導航:首頁 > 網路問題 > 怎麼看神經網路輸出個數

怎麼看神經網路輸出個數

發布時間:2022-06-08 08:15:32

『壹』 BP神經網路神經元個數求助

你用的是newff函數的新版用法,不需要手動設置輸入、輸出神經元數目,只需要設置隱層神經元即可。從你的HideLayerNode=[17 7];可以看出,你這是雙隱層網路,第一個隱層是17個神經元,第二層隱是7神經元。
net = newff(P,T,[S1 S2...S(N-l)],{TF1 TF2...TFNl}, BTF,BLF,PF,IPF,OPF,DDF)
Size of ith layer, for N-1 layers, default = [ ].
(Output layer size SN is determined from T.)
輸出層神經元數量由樣本維數決定。

『貳』 急急急!關於4*9*1的BP神經網路怎麼得出輸出結果

給你介紹一種方法吧:使用9個BP網路,每個BP網路對應一個分類器,用來判斷一類問題。BP網路結構:每個BP網路輸入層4個節點,隱含層n個(具體個數自己定),輸出層1個節點。首先製作D類分類器——一個BP網路,當輸入樣本為D類樣本時,BP網路的目標輸出則為1,否則為0。使用者25組數據訓練BP網路1之後,就可以作為D類樣本分類器了。然後,依次類推分別製作EFGHIJKL分類器。使用時,一個新的輸入到來時,依次輸入給這幾個分類器,假若結果是:0.1 ,0.12,0.85,0.08,0.2,0.4,0.5,0.21,0.06,顯然,新的樣本屬於F類。每個神經網路的訓練演算法,低級的有梯度法,高級的有擬牛頓法、共軛梯度法,LM法

『叄』 怎樣判斷神經網路有幾個輸入、幾個隱層和幾個輸出啊!

那我就用最簡單的語言告訴你:
你數數輸入端有幾個圓圈就有幾個輸入量,輸出端一樣的。
輸入端和輸出端只有一層。單層網路沒有隱含層,多層則有一層或是多層隱含層。至於每層隱含層的數量,你數數個數就出來了。
其實我感覺,設置一個三層的神經網路就可以了。隱含層的神經元只需要幾個就能解決問題了。沒有必要太多。

『肆』 請問BP輸出節點數如何確定

某層的神經元個數與節點數是一個意思。按你的假設:雖是3層神經網路,但是去叫做兩層BP網路,因為輸入層一般不算做一層。按你的假設,n就該取2,s1就是隱含層節點數,選取的公式是Hornik
提出的公式,可以算的s1取值范圍,到時自己選取合適職,s2就是你輸出層節點數,也就是輸出維數。

『伍』 神經網路輸出神經元個數怎麼確定

如果是RBF神經網路,那麼只有3層,輸入層,隱含層和輸出層。確定神經元個數的方法有K-means,ROLS等演算法。現在還沒有什麼成熟的定理能確定各層神經元的神經元個數和含有幾層網路,大多數還是靠經驗,不過3層網路可以逼近任意一個非線性網路,神經元個數越多逼近的效果越好。

神經網路可以指向兩種,一個是生物神經網路,一個是人工神經網路。
生物神經網路:一般指生物的大腦神經元,細胞,觸點等組成的網路,用於產生生物的意識,幫助生物進行思考和行動。
人工神經網路(Artificial Neural Networks,簡寫為ANNs)也簡稱為神經網路(NNs)或稱作連接模型(Connection Model),它是一種模仿動物神經網路行為特徵,進行分布式並行信息處理的演算法數學模型。這種網路依靠系統的復雜程度,通過調整內部大量節點之間相互連接的關系,從而達到處理信息的目的。
人工神經網路:是一種應用類似於大腦神經突觸聯接的結構進行信息處理的數學模型。在工程與學術界也常直接簡稱為「神經網路」或類神經網路。

『陸』 神經網路輸出10怎麼看每一個輸出

不知道你的輸出結果是怎麼算的,但從程序來說,這是一個二維數組問題,p[i][j]表示第i+1組中的第j+1個變數,比如p[5][0]等於16.

『柒』 神經網路參數如何確定

神經網路各個網路參數設定原則:

①、網路節點  網路輸入層神經元節點數就是系統的特徵因子(自變數)個數,輸出層神經元節點數就是系統目標個數。隱層節點選按經驗選取,一般設為輸入層節點數的75%。如果輸入層有7個節點,輸出層1個節點,那麼隱含層可暫設為5個節點,即構成一個7-5-1 BP神經網路模型。在系統訓練時,實際還要對不同的隱層節點數4、5、6個分別進行比較,最後確定出最合理的網路結構。

②、初始權值的確定  初始權值是不應完全相等的一組值。已經證明,即便確定  存在一組互不相等的使系統誤差更小的權值,如果所設Wji的的初始值彼此相等,它們將在學習過程中始終保持相等。故而,在程序中,我們設計了一個隨機發生器程序,產生一組一0.5~+0.5的隨機數,作為網路的初始權值。

③、最小訓練速率  在經典的BP演算法中,訓練速率是由經驗確定,訓練速率越大,權重變化越大,收斂越快;但訓練速率過大,會引起系統的振盪,因此,訓練速率在不導致振盪前提下,越大越好。因此,在DPS中,訓練速率會自動調整,並盡可能取大一些的值,但用戶可規定一個最小訓練速率。該值一般取0.9。

④、動態參數  動態系數的選擇也是經驗性的,一般取0.6 ~0.8。

⑤、允許誤差  一般取0.001~0.00001,當2次迭代結果的誤差小於該值時,系統結束迭代計算,給出結果。

⑥、迭代次數  一般取1000次。由於神經網路計算並不能保證在各種參數配置下迭代結果收斂,當迭代結果不收斂時,允許最大的迭代次數。

⑦、Sigmoid參數 該參數調整神經元激勵函數形式,一般取0.9~1.0之間。

⑧、數據轉換。在DPS系統中,允許對輸入層各個節點的數據進行轉換,提供轉換的方法有取對數、平方根轉換和數據標准化轉換。

(7)怎麼看神經網路輸出個數擴展閱讀:

神經網路的研究內容相當廣泛,反映了多學科交叉技術領域的特點。主要的研究工作集中在以下幾個方面:

1.生物原型

從生理學、心理學、解剖學、腦科學、病理學等方面研究神經細胞、神經網路、神經系統的生物原型結構及其功能機理。

2.建立模型

根據生物原型的研究,建立神經元、神經網路的理論模型。其中包括概念模型、知識模型、物理化學模型、數學模型等。

3.演算法

在理論模型研究的基礎上構作具體的神經網路模型,以實現計算機模擬或准備製作硬體,包括網路學習演算法的研究。這方面的工作也稱為技術模型研究。

神經網路用到的演算法就是向量乘法,並且廣泛採用符號函數及其各種逼近。並行、容錯、可以硬體實現以及自我學習特性,是神經網路的幾個基本優點,也是神經網路計算方法與傳統方法的區別所在。

『捌』 神經網路隱層數和神經元個數如何確定

你使用的什麼神經網路?如果是RBF神經網路,那麼只有3層,輸入層,隱含層和輸出層。確定神經元個數的方法有K-means,ROLS等演算法。

『玖』 BP神經網路多輸出表達式如何確定

當然可以,神經網路具有極強的非線性映射能力,對非線性函數的擬合效果非常好,你可以試試BP神經網路,擬合能力已經很強。當對系統對於設計人員來說,很透徹或者很清楚時,則一般利用數值分析,偏微分方程等數學工具建立精確的數學模型,但當對系統很復雜,或者系統未知,系統信息量很少時,建立精確的數學模型很困難時,神經網路的非線性映射能力則表現出優勢,因為它不需要對系統進行透徹的了解,但是同時能達到輸入與輸出的映射關系,這就大大簡化設計的難度。

閱讀全文

與怎麼看神經網路輸出個數相關的資料

熱點內容
網路共享中心沒有網卡 瀏覽:527
電腦無法檢測到網路代理 瀏覽:1377
筆記本電腦一天會用多少流量 瀏覽:598
蘋果電腦整機轉移新機 瀏覽:1381
突然無法連接工作網路 瀏覽:1083
聯通網路怎麼設置才好 瀏覽:1230
小區網路電腦怎麼連接路由器 瀏覽:1060
p1108列印機網路共享 瀏覽:1215
怎麼調節台式電腦護眼 瀏覽:722
深圳天虹蘋果電腦 瀏覽:957
網路總是異常斷開 瀏覽:618
中級配置台式電腦 瀏覽:1019
中國網路安全的戰士 瀏覽:639
同志網站在哪裡 瀏覽:1422
版觀看完整完結免費手機在線 瀏覽:1464
怎樣切換默認數據網路設置 瀏覽:1114
肯德基無線網無法訪問網路 瀏覽:1290
光纖貓怎麼連接不上網路 瀏覽:1502
神武3手游網路連接 瀏覽:969
局網列印機網路共享 瀏覽:1005