導航:首頁 > 網路問題 > 什麼是雲神經網路

什麼是雲神經網路

發布時間:2023-08-18 10:01:52

❶ 神經網路淺談

人工智慧技術是當前炙手可熱的話題,而基於神經網路的深度學習技術更是熱點中的熱點。去年穀歌的Alpha Go 以4:1大比分的優勢戰勝韓國的李世石九段,展現了深度學習的強大威力,後續強化版的Alpha Master和無師自通的Alpha Zero更是在表現上完全碾壓前者。不論你怎麼看,以深度學習為代表的人工智慧技術正在塑造未來。

下圖為英偉達(NVIDIA)公司近年來的股價情況, 該公司的主要產品是「圖形處理器」(GPU),而GPU被證明能大大加快神經網路的訓練速度,是深度學習必不可少的計算組件。英偉達公司近年來股價的飛漲足以證明當前深度學習的井噴之勢。

好,話不多說,下面簡要介紹神經網路的基本原理、發展脈絡和優勢。

神經網路是一種人類由於受到生物神經細胞結構啟發而研究出的一種演算法體系,是機器學習演算法大類中的一種。首先讓我們來看人腦神經元細胞:

一個神經元通常具有多個樹突 ,主要用來接受傳入信息,而軸突只有一條,軸突尾端有許多軸突末梢,可以給其他多個神經元傳遞信息。軸突末梢跟其他神經元的樹突產生連接,從而傳遞信號。

下圖是一個經典的神經網路(Artificial Neural Network,ANN):

乍一看跟傳統互聯網的拓撲圖有點類似,這也是稱其為網路的原因,不同的是節點之間通過有向線段連接,並且節點被分成三層。我們稱圖中的圓圈為神經元,左邊三個神經元組成的一列為輸入層,中間神經元列為隱藏層,右邊神經元列為輸出層,神經元之間的箭頭為權重。

神經元是計算單元,相當於神經元細胞的細胞核,利用輸入的數據進行計算,然後輸出,一般由一個線性計算部分和一個非線性計算部分組成;輸入層和輸出層實現數據的輸入輸出,相當於細胞的樹突和軸突末梢;隱藏層指既不是輸入也不是輸出的神經元層,一個神經網路可以有很多個隱藏層。

神經網路的關鍵不是圓圈代表的神經元,而是每條連接線對應的權重。每條連接線對應一個權重,也就是一個參數。權重具體的值需要通過神經網路的訓練才能獲得。我們實際生活中的學習體現在大腦中就是一系列神經網路迴路的建立與強化,多次重復的學習能讓迴路變得更加粗壯,使得信號的傳遞速度加快,最後對外表現為「深刻」的記憶。人工神經網路的訓練也借鑒於此,如果某種映射關系出現很多次,那麼在訓練過程中就相應調高其權重。

1943年,心理學家McCulloch和數學家Pitts參考了生物神經元的結構,發表了抽象的神經元模型MP:

符號化後的模型如下:

Sum函數計算各權重與輸入乘積的線性組合,是神經元中的線性計算部分,而sgn是取符號函數,當輸入大於0時,輸出1,反之輸出0,是神經元中的非線性部分。向量化後的公式為z=sgn(w^T a)(w^T=(w_1,w_2,w_3),a=〖(a_1,a_2,a_3)〗^T)。

但是,MP模型中,權重的值都是預先設置的,因此不能學習。該模型雖然簡單,並且作用有限,但已經建立了神經網路大廈的地基

1958年,計算科學家Rosenblatt提出了由兩層神經元組成(一個輸入層,一個輸出層)的神經網路。他給它起了一個名字–「感知器」(Perceptron)

感知器是當時首個可以學習的人工神經網路。Rosenblatt現場演示了其學習識別簡單圖像的過程,在當時引起了轟動,掀起了第一波神經網路的研究熱潮。

但感知器只能做簡單的線性分類任務。1969年,人工智慧領域的巨擘Minsky指出這點,並同時指出感知器對XOR(異或,即兩個輸入相同時輸出0,不同時輸出1)這樣的簡單邏輯都無法解決。所以,明斯基認為神經網路是沒有價值的。

隨後,神經網路的研究進入低谷,又稱 AI Winter 。

Minsky說過單層神經網路無法解決異或問題,但是當增加一個計算層以後,兩層神經網路不僅可以解決異或問題,而且具有非常好的非線性分類效果。

下圖為兩層神經網路(輸入層一般不算在內):

上圖中,輸出層的輸入是上一層的輸出。

向量化後的公式為:

注意:

每個神經元節點默認都有偏置變數b,加上偏置變數後的計算公式為:

同時,兩層神經網路不再使用sgn函數作為激勵函數,而採用平滑的sigmoid函數:

σ(z)=1/(1+e^(-z) )

其圖像如下:

理論證明: 兩層及以上的神經網路可以無限逼近真實的對應函數,從而模擬數據之間的真實關系 ,這是神經網路強大預測能力的根本。但兩層神經網路的計算量太大,當時的計算機的計算能力完全跟不上,直到1986年,Rumelhar和Hinton等人提出了反向傳播(Backpropagation,BP)演算法,解決了兩層神經網路所需要的復雜計算量問題,帶動了業界使用兩層神經網路研究的熱潮。

但好景不長,演算法的改進僅使得神經網路風光了幾年,然而計算能力不夠,局部最優解,調參等一系列問題一直困擾研究人員。90年代中期,由Vapnik等人發明的SVM(Support Vector Machines,支持向量機)演算法誕生,很快就在若干個方面體現出了對比神經網路的優勢:無需調參;高效;全局最優解。

由於以上原因,SVM迅速打敗了神經網路演算法成為主流。神經網路的研究再一次進入低谷, AI Winter again 。

多層神經網路一般指兩層或兩層以上的神經網路(不包括輸入層),更多情況下指兩層以上的神經網路。

2006年,Hinton提出使用 預訓練 」(pre-training)和「微調」(fine-tuning)技術能優化神經網路訓練,大幅度減少訓練多層神經網路的時間

並且,他給多層神經網路相關的學習方法賦予了一個新名詞–「 深度學習 」,以此為起點,「深度學習」紀元開始了:)

「深度學習」一方面指神經網路的比較「深」,也就是層數較多;另一方面也可以指神經網路能學到很多深層次的東西。研究發現,在權重參數不變的情況下,增加神經網路的層數,能增強神經網路的表達能力。

但深度學習究竟有多強大呢?沒人知道。2012年,Hinton與他的學生在ImageNet競賽中,用多層的卷積神經網路成功地對包含一千類別的一百萬張圖片進行了訓練,取得了分類錯誤率15%的好成績,這個成績比第二名高了近11個百分點,充分證明了多層神經網路識別效果的優越性。

同時,科研人員發現GPU的大規模並行矩陣運算模式完美地契合神經網路訓練的需要,在同等情況下,GPU的速度要比CPU快50-200倍,這使得神經網路的訓練時間大大減少,最終再一次掀起了神經網路研究的熱潮,並且一直持續到現在。

2016年基於深度學習的Alpha Go在圍棋比賽中以4:1的大比分優勢戰勝了李世石,深度學習的威力再一次震驚了世界。

神經網路的發展歷史曲折盪漾,既有被捧上神壇的高潮,也有無人問津的低谷,中間經歷了數次大起大落,我們姑且稱之為「三起三落」吧,其背後則是演算法的改進和計算能力的持續發展。

下圖展示了神經網路自發明以來的發展情況及一些重大時間節點。

當然,對於神經網路我們也要保持清醒的頭腦。由上圖,每次神經網路研究的興盛期持續10年左右,從最近2012年算起,或許10年後的2022年,神經網路的發展將再次遇到瓶頸。

神經網路作為機器學習的一種,其模型訓練的目的,就是使得參數盡可能的與真實的模型逼近。理論證明,兩層及以上的神經網路可以無限逼近真實的映射函數。因此,給定足夠的訓練數據和訓練時間,總能通過神經網路找到無限逼近真實關系的模型。

具體做法:首先給所有權重參數賦上隨機值,然後使用這些隨機生成的參數值,來預測訓練數據中的樣本。假設樣本的預測目標為yp ,真實目標為y,定義值loss,計算公式如下:

loss = (yp -y) ^2

這個值稱之為 損失 (loss),我們的目標就是使對所有訓練數據的損失和盡可能的小,這就轉化為求loss函數極值的問題。

一個常用方法是高等數學中的求導,但由於參數不止一個,求導後計算導數等於0的運算量很大,所以常用梯度下降演算法來解決這樣的優化問題。梯度是一個向量,由函數的各自變數的偏導數組成。

比如對二元函數 f =(x,y),則梯度∇f=(∂f/∂x,∂f/∂y)。梯度的方向是函數值上升最快的方向。梯度下降演算法每次計算參數在當前的梯度,然後讓參數向著梯度的反方向前進一段距離,不斷重復,直到梯度接近零時截止。一般這個時候,所有的參數恰好達到使損失函數達到一個最低值的狀態。下圖為梯度下降的大致運行過程:

在神經網路模型中,由於結構復雜,每次計算梯度的代價很大。因此還需要使用 反向傳播 (Back Propagation)演算法。反向傳播演算法利用了神經網路的結構進行計算,不一次計算所有參數的梯度,而是從後往前。首先計算輸出層的梯度,然後是第二個參數矩陣的梯度,接著是中間層的梯度,再然後是第一個參數矩陣的梯度,最後是輸入層的梯度。計算結束以後,所要的兩個參數矩陣的梯度就都有了。當然,梯度下降只是其中一個優化演算法,其他的還有牛頓法、RMSprop等。

確定loss函數的最小值後,我們就確定了整個神經網路的權重,完成神經網路的訓練。

在神經網路中一樣的參數數量,可以用更深的層次去表達。

由上圖,不算上偏置參數的話,共有三層神經元,33個權重參數。

由下圖,保持權重參數不變,但增加了兩層神經元。

在多層神經網路中,每一層的輸入是前一層的輸出,相當於在前一層的基礎上學習,更深層次的神經網路意味著更深入的表示特徵,以及更強的函數模擬能力。更深入的表示特徵可以這樣理解,隨著網路的層數增加,每一層對於前一層次的抽象表示更深入。

如上圖,第一個隱藏層學習到「邊緣」的特徵,第二個隱藏層學習到「邊緣」組成的「形狀」的特徵,第三個隱藏層學習到由「形狀」組成的「圖案」的特徵,最後的隱藏層學習到由「圖案」組成的「目標」的特徵。通過抽取更抽象的特徵來對事物進行區分,從而獲得更好的區分與分類能力。

前面提到, 明斯基認為Rosenblatt提出的感知器模型不能處理最簡單的「異或」(XOR)非線性問題,所以神經網路的研究沒有前途,但當增加一層神經元後,異或問題得到了很好地解決,原因何在?原來從輸入層到隱藏層,數據發生了空間變換,坐標系發生了改變,因為矩陣運算本質上就是一種空間變換。

如下圖,紅色和藍色的分界線是最終的分類結果,可以看到,該分界線是一條非常平滑的曲線。

但是,改變坐標系後,分界線卻表現為直線,如下圖:

同時,非線性激勵函數的引入使得神經網路對非線性問題的表達能力大大加強。

對於傳統的樸素貝葉斯、決策樹、支持向量機SVM等分類器,提取特徵是一個非常重要的前置工作。在正式訓練之前,需要花費大量的時間在數據的清洗上,這樣分類器才能清楚地知道數據的維度,要不然基於概率和空間距離的線性分類器是沒辦法進行工作的。然而在神經網路中,由於巨量的線性分類器的堆疊(並行和串列)以及卷積神經網路的使用,它對雜訊的忍耐能力、對多通道數據上投射出來的不同特徵偏向的敏感程度會自動重視或忽略,這樣我們在處理的時候,就不需要使用太多的技巧用於數據的清洗了。有趣的是,業內大佬常感嘆,「你可能知道SVM等機器學習的所有細節,但是效果並不好,而神經網路更像是一個黑盒,很難知道它究竟在做什麼,但工作效果卻很好」。

人類對機器學習的環節干預越少,就意味著距離人工智慧的方向越近。神經網路的這個特性非常有吸引力。

1) 谷歌的TensorFlow開發了一個非常有意思的神經網路 入門教程 ,用戶可以非常方便地在網頁上更改神經網路的參數,並且能看到實時的學習效率和結果,非常適合初學者掌握神經網路的基本概念及神經網路的原理。網頁截圖如下:

2) 深度學習領域大佬吳恩達不久前發布的《 神經網路和深度學習 》MOOC,現在可以在網易雲課堂上免費觀看了,並且還有中文字幕。

3) 《神經網路於深度學習》(Michael Nielsen著)、《白話深度學習與TensorFlow》也是不錯的入門書籍。

❷ 人工神經網路概念梳理與實例演示

人工神經網路概念梳理與實例演示
神經網路是一種模仿生物神經元的機器學習模型,數據從輸入層進入並流經激活閾值的多個節點。
遞歸性神經網路一種能夠對之前輸入數據進行內部存儲記憶的神經網路,所以他們能夠學習到數據流中的時間依賴結構。
如今機器學習已經被應用到很多的產品中去了,例如,siri、Google Now等智能助手,推薦引擎——亞馬遜網站用於推薦商品的推薦引擎,Google和Facebook使用的廣告排名系統。最近,深度學習的一些進步將機器學習帶入公眾視野:AlphaGo 打敗圍棋大師李世石事件以及一些圖片識別和機器翻譯等新產品的出現。
在這部分中,我們將介紹一些強大並被普遍使用的機器學習技術。這當然包括一些深度學習以及一些滿足現代業務需求傳統方法。讀完這一系列的文章之後,你就掌握了必要的知識,便可以將具體的機器學習實驗應用到你所在的領域當中。
隨著深層神經網路的精度的提高,語音和圖像識別技術的應用吸引了大眾的注意力,關於AI和深度學習的研究也變得更加普遍了。但是怎麼能夠讓它進一步擴大影響力,更受歡迎仍然是一個問題。這篇文章的主要內容是:簡述前饋神經網路和遞歸神經網路、怎樣搭建一個遞歸神經網路對時間系列數據進行異常檢測。為了讓我們的討論更加具體化,我們將演示一下怎麼用Deeplearning4j搭建神經網路。
一、什麼是神經網路?
人工神經網路演算法的最初構思是模仿生物神經元。但是這個類比很不可靠。人工神經網路的每一個特徵都是對生物神經元的一種折射:每一個節點與激活閾值、觸發的連接。
連接人工神經元系統建立起來之後,我們就能夠對這些系統進行訓練,從而讓他們學習到數據中的一些模式,學到之後就能執行回歸、分類、聚類、預測等功能。
人工神經網路可以看作是計算節點的集合。數據通過這些節點進入神經網路的輸入層,再通過神經網路的隱藏層直到關於數據的一個結論或者結果出現,這個過程才會停止。神經網路產出的結果會跟預期的結果進行比較,神經網路得出的結果與正確結果的不同點會被用來更正神經網路節點的激活閾值。隨著這個過程的不斷重復,神經網路的輸出結果就會無限靠近預期結果。
二、訓練過程
在搭建一個神經網路系統之前,你必須先了解訓練的過程以及網路輸出結果是怎麼產生的。然而我們並不想過度深入的了解這些方程式,下面是一個簡短的介紹。
網路的輸入節點收到一個數值數組(或許是叫做張量多維度數組)就代表輸入數據。例如, 圖像中的每個像素可以表示為一個標量,然後將像素傳遞給一個節點。輸入數據將會與神經網路的參數相乘,這個輸入數據被擴大還是減小取決於它的重要性,換句話說,取決於這個像素就不會影響神經網路關於整個輸入數據的結論。
起初這些參數都是隨機的,也就是說神經網路在建立初期根本就不了解數據的結構。每個節點的激活函數決定了每個輸入節點的輸出結果。所以每個節點是否能夠被激活取決於它是否接受到足夠的刺激強度,即是否輸入數據和參數的結果超出了激活閾值的界限。
在所謂的密集或完全連接層中,每個節點的輸出值都會傳遞給後續層的節點,在通過所有隱藏層後最終到達輸出層,也就是產生輸入結果的地方。在輸出層, 神經網路得到的最終結論將會跟預期結論進行比較(例如,圖片中的這些像素代表一隻貓還是狗?)。神經網路猜測的結果與正確結果的計算誤差都會被納入到一個測試集中,神經網路又會利用這些計算誤差來不斷更新參數,以此來改變圖片中不同像素的重要程度。整個過程的目的就是降低輸出結果與預期結果的誤差,正確地標注出這個圖像到底是不是一條狗。
深度學習是一個復雜的過程,由於大量的矩陣系數需要被修改所以它就涉及到矩陣代數、衍生品、概率和密集的硬體使用問題,但是用戶不需要全部了解這些復雜性。
但是,你也應該知道一些基本參數,這將幫助你理解神經網路函數。這其中包括激活函數、優化演算法和目標函數(也稱為損失、成本或誤差函數)。
激活函數決定了信號是否以及在多大程度上應該被發送到連接節點。階梯函數是最常用的激活函數, 如果其輸入小於某個閾值就是0,如果其輸入大於閾值就是1。節點都會通過階梯激活函數向連接節點發送一個0或1。優化演算法決定了神經網路怎麼樣學習,以及測試完誤差後,權重怎麼樣被更准確地調整。最常見的優化演算法是隨機梯度下降法。最後, 成本函數常用來衡量誤差,通過對比一個給定訓練樣本中得出的結果與預期結果的不同來評定神經網路的執行效果。
Keras、Deeplearning4j 等開源框架讓創建神經網路變得簡單。創建神經網路結構時,需要考慮的是怎樣將你的數據類型匹配到一個已知的被解決的問題,並且根據你的實際需求來修改現有結構。
三、神經網路的類型以及應用
神經網路已經被了解和應用了數十年了,但是最近的一些技術趨勢才使得深度神經網路變得更加高效。
GPUs使得矩陣操作速度更快;分布式計算結構讓計算能力大大增強;多個超參數的組合也讓迭代的速度提升。所有這些都讓訓練的速度大大加快,迅速找到適合的結構。
隨著更大數據集的產生,類似於ImageNet 的大型高質量的標簽數據集應運而生。機器學習演算法訓練的數據越大,那麼它的准確性就會越高。
最後,隨著我們理解能力以及神經網路演算法的不斷提升,神經網路的准確性在語音識別、機器翻譯以及一些機器感知和面向目標的一些任務等方面不斷刷新記錄。
盡管神經網路架構非常的大,但是主要用到的神經網路種類也就是下面的幾種。
3.1前饋神經網路
前饋神經網路包括一個輸入層、一個輸出層以及一個或多個的隱藏層。前饋神經網路可以做出很好的通用逼近器,並且能夠被用來創建通用模型。
這種類型的神經網路可用於分類和回歸。例如,當使用前饋網路進行分類時,輸出層神經元的個數等於類的數量。從概念上講, 激活了的輸出神經元決定了神經網路所預測的類。更准確地說, 每個輸出神經元返回一個記錄與分類相匹配的概率數,其中概率最高的分類將被選為模型的輸出分類。
前饋神經網路的優勢是簡單易用,與其他類型的神經網路相比更簡單,並且有一大堆的應用實例。
3.2卷積神經網路
卷積神經網路和前饋神經網路是非常相似的,至少是數據的傳輸方式類似。他們結構大致上是模仿了視覺皮層。卷積神經網路通過許多的過濾器。這些過濾器主要集中在一個圖像子集、補丁、圖塊的特徵識別上。每一個過濾器都在尋找不同模式的視覺數據,例如,有的可能是找水平線,有的是找對角線,有的是找垂直的。這些線條都被看作是特徵,當過濾器經過圖像時,他們就會構造出特徵圖譜來定位各類線是出現在圖像的哪些地方。圖像中的不同物體,像貓、747s、榨汁機等都會有不同的圖像特徵,這些圖像特徵就能使圖像完成分類。卷積神經網路在圖像識別和語音識別方面是非常的有效的。
卷積神經網路與前饋神經網路在圖像識別方面的異同比較。雖然這兩種網路類型都能夠進行圖像識別,但是方式卻不同。卷積神經網路是通過識別圖像的重疊部分,然後學習識別不同部分的特徵進行訓練;然而,前饋神經網路是在整張圖片上進行訓練。前饋神經網路總是在圖片的某一特殊部分或者方向進行訓練,所以當圖片的特徵出現在其他地方時就不會被識別到,然而卷積神經網路卻能夠很好的避免這一點。
卷積神經網路主要是用於圖像、視頻、語音、聲音識別以及無人駕駛的任務。盡管這篇文章主要是討論遞歸神經網路的,但是卷積神經網路在圖像識別方面也是非常有效的,所以很有必要了解。
3.3遞歸神經網路
與前饋神經網路不同的是,遞歸神經網路的隱藏層的節點里有內部記憶存儲功能,隨著輸入數據的改變而內部記憶內容不斷被更新。遞歸神經網路的結論都是基於當前的輸入和之前存儲的數據而得出的。遞歸神經網路能夠充分利用這種內部記憶存儲狀態處理任意序列的數據,例如時間序列。
遞歸神經網路經常用於手寫識別、語音識別、日誌分析、欺詐檢測和網路安全
遞歸神經網路是處理時間維度數據集的最好方法,它可以處理以下數據:網路日誌和伺服器活動、硬體或者是醫療設備的感測器數據、金融交易、電話記錄。想要追蹤數據在不同階段的依賴和關聯關系需要你了解當前和之前的一些數據狀態。盡管我們通過前饋神經網路也可以獲取事件,隨著時間的推移移動到另外一個事件,這將使我們限制在對事件的依賴中,所以這種方式很不靈活。
追蹤在時間維度上有長期依賴的數據的更好方法是用內存來儲存重要事件,以使近期事件能夠被理解和分類。遞歸神經網路最好的一點就是在它的隱藏層裡面有「內存」可以學習到時間依賴特徵的重要性。
接下來我們將討論遞歸神經網路在字元生成器和網路異常檢測中的應用。遞歸神經網路可以檢測出不同時間段的依賴特徵的能力使得它可以進行時間序列數據的異常檢測。
遞歸神經網路的應用
網路上有很多使用RNNs生成文本的例子,遞歸神經網路經過語料庫的訓練之後,只要輸入一個字元,就可以預測下一個字元。下面讓我們通過一些實用例子發現更多RNNs的特徵。
應用一、RNNs用於字元生成
遞歸神經網路經過訓練之後可以把英文字元當做成一系列的時間依賴事件。經過訓練後它會學習到一個字元經常跟著另外一個字元(「e」經常跟在「h」後面,像在「the、he、she」中)。由於它能預測下一個字元是什麼,所以它能有效地減少文本的輸入錯誤。
Java是個很有趣的例子,因為它的結構包括很多嵌套結構,有一個開的圓括弧必然後面就會有一個閉的,花括弧也是同理。他們之間的依賴關系並不會在位置上表現的很明顯,因為多個事件之間的關系不是靠所在位置的距離確定的。但是就算是不明確告訴遞歸神經網路Java中各個事件的依賴關系,它也能自己學習了解到。
在異常檢測當中,我們要求神經網路能夠檢測出數據中相似、隱藏的或許是並不明顯的模式。就像是一個字元生成器在充分地了解數據的結構後就會生成一個數據的擬像,遞歸神經網路的異常檢測就是在其充分了解數據結構後來判斷輸入的數據是不是正常。
字元生成的例子表明遞歸神經網路有在不同時間范圍內學習到時間依賴關系的能力,它的這種能力還可以用來檢測網路活動日誌的異常。
異常檢測能夠使文本中的語法錯誤浮出水面,這是因為我們所寫的東西是由語法結構所決定的。同理,網路行為也是有結構的,它也有一個能夠被學習的可預測模式。經過在正常網路活動中訓練的遞歸神經網路可以監測到入侵行為,因為這些入侵行為的出現就像是一個句子沒有標點符號一樣異常。
應用二、一個網路異常檢測項目的示例
假設我們想要了解的網路異常檢測就是能夠得到硬體故障、應用程序失敗、以及入侵的一些信息。
模型將會向我們展示什麼呢?
隨著大量的網路活動日誌被輸入到遞歸神經網路中去,神經網路就能學習到正常的網路活動應該是什麼樣子的。當這個被訓練的網路被輸入新的數據時,它就能偶判斷出哪些是正常的活動,哪些是被期待的,哪些是異常的。
訓練一個神經網路來識別預期行為是有好處的,因為異常數據不多,或者是不能夠准確的將異常行為進行分類。我們在正常的數據里進行訓練,它就能夠在未來的某個時間點提醒我們非正常活動的出現。
說句題外話,訓練的神經網路並不一定非得識別到特定事情發生的特定時間點(例如,它不知道那個特殊的日子就是周日),但是它一定會發現一些值得我們注意的一些更明顯的時間模式和一些可能並不明顯的事件之間的聯系。
我們將概述一下怎麼用 Deeplearning4j(一個在JVM上被廣泛應用的深度學習開源資料庫)來解決這個問題。Deeplearning4j在模型開發過程中提供了很多有用的工具:DataVec是一款為ETL(提取-轉化-載入)任務准備模型訓練數據的集成工具。正如Sqoop為Hadoop載入數據,DataVec將數據進行清洗、預處理、規范化與標准化之後將數據載入到神經網路。這跟Trifacta』s Wrangler也相似,只不過它更關注二進制數據。
開始階段
第一階段包括典型的大數據任務和ETL:我們需要收集、移動、儲存、准備、規范化、矢量話日誌。時間跨度的長短是必須被規定好的。數據的轉化需要花費一些功夫,這是由於JSON日誌、文本日誌、還有一些非連續標注模式都必須被識別並且轉化為數值數組。DataVec能夠幫助進行轉化和規范化數據。在開發機器學習訓練模型時,數據需要分為訓練集和測試集。
訓練神經網路
神經網路的初始訓練需要在訓練數據集中進行。
在第一次訓練的時候,你需要調整一些超參數以使模型能夠實現在數據中學習。這個過程需要控制在合理的時間內。關於超參數我們將在之後進行討論。在模型訓練的過程中,你應該以降低錯誤為目標。
但是這可能會出現神經網路模型過度擬合的風險。有過度擬合現象出現的模型往往會在訓練集中的很高的分數,但是在遇到新的數據時就會得出錯誤結論。用機器學習的語言來說就是它不夠通用化。Deeplearning4J提供正則化的工具和「過早停止」來避免訓練過程中的過度擬合。
神經網路的訓練是最花費時間和耗費硬體的一步。在GPUs上訓練能夠有效的減少訓練時間,尤其是做圖像識別的時候。但是額外的硬體設施就帶來多餘的花銷,所以你的深度學習的框架必須能夠有效的利用硬體設施。Azure和亞馬遜等雲服務提供了基於GPU的實例,神經網路還可以在異構集群上進行訓練。
創建模型
Deeplearning4J提供ModelSerializer來保存訓練模型。訓練模型可以被保存或者是在之後的訓練中被使用或更新。
在執行異常檢測的過程中,日誌文件的格式需要與訓練模型一致,基於神經網路的輸出結果,你將會得到是否當前的活動符合正常網路行為預期的結論。
代碼示例
遞歸神經網路的結構應該是這樣子的:
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder(
.seed(123)
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT).iterations(1)
.weightInit(WeightInit.XAVIER)
.updater(Updater.NESTEROVS).momentum(0.9)
.learningRate(0.005)
.gradientNormalization(GradientNormalization.ClipElementWiseAbsoluteValue)
.(0.5)
.list()
.layer(0, new GravesLSTM.Builder().activation("tanh").nIn(1).nOut(10).build())
.layer(1, new RnnOutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
.activation("softmax").nIn(10).nOut(numLabelClasses).build())
.pretrain(false).backprop(true).build();
MultiLayerNetwork net = new MultiLayerNetwork(conf);
net.init();
下面解釋一下幾行重要的代碼:
.seed(123)
隨機設置一個種子值對神經網路的權值進行初始化,以此獲得一個有復驗性的結果。系數通常都是被隨機的初始化的,以使我們在調整其他超參數時仍獲得一致的結果。我們需要設定一個種子值,讓我們在調整和測試的時候能夠用這個隨機的權值。
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT).iterations(1)
決定使用哪個最優演算法(在這個例子中是隨機梯度下降法)來調整權值以提高誤差分數。你可能不需要對這個進行修改。
.learningRate(0.005)
當我們使用隨機梯度下降法的時候,誤差梯度就被計算出來了。在我們試圖將誤差值減到最小的過程中,權值也隨之變化。SGD給我們一個讓誤差更小的方向,這個學習效率就決定了我們該在這個方向上邁多大的梯度。如果學習效率太高,你可能是超過了誤差最小值;如果太低,你的訓練可能將會永遠進行。這是一個你需要調整的超參數。

❸ 神經網路的發展趨勢如何

神經網路的雲集成模式還不是很成熟,應該有發展潛力,但神經網路有自己的硬傷,不知道能夠達到怎樣的效果,所以決策支持系統中並不是很熱門,但是神經網路無視過程的優點也是無可替代的,雲網路如果能夠對神經網路提供一個互補的輔助決策以控制誤差的話,也許就能使神經網路成熟起來
1 人工神經網路產生的背景
自古以來,關於人類智能本源的奧秘,一直吸引著無數哲學家和自然科學家的研究熱情。生物學家、神經學家經過長期不懈的努力,通過對人腦的觀察和認識,認為人腦的智能活動離不開腦的物質基礎,包括它的實體結構和其中所發生的各種生物、化學、電學作用,並因此建立了神經元網路理論和神經系統結構理論,而神經元理論又是此後神經傳導理論和大腦功能學說的基礎。在這些理論基礎之上,科學家們認為,可以從仿製人腦神經系統的結構和功能出發,研究人類智能活動和認識現象。另一方面,19世紀之前,無論是以歐氏幾何和微積分為代表的經典數學,還是以牛頓力學為代表的經典物理學,從總體上說,這些經典科學都是線性科學。然而,客觀世界是如此的紛繁復雜,非線性情況隨處可見,人腦神經系統更是如此。復雜性和非線性是連接在一起的,因此,對非線性科學的研究也是我們認識復雜系統的關鍵。為了更好地認識客觀世界,我們必須對非線性科學進行研究。人工神經網路作為一種非線性的、與大腦智能相似的網路模型,就這樣應運而生了。所以,人工神經網路的創立不是偶然的,而是20世紀初科學技術充分發展的產物。
2 人工神經網路的發展
人工神經網路的研究始於40年代初。半個世紀以來,經歷了興起、高潮與蕭條、高潮及穩步發展的遠為曲折的道路。
1943年,心理學家W.S.Mcculloch和數理邏輯學家W.Pitts 提出了M—P模型,這是第一個用數理語言描述腦的信息處理過程的模型, 雖然神經元的功能比較弱,但它為以後的研究工作提供了依據。1949年,心理學家D.O.Hebb提出突觸聯系可變的假設,根據這一假設提出的學習規律為神經網路的學習演算法奠定了基礎。 1957 年, 計算機科學家Rosenblatt提出了著名的感知機模型,它的模型包含了現代計算機的一些原理,是第一個完整的人工神經網路,第一次把神經網路研究付諸工程實現。由於可應用於模式識別,聯想記憶等方面,當時有上百家實驗室投入此項研究,美國軍方甚至認為神經網路工程應當比「原子彈工程」更重要而給予巨額資助,並在聲納信號識別等領域取得一定成績。1960年,B.Windrow和E.Hoff提出了自適應線性單元, 它可用於自適應濾波、預測和模式識別。至此,人工神經網路的研究工作進入了第一個高潮。
1969年,美國著名人工智慧學者M.Minsky和S.Papert編寫了影響很大的Perceptron一書,從理論上證明單層感知機的能力有限,諸如不能解決異或問題,而且他們推測多層網路的感知機能力也不過如此,他們的分析恰似一瓢冷水,很多學者感到前途渺茫而紛紛改行,原先參與研究的實驗室紛紛退出,在這之後近10年,神經網路研究進入了一個緩慢發展的蕭條期。這期間,芬蘭學者T.Kohonen 提出了自組織映射理論,反映了大腦神經細胞的自組織特性、記憶方式以及神經細胞興奮刺激的規律;美國學者S.A.Grossberg的自適應共振理論(ART );日本學者K.Fukushima提出了認知機模型;ShunIchimari則致力於神經網路有關數學理論的研究等,這些研究成果對以後的神經網路的發展產生了重要影響。
美國生物物理學家J.J.Hopfield於1982年、1984年在美國科學院院刊發表的兩篇文章,有力地推動了神經網路的研究,引起了研究神經網路的又一次熱潮。 1982 年, 他提出了一個新的神經網路模型——hopfield網路模型。他在這種網路模型的研究中,首次引入了網路能量函數的概念,並給出了網路穩定性的判定依據。1984年,他又提出了網路模型實現的電子電路,為神經網路的工程實現指明了方向,他的研究成果開拓了神經網路用於聯想記憶的優化計算的新途徑,並為神經計算機研究奠定了基礎。1984年Hinton等人將模擬退火演算法引入到神經網路中,提出了Boltzmann機網路模型,BM 網路演算法為神經網路優化計算提供了一個有效的方法。1986年,D.E.Rumelhart和J.LMcclelland提出了誤差反向傳播演算法,成為至今為止影響很大的一種網路學習方法。1987年美國神經計算機專家R.Hecht—Nielsen提出了對向傳播神經網路,該網路具有分類靈活,演算法簡練的優點,可用於模式分類、函數逼近、統計分析和數據壓縮等領域。1988年L.Ochua 等人提出了細胞神經網路模型,它在視覺初級加工上得到了廣泛應用。
為適應人工神經網路的發展,1987年成立了國際神經網路學會,並決定定期召開國際神經網路學術會議。1988年1月Neural Network 創刊。1990年3月IEEE Transaction on Neural Network問世。 我國於1990年12月在北京召開了首屆神經網路學術大會,並決定以後每年召開一次。1991 年在南京成立了中國神經網路學會。 IEEE 與INNS 聯合召開的IJCNN92已在北京召開。 這些為神經網路的研究和發展起了推波助瀾的作用,人工神經網路步入了穩步發展的時期。
90年代初,諾貝爾獎獲得者Edelman提出了Darwinism模型,建立了神經網路系統理論。同年,Aihara等在前人推導和實驗的基礎上,給出了一個混沌神經元模型,該模型已成為一種經典的混沌神經網路模型,該模型可用於聯想記憶。 Wunsch 在90OSA 年會上提出了一種AnnualMeeting,用光電執行ART,學習過程有自適應濾波和推理功能,具有快速和穩定的學習特點。1991年,Hertz探討了神經計算理論, 對神經網路的計算復雜性分析具有重要意義;Inoue 等提出用耦合的混沌振盪子作為某個神經元,構造混沌神經網路模型,為它的廣泛應用前景指明了道路。1992年,Holland用模擬生物進化的方式提出了遺傳演算法, 用來求解復雜優化問題。1993年方建安等採用遺傳演算法學習,研究神經網路控制器獲得了一些結果。1994年Angeline等在前人進化策略理論的基礎上,提出一種進化演算法來建立反饋神經網路,成功地應用到模式識別,自動控制等方面;廖曉昕對細胞神經網路建立了新的數學理論和方法,得到了一系列結果。HayashlY根據動物大腦中出現的振盪現象,提出了振盪神經網路。1995年Mitra把人工神經網路與模糊邏輯理論、 生物細胞學說以及概率論相結合提出了模糊神經網路,使得神經網路的研究取得了突破性進展。Jenkins等人研究光學神經網路, 建立了光學二維並行互連與電子學混合的光學神經網路,它能避免網路陷入局部最小值,並最後可達到或接近最理想的解;SoleRV等提出流體神經網路,用來研究昆蟲社會,機器人集體免疫系統,啟發人們用混沌理論分析社會大系統。1996年,ShuaiJW』等模擬人腦的自發展行為, 在討論混沌神經網路的基礎上提出了自發展神經網路。1997、1998年董聰等創立和完善了廣義遺傳演算法,解決了多層前向網路的最簡拓樸構造問題和全局最優逼近問題。
隨著理論工作的發展,神經網路的應用研究也取得了突破性進展,涉及面非常廣泛,就應用的技術領域而言有計算機視覺,語言的識別、理解與合成,優化計算,智能控制及復雜系統分析,模式識別,神經計算機研製,知識推理專家系統與人工智慧。涉及的學科有神經生理學、認識科學、數理科學、心理學、信息科學、計算機科學、微電子學、光學、動力學、生物電子學等。美國、日本等國在神經網路計算機軟硬體實現的開發方面也取得了顯著的成績,並逐步形成產品。在美國,神經計算機產業已獲得軍方的強有力支持,國防部高級研究計劃局認為「神經網路是解決機器智能的唯一希望」,僅一項8 年神經計算機計劃就投資4億美元。在歐洲共同體的ESPRIT計劃中, 就有一項特別項目:「神經網路在歐洲工業中的應用」,單是生產神經網路專用晶元這一項就投資2200萬美元。據美國資料聲稱,日本在神經網路研究上的投資大約是美國的4倍。我國也不甘落後,自從1990 年批准了南開大學的光學神經計算機等3項課題以來, 國家自然科學基金與國防預研基金也都為神經網路的研究提供資助。另外,許多國際著名公司也紛紛捲入對神經網路的研究,如Intel、IBM、Siemens、HNC。神經計算機產品開始走向商用階段,被國防、企業和科研部門選用。在舉世矚目的海灣戰爭中,美國空軍採用了神經網路來進行決策與控制。在這種刺激和需求下,人工神經網路定會取得新的突破,迎來又一個高潮。自1958年第一個神經網路誕生以來,其理論與應用成果不勝枚舉。人工神經網路是一個快速發展著的一門新興學科,新的模型、新的理論、新的應用成果正在層出不窮地涌現出來。
3 人工神經網路的發展前景
針對神經網路存在的問題和社會需求,今後發展的主要方向可分為理論研究和應用研究兩個方面。
(1)利用神經生理與認識科學研究大腦思維及智能的機理、 計算理論,帶著問題研究理論。
人工神經網路提供了一種揭示智能和了解人腦工作方式的合理途徑,但是由於人類起初對神經系統了解非常有限,對於自身腦結構及其活動機理的認識還十分膚淺,並且帶有某種「先驗」。例如, Boltzmann機引入隨機擾動來避免局部極小,有其卓越之處,然而缺乏必要的腦生理學基礎,毫無疑問,人工神經網路的完善與發展要結合神經科學的研究。而且,神經科學,心理學和認識科學等方面提出的一些重大問題,是向神經網路理論研究提出的新挑戰,這些問題的解決有助於完善和發展神經網路理論。因此利用神經生理和認識科學研究大腦思維及智能的機理,如有新的突破,將會改變智能和機器關系的認識。
利用神經科學基礎理論的研究成果,用數理方法探索智能水平更高的人工神經網路模型,深入研究網路的演算法和性能,如神經計算、進化計算、穩定性、收斂性、計算復雜性、容錯性、魯棒性等,開發新的網路數理理論。由於神經網路的非線性,因此非線性問題的研究是神經網路理論發展的一個最大動力。特別是人們發現,腦中存在著混沌現象以來,用混沌動力學啟發神經網路的研究或用神經網路產生混沌成為擺在人們面前的一個新課題,因為從生理本質角度出發是研究神經網路的根本手段。
(2)神經網路軟體模擬, 硬體實現的研究以及神經網路在各個科學技術領域應用的研究。
由於人工神經網路可以用傳統計算機模擬,也可以用集成電路晶元組成神經計算機,甚至還可以用光學的、生物晶元的方式實現,因此研製純軟體模擬,虛擬模擬和全硬體實現的電子神經網路計算機潛力巨大。如何使神經網路計算機與傳統的計算機和人工智慧技術相結合也是前沿課題;如何使神經網路計算機的功能向智能化發展,研製與人腦功能相似的智能計算機,如光學神經計算機,分子神經計算機,將具有十分誘人的前景。
4 哲理
(1)人工神經網路打開了認識論的新領域
認識與腦的問題,長期以來一直受到人們的關注,因為它不僅是有關人的心理、意識的心理學問題,也是有關人的思維活動機制的腦科學與思維科學問題,而且直接關繫到對物質與意識的哲學基本問題的回答。人工神經網路的發展使我們能夠更進一步地既唯物又辯證地理解認識與腦的關系,打開認識論的新領域。人腦是一個復雜的並行系統,它具有「認知、意識、情感」等高級腦功能,用人工進行模擬,有利於加深對思維及智能的認識,已對認知和智力的本質的研究產生了極大的推動作用。在研究大腦的整體功能和復雜性方面,人工神經網路給人們帶來了新的啟迪。由於人腦中存在混沌現象,混沌可用來理解腦中某些不規則的活動,從而混沌動力學模型能用作人對外部世界建模的工具,可用來描述人腦的信息處理過程。混沌和智能是有關的,神經網路中引入混沌學思想有助於提示人類形象思維等方面的奧秘。人工神經網路之所以再度興起,關鍵在於它反映了事物的非線性,抓住了客觀世界的本質,而且它在一定程度上正面回答了智能系統如何從環境中自主學習這一最關鍵的問題,從認知的角度講,所謂學習,就是對未知現象或規律的發現和歸納。由於神經網路具有高度的並行性,高度的非線性全局作用,良好的容錯性與聯想記憶功能以及十分強的自適應、自學習功能,而使得它成為揭示智能和了解人腦工作方式的合理途徑。但是,由於認知問題的復雜性,目前,我們對於腦神經網的運行和神經細胞的內部處理機制,如信息在人腦是如何傳輸、存貯、加工的?記憶、聯想、判斷是如何形成的?大腦是否存在一個操作系統?還沒有太多的認識,因此要製造人工神經網路來模仿人腦各方面的功能,還有待於人們對大腦信息處理機理認識的深化。
(2)人工神經網路發展的推動力來源於實踐、 理論和問題的相互作用
隨著人們社會實踐范圍的不斷擴大,社會實踐層次的不斷深入,人們所接觸到的自然現象也越來越豐富多彩、紛繁復雜,這就促使人們用不同的原因加以解釋不同種類的自然現象,當不同種類的自然現象可以用同樣的原因加以解釋,這樣就出現了不同學科的相互交叉、綜合,人工神經網路就這樣產生了。在開始階段,由於這些理論化的網路模型比較簡單,還存在許多問題,而且這些模型幾乎沒有得到實踐的檢驗,因而神經網路的發展比較緩慢。隨著理論研究的深入,問題逐漸地解決特別是工程上得到實現以後,如聲納識別成功,才迎來了神經網路的第一個發展高潮。可Minisky認為感知器不能解決異或問題, 多層感知器也不過如此,神經網路的研究進入了低谷,這主要是因為非線性問題沒得到解決。隨著理論的不斷豐富,實踐的不斷深入, 現在已證明Minisky的悲觀論調是錯誤的。今天,高度發達的科學技術逐漸揭示了非線性問題是客觀世界的本質。問題、理論、實踐的相互作用又迎來了人工神經網路的第二次高潮。目前人工神經網路的問題是智能水平不高,還有其它理論和實現方面的問題,這就迫使人們不斷地進行理論研究,不斷實踐,促使神經網路不斷向前發展。總之,先前的原因遇到了解釋不同的新現象,促使人們提出更加普遍和精確的原因來解釋。理論是基礎,實踐是動力,但單純的理論和實踐的作用還不能推動人工神經網路的發展,還必須有問題提出,才能吸引科學家進入研究的特定范圍,引導科學家從事相關研究,從而逼近科學發現,而後實踐又提出新問題,新問題又引發新的思考,促使科學家不斷思考,不斷完善理論。人工神經網路的發展無不體現著問題、理論和實踐的辯證統一關系。
(3 )人工神經網路發展的另一推動力來源於相關學科的貢獻及不同學科專家的競爭與協同
人工神經網路本身就是一門邊緣學科,它的發展有更廣闊的科學背景,亦即是眾多科研成果的綜合產物,控制論創始人Wiener在其巨著《控制論》中就進行了人腦神經元的研究;計算機科學家Turing就提出過B網路的設想;Prigogine提出非平衡系統的自組織理論,獲得諾貝爾獎;Haken研究大量元件聯合行動而產生宏觀效果, 非線性系統「混沌」態的提出及其研究等,都是研究如何通過元件間的相互作用建立復雜系統,類似於生物系統的自組織行為。腦科學與神經科學的進展迅速反映到人工神經網路的研究中,例如生物神經網路理論,視覺中發現的側抑制原理,感受野概念等,為神經網路的發展起了重要的推動作用。從已提出的上百種人工神經網路模型中,涉及學科之多,令人目不暇接,其應用領域之廣,令人嘆為觀止。不同學科專家為了在這一領域取得領先水平,存在著不同程度的競爭,所有這些有力地推動了人工神經網路的發展。人腦是一個功能十分強大、結構異常復雜的信息系統,隨著資訊理論、控制論、生命科學,計算機科學的發展,人們越來越驚異於大腦的奇妙,至少到目前為止,人類大腦信號處理機制對人類自身來說,仍是一個黑盒子,要揭示人腦的奧秘需要神經學家、心理學家、計算機科學家、微電子學家、數學家等專家的共同努力,對人類智能行為不斷深入研究,為人工神經網路發展提供豐富的理論源泉。另外,還要有哲學家的參與,通過哲學思想和自然科學多種學科的深層結合,逐步孕育出探索人類思維本質和規律的新方法,使思維科學從朦朧走向理性。而且,不同領域專家的競爭與協調同有利於問題清晰化和尋求最好的解決途徑。縱觀神經網路的發展歷史,沒有相關學科的貢獻,不同學科專家的競爭與協同,神經網路就不會有今天。當然,人工神經網路在各個學科領域應用的研究反過來又推動其它學科的發展,推動自身的完善和發展。

❹ 第五章 神經網路

神經網路 :神經網路是由具有適應性的簡單單元組成的廣泛並行互連的網路,它的組織能夠模擬生物神經系統對真實世界物體所作出的交互反應。
神經網路中最基本的成分便是 神經元模型
M-P神經元模型:

感知機由兩層神經元組成,分別為輸入層、輸出層。

以下是具體過程:

多層神經網路的拓撲結構如圖:

如上圖可知,多層網路由輸入層、隱含層和輸出層組成,頂層是輸出層,底層是輸入層,中間的便是隱含層。隱含層與輸出層都具有功能神經元。
多層前饋神經網路的結構需要滿足:
1、每層神經元必須與下一層完全互連
2、神經元之間不存在同層連接
3、神經元不可跨層連接

只需包含一個足夠多神經元的隱層,就能以任意精度逼近任意復雜度的連續函數

BP神經網路由於學習能力太強大比較榮譽造成過擬合問題,故有兩種策略來減緩過擬合的問題:
1、早停:將數據分成訓練集和驗證集,訓練集學習,驗證集評估性能,在訓練過程中,若訓練集的累積誤差降低,而驗證集的累積誤差提高,則終止訓練;
2、引入正則化:其基本思想是在誤差目標函數中增加一個用於描述網路復雜程度的部分,有如連接權和閾值的平方和:

其中λ∈(0,1)用於對累積經驗誤差與網路復雜度這兩項進行折中,常通過交叉驗證法來估計。

神經網路的訓練過程可看作一個參數尋優的過程,即尋找到適當的參數使得E最小。於是我們時常會談及「全局最小」和「局部最小」。
1、全局最小:即全局最小解,在參數空間中,所有其他點的誤差函數值均大於該點;
2、局部最小:即局部最小解,在參數空間中,其鄰近的點的誤差函數值均大於該點。

我們要達到局部極小點,很容易,只要滿足梯度為零的點便是了,局部極小點可以有多個,但全局最小點只有一個。顯然,我們追求的是全局最小,而非局部極小,於是人們通常採用以下策略來試圖「跳出」局部極小,使其接近全局最小:
1、以多組不同參數值初始化多個神經網路,按標准方法訓練,在迭代停止後,取其中誤差最小的解作為最終參數;
2、使用隨機梯度下降(在計算梯度時加入了隨機因素),使得在局部最小時,計算的梯度仍可能不為0,從而可能跳出局部極小,繼續進行迭代;
3、「模擬退火」技術,在每一步都以一定的概率接受比當前解更差的結果,但接受「次優解」的概率要隨著迭代進行,時間推移而逐漸減低以確保演算法的穩定。

1、RBF網路
單隱層前饋神經網路 ,使用徑向基函數作為隱層神經元激活函數,輸出層是對隱層神經元輸出的線性組合。RBF網路可表示為:

2、ART網路
競爭型學習 (神經網路中一種常用的 無監督學習 策略),由 比較層、識別層、識別閾值和重置模塊 組成。接收到比較層的輸入信號後,識別層神經元相互競爭以產生獲勝神經元,最簡單的方式就是計算輸入向量與每個識別層神經元所對應的模式類代表向量間的距離,距離小者獲勝。若獲勝神經元對應的代表向量與輸入向量間 相似度大於識別閾值 ,則將輸入樣本歸為該代表向量所屬類別,網路 連接權 也會進行 更新 以保證後面接收到相似的輸入樣本時該模式類會計算出更大的相似度,使得這樣的樣本能夠歸於一類;如果 相似度不大於識別閾值 ,則 重置模塊 會在 識別層 加一個神經元,其 代表向量 設置 為當前 輸入向量
3、SOM網路
競爭型學習的無監督神經網路 ,將高維輸入數據映射到低維空間(通常是二維),且保持輸入數據在高維空間的拓撲結構。
4、級聯相關網路
結構自適應網路

5、Elman網路
遞歸神經網路

6、Boltzmann機
基於能量的模型,其神經元分為顯層與隱層,顯層用於數據輸入輸出,隱層被理解為數據的內在表達。其神經元皆為布爾型,1為激活,0為抑制。

理論上,參數越多的模型其復雜程度越高,能完成更加復雜的學習任務。但是復雜模型的訓練效率低下,容易過擬合。但由於大數據時代、雲計算,計算能力大幅提升緩解了訓練效率低下,而訓練數據的增加則可以降低過擬合風險。
於是如何增加模型的復雜程度呢?
1、增加隱層數;
2、增加隱層神經元數.
如何有效訓練多隱層神經網路?
1、無監督逐層訓練:每次訓練一層隱節點,把上一層隱節點的輸出當作輸入來訓練,本層隱結點訓練好後,輸出再作為下一層的輸入來訓練,這稱為預訓練,全部預訓練完成後,再對整個網路進行微調。「預訓練+微調」即把大量的參數進行分組,先找出每組較好的設置,再基於這些局部最優的結果來訓練全局最優;
2、權共享:令同一層神經元使用完全相同的連接權,典型的例子是卷積神經網路。這樣做可以大大減少需要訓練的參數數目。

深度學習 可理解為一種特徵學習或者表示學習,是通過 多層處理 ,逐漸將初始的 低層特徵表示 轉化為 高層特徵表示 後,用 簡單模型 即可完成復雜的分類等 學習任務

閱讀全文

與什麼是雲神經網路相關的資料

熱點內容
網路共享中心沒有網卡 瀏覽:510
電腦無法檢測到網路代理 瀏覽:1362
筆記本電腦一天會用多少流量 瀏覽:514
蘋果電腦整機轉移新機 瀏覽:1366
突然無法連接工作網路 瀏覽:998
聯通網路怎麼設置才好 瀏覽:1209
小區網路電腦怎麼連接路由器 瀏覽:971
p1108列印機網路共享 瀏覽:1200
怎麼調節台式電腦護眼 瀏覽:635
深圳天虹蘋果電腦 瀏覽:873
網路總是異常斷開 瀏覽:600
中級配置台式電腦 瀏覽:930
中國網路安全的戰士 瀏覽:620
同志網站在哪裡 瀏覽:1401
版觀看完整完結免費手機在線 瀏覽:1447
怎樣切換默認數據網路設置 瀏覽:1097
肯德基無線網無法訪問網路 瀏覽:1272
光纖貓怎麼連接不上網路 瀏覽:1411
神武3手游網路連接 瀏覽:953
局網列印機網路共享 瀏覽:989