之間關系的有無及緊密程度,又可分為3種:核心-邊緣全關聯模型、核心-邊緣局部關聯模型、核心-邊緣關系缺失模型。如果把核心和邊緣之間的關系看成是缺失值,就構成了核心-邊緣關系缺失模型。

這里介紹適用於定類數據的4種離散的核心-邊緣模型:

參考

閱讀全文

與復雜網路介數中心性表示什麼相關的資料

熱點內容
網路共享中心沒有網卡 瀏覽:512
電腦無法檢測到網路代理 瀏覽:1363
筆記本電腦一天會用多少流量 瀏覽:532
蘋果電腦整機轉移新機 瀏覽:1367
突然無法連接工作網路 瀏覽:1014
聯通網路怎麼設置才好 瀏覽:1212
小區網路電腦怎麼連接路由器 瀏覽:989
p1108列印機網路共享 瀏覽:1201
怎麼調節台式電腦護眼 瀏覽:650
深圳天虹蘋果電腦 瀏覽:889
網路總是異常斷開 瀏覽:602
中級配置台式電腦 瀏覽:947
中國網路安全的戰士 瀏覽:622
同志網站在哪裡 瀏覽:1402
版觀看完整完結免費手機在線 瀏覽:1448
怎樣切換默認數據網路設置 瀏覽:1098
肯德基無線網無法訪問網路 瀏覽:1274
光纖貓怎麼連接不上網路 瀏覽:1427
神武3手游網路連接 瀏覽:955
局網列印機網路共享 瀏覽:990