① 最小二乘法、回歸分析法、灰色預測法、決策論、神經網路等5個演算法的使用范圍及優缺點是什麼
最小二乘法:通過最小化誤差的平方和尋找數據的最佳函數匹配。利用最小二乘法可以簡便地求得未知的數據,並使得這些求得的數據與實際數據之間誤差的平方和為最小。最小二乘法還可用於曲線擬合。其他一些優化問題也可通過最小化能量或最大化熵用最小二乘法來表達。優點:實現簡單,計算簡單。缺點:不能擬合非線性數據.
回歸分析法:指的是確定兩種或兩種以上變數間相互依賴的定量關系的一種統計分析方法。在大數據分析中,回歸分析是一種預測性的建模技術,它研究的是因變數(目標)和自變數(預測器)之間的關系。這種技術通常用於預測分析,時間序列模型以及發現變數之間的因果關系。優點:在分析多因素模型時,更加簡單和方便,不僅可以預測並求出函數,還可以自己對結果進行殘差的檢驗,檢驗模型的精度。缺點:回歸方程式只是一種推測,這影響了因子的多樣性和某些因子的不可測性,使得回歸分析在某些情況下受到限制。
灰色預測法:
色預測法是一種對含有不確定因素的系統進行預測的方法 。它通過鑒別系統因素之間發展趨勢的相異程度,即進行關聯分析,並對原始數據進行生成處理來尋找系統變動的規律,生成有較強規律性的數據序列,然後建立相應的微分方程模型,從而預測事物未來發展趨勢的狀況。它用等時間距離觀測到的反應預測對象特徵的一系列數量值構造灰色預測模型,預測未來某一時刻的特徵量,或者達到某一特徵量的時間。優點:對於不確定因素的復雜系統預測效果較好,且所需樣本數據較小。缺點:基於指數率的預測沒有考慮系統的隨機性,中長期預測精度較差。
決策樹:在已知各種情況發生概率的基礎上,通過構成決策樹來求取凈現值的期望值大於等於零的概率,評價項目風險,判斷其可行性的決策分析方法,是直觀運用概率分析的一種圖解法。由於這種決策分支畫成圖形很像一棵樹的枝幹,故稱決策樹。在機器學習中,決策樹是一個預測模型,他代表的是對象屬性與對象值之間的一種映射關系。優點:能夠處理不相關的特徵;在相對短的時間內能夠對大型數據源做出可行且效果良好的分析;計算簡單,易於理解,可解釋性強;比較適合處理有缺失屬性的樣本。缺點:忽略了數據之間的相關性;容易發生過擬合(隨機森林可以很大程度上減少過擬合);在決策樹當中,對於各類別樣本數量不一致的數據,信息增益的結果偏向於那些具有更多數值的特徵。
神經網路:優點:分類的准確度高;並行分布處理能力強,分布存儲及學習能力強,對雜訊神經有較強的魯棒性和容錯能力,能充分逼近復雜的非線性關系;具備聯想記憶的功能。缺點:神經網路需要大量的參數,如網路拓撲結構、權值和閾值的初始值;不能觀察之間的學習過程,輸出結果難以解釋,會影響到結果的可信度和可接受程度;學習時間過長,甚至可能達不到學習的目的。
② 神經網路技術有哪些優點
神經網路技術對完成對微弱信號的檢驗和對各感測器信息實時處理,具有自適應自學習功能,能自動掌握環境特徵,實現自動目標識別及容錯性好,抗干擾能力強等優點。神經網路技術特別適用於密集信號環境的信息處理、數據收集目標識別、圖像處理、無源探測與定位以及人機介面等方面,因而在作戰指揮方面有廣泛的應用前景。
③ 多元線性回歸與神經網路的優缺點對比
我現在做的畢業設計是數據融合 用了最小二乘法也就是你所說的多元線性回歸和神經網路
④ BP神經網路的核心問題是什麼其優缺點有哪些
人工神經網路,是一種旨在模仿人腦結構及其功能的信息處理系統,就是使用人工神經網路方法實現模式識別.可處理一些環境信息十分復雜,背景知識不清楚,推理規則不明確的問題,神經網路方法允許樣品有較大的缺損和畸變.神經網路的類型很多,建立神經網路模型時,根據研究對象的特點,可以考慮不同的神經網路模型. 前饋型BP網路,即誤差逆傳播神經網路是最常用,最流行的神經網路.BP網路的輸入和輸出關系可以看成是一種映射關系,即每一組輸入對應一組輸出.BP演算法是最著名的多層前向網路訓練演算法,盡管存在收斂速度慢,局部極值等缺點,但可通過各種改進措施來提高它的收斂速度,克服局部極值現象,而且具有簡單,易行,計算量小,並行性強等特點,目前仍是多層前向網路的首選演算法.
多層前向BP網路的優點:
網路實質上實現了一個從輸入到輸出的映射功能,而數學理論已證明它具有實現任何復雜非線性映射的功能。這使得它特別適合於求解內部機制復雜的問題;
網路能通過學習帶正確答案的實例集自動提取「合理的」求解規則,即具有自學習能力;
網路具有一定的推廣、概括能力。
多層前向BP網路的問題:
從數學角度看,BP演算法為一種局部搜索的優化方法,但它要解決的問題為求解復雜非線性函數的全局極值,因此,演算法很有可能陷入局部極值,使訓練失敗;
網路的逼近、推廣能力同學習樣本的典型性密切相關,而從問題中選取典型樣本實例組成訓練集是一個很困難的問題。
難以解決應用問題的實例規模和網路規模間的矛盾。這涉及到網路容量的可能性與可行性的關系問題,即學習復雜性問題;
網路結構的選擇尚無一種統一而完整的理論指導,一般只能由經驗選定。為此,有人稱神經網路的結構選擇為一種藝術。而網路的結構直接影響網路的逼近能力及推廣性質。因此,應用中如何選擇合適的網路結構是一個重要的問題;
新加入的樣本要影響已學習成功的網路,而且刻畫每個輸入樣本的特徵的數目也必須相同;
網路的預測能力(也稱泛化能力、推廣能力)與訓練能力(也稱逼近能力、學習能力)的矛盾。一般情況下,訓練能力差時,預測能力也差,並且一定程度上,隨訓練能力地提高,預測能力也提高。但這種趨勢有一個極限,當達到此極限時,隨訓練能力的提高,預測能力反而下降,即出現所謂「過擬合」現象。此時,網路學習了過多的樣本細節,而不能反映樣本內含的規律
由於BP演算法本質上為梯度下降法,而它所要優化的目標函數又非常復雜,因此,必然會出現「鋸齒形現象」,這使得BP演算法低效;
存在麻痹現象,由於優化的目標函數很復雜,它必然會在神經元輸出接近0或1的情況下,出現一些平坦區,在這些區域內,權值誤差改變很小,使訓練過程幾乎停頓;
為了使網路執行BP演算法,不能用傳統的一維搜索法求每次迭代的步長,而必須把步長的更新規則預先賦予網路,這種方法將引起演算法低效。
⑤ 神經網路計算機有哪些特點
傳統的計算機在進行繁瑣、復雜的數值運算時,例如,計算圓周率π,就顯得十分有能耐,比人高強;然而,面對人類認為比較容易的有關識別、判斷方面的問題時,就顯得笨手笨腳,力不從心。
為了解決這個問題,科學家們一心想發明神經計算機,或叫神經元網路計算機。
神經網路計算機的工作原理類似人腦。人腦由100億~150億個神經元組成,而每個神經元又和數千到數萬個神經元相連接。神經網路計算機正是利用與人腦非常相似的神經網路進行信息處理的。
神經網路計算機有著許多特點:第一,有著極強的自學能力。人們利用神經網路計算機的自學特點,可以方便地「教」會它認讀自然語言文字。
第二,神經元網路計算機的「智能」好像是自發產生的,不是嚴格設計出來的,這是各個神經元所做的簡單事情集合起來的結果。這一點同人的大腦的工作原理極相似。
第三,神經元網路計算機的資料不是貯存在存儲器中,而是貯存在神經元之間的網路中。這就是說,即使個別神經網路斷裂、破壞,也並不影響整體的運算能力,即它具有重建資料的能力。
現在,人工神經網路技術的研究,已在許多部門獲得了實際應用。例如,信息識別、系統控制、檢測與監測智能化等。
可以預計,在21世紀,人工神經網路的研究將會有新的突破。雖然用無生命的元器件實現人腦的所有功能是不可能的,但在某些特定的智能方面,接近或達到人腦水平的神經網路計算機將會十分普遍,屆時,神經網路計算機將滲透到人類生活的各個領域。
神經計算機是按照一種仿效人腦的神經網路模型工作的。由於這種模型能通過電路予以實現,因此人們不僅可以通過這一模型了解人的神經細胞是怎樣工作的,而且還能把它製成集成電路的晶元,使計算機仿效神經系統工作。於是,便出現了利用神經網路工作原理的神經計算機。
神經計算機不僅能夠進行並行處理,而且還具有以下兩種能力:第一,具有聯想能力,例如見到紅的、圓的、有芬香味的東西,便會聯想起這是蘋果。第二,具有自我組織能力,神經計算機通過多次處理同類問題,能夠把各神經元連接成最適於處理該問題的網路,通過做同類工作而有所改進便是具有學習功能。
最能發揮神經計算機長處的工作有圖像識別、聲音識別、運動控制等。
由於神經計算機採用並行處理方式,很適合用光計算機來實現。今後,光計算機得到實用時,光神經計算機將會有更誘人的前景。
⑥ 人工神經網路的特點有哪些
人工神經網路的特點和優越性,主要表現在三個方面:
第一,具有自學習功能。例如實現圖像識別時,只在先把許多不同的圖像樣板和對應的應識別的結果輸入人工神經網路,網路就會通過自學習功能,慢慢學會識別類似的圖像。自學習功能對於預測有特別重要的意義。預期未來的人工神經網路計算機將為人類提供經濟預測、市場預測、效益預測,其應用前途是很遠大的。
第二,具有聯想存儲功能。用人工神經網路的反饋網路就可以實現這種聯想。
第三,具有高速尋找優化解的能力。尋找一個復雜問題的優化解,往往需要很大的計算量,利用一個針對某問題而設計的反饋型人工神經網路,發揮計算機的高速運算能力,可能很快找到優化解。
人工神經網路突出的優點:
(1)可以充分逼近任意復雜的非線性關系;
(2)所有定量或定性的信息都等勢分布貯存於網路內的各神經元,故有很強的魯棒性和容錯性;
(3)採用並行分布處理方法,使得快速進行大量運算成為可能;
(4)可學習和自適應不知道或不確定的系統;
(5)能夠同時處理定量、定性知識。
⑦ 神經網路優缺點,
優點:
(1)具有自學習功能。例如實現圖像識別時,只在先把許多不同的圖像樣板和對應的應識別的結果輸入人工神經網路,網路就會通過自學習功能,慢慢學會識別類似的圖像。
自學習功能對於預測有特別重要的意義。預期未來的人工神經網路計算機將為人類提供經濟預測、市場預測、效益預測,其應用前途是很遠大的。
(2)具有聯想存儲功能。用人工神經網路的反饋網路就可以實現這種聯想。
(3)具有高速尋找優化解的能力。尋找一個復雜問題的優化解,往往需要很大的計算量,利用一個針對某問題而設計的反饋型人工神經網路,發揮計算機的高速運算能力,可能很快找到優化解。
缺點:
(1)最嚴重的問題是沒能力來解釋自己的推理過程和推理依據。
(2)不能向用戶提出必要的詢問,而且當數據不充分的時候,神經網路就無法進行工作。
(3)把一切問題的特徵都變為數字,把一切推理都變為數值計算,其結果勢必是丟失信息。
(4)理論和學習演算法還有待於進一步完善和提高。
(7)神經網路有哪些優缺點擴展閱讀:
神經網路發展趨勢
人工神經網路特有的非線性適應性信息處理能力,克服了傳統人工智慧方法對於直覺,如模式、語音識別、非結構化信息處理方面的缺陷,使之在神經專家系統、模式識別、智能控制、組合優化、預測等領域得到成功應用。
人工神經網路與其它傳統方法相結合,將推動人工智慧和信息處理技術不斷發展。近年來,人工神經網路正向模擬人類認知的道路上更加深入發展,與模糊系統、遺傳演算法、進化機制等結合,形成計算智能,成為人工智慧的一個重要方向,將在實際應用中得到發展。
將信息幾何應用於人工神經網路的研究,為人工神經網路的理論研究開辟了新的途徑。神經計算機的研究發展很快,已有產品進入市場。光電結合的神經計算機為人工神經網路的發展提供了良好條件。
神經網路在很多領域已得到了很好的應用,但其需要研究的方面還很多。其中,具有分布存儲、並行處理、自學習、自組織以及非線性映射等優點的神經網路與其他技術的結合以及由此而來的混合方法和混合系統,已經成為一大研究熱點。
由於其他方法也有它們各自的優點,所以將神經網路與其他方法相結合,取長補短,繼而可以獲得更好的應用效果。目前這方面工作有神經網路與模糊邏輯、專家系統、遺傳演算法、小波分析、混沌、粗集理論、分形理論、證據理論和灰色系統等的融合。
參考資料:網路-人工神經網路
⑧ 脈沖神經網路和非脈沖神經網路各有什麼優缺點
度學習的概念源於人工神經網路的研究。含多隱層的多層感知器就是一種深度學習結構,通過組合低層特徵形成更加抽象的高層表示屬性類別或特徵,以發現數據的分布式特徵表示。深度學習的概念由Hinton等人於2006年提出,基於深信度網(DBN)提出非監督貪心逐層訓練演算法,為解決深層結構相關的優化難題帶來希望,隨後提出多層自動編碼器深層結構。深度學習是機器學習研究中的一個新的領域,其動機在於建立、模擬人腦進行分析學習的神經網路,它模仿人腦的機制來解釋數據,例如圖像,聲音和文本。
系統地論述了神經網路的基本原理、方法、技術和應用,主要內容包括:神經信息處理的基本原理、感知器、反向傳播網路、自組織網路、遞歸網路、徑向基函數網路、核函數方法、神經網路集成、模糊神經網路、概率神經網路、脈沖耦合神經網路、神經場理論、神經元集群以及神經計算機。每章末附有習題,書末附有詳細的參考文獻。神經網路是通過對人腦或生物神經網路的抽象和建模,研究非程序的、適應性的、大腦風格的信息處理的本質和能力。它以腦科學和認知神經科學的研究成果為基礎,拓展智能信息處理的方法,為解決復雜問題和智能控制提供有效的途徑,是智能科學和計算智能的重要部分。
⑨ 深度學習有哪些優點和缺點
深度學習的主要優點如下:
1:學習能力強
深度學習具備很強的學習能力。
2:覆蓋范圍廣,適應性好
深度學習的神經網路層數很多,寬度很廣,理論上可以映射到任意函數,所以能解決很復雜的問題。
3:數據驅動,上限高
深度學習高度依賴數據,數據量越大,它的表現就越好。在圖像識別、面部識別、NLP 等領域表現尤為突出。
4:出色的可移植性
由於深度學習的優異表現,很多框架都可以使用,而且這些框架可以兼容很多平台。
深度學習的缺點:
只能提供有限數據量的應用場景下,深度學習演算法不能夠對數據的規律進行無偏差的估計。為了達到很好的精度,需要大數據支撐。由於深度學習中圖模型的復雜化導致演算法的時間復雜度急劇提升,為了保證演算法的實時性,需要更高的並行編程技巧和更多更好的硬體支持。因此,只有一些經濟實力比較強大的科研機構或企業,才能夠用深度學習來做一些前沿而實用的應用。