① s-mac協議針對這些因素採取了哪些措施
S-MAC協議是在IEEE 802.11協議的SC9636-006基礎上針對感測器網路節省能量的需求設計的。S-MAC包括了從各種能量消耗方式中節省能耗的方法,比如:空閑偵聽、沖突、串音和控制開銷。在描述 S-MAC的構成之前,我們首先概述關於無線感測網路及其應用的設想。
無線感測網路的MAC協議的S-MAC協議概述
感測網路由多個節點組成,利用短距離多跳通信來保存能量,大部分通信都發生在對等節點之間。網內處 理對網路生存期很重要,也就是暗示數據將作為整個消息以存儲轉發的方式進行處理。最後,我們假設應用 將具有很長一段空閑時間,並且能夠容忍網路傳遞時間順序的延遲。
1.周期性偵聽和休眠
如上所述,在多數感測網路應用中,如果沒有感測到事件發生,節點將長期空閑。我們假設這樣一個事實 ,在該段時期內數據速率非常低,因此沒有必要使節點一直保持偵聽。S——MAC通過讓節點處於周期休眠狀態 來降低偵聽時間,每個節點休眠一段時間,然後喚醒並偵聽是否有其他節點想和它通信。在休眠期間,節點 關閉無線裝置,並設置定時器,隨後來喚醒自己。
偵聽和休眠的一個完整周期被稱為一幀。偵聽間隔通常是固定的,根據物理層和MAC層的參數來決定,比 如無線帶寬和競爭窗口大小。占空比指偵聽間隔與整個幀長度之比。休眠間隔可能根據不同的應用需求而改 變,它實際上改變占空比。簡單而言,這些值對所有的節點都是一樣的,所有節點都可以自由選擇它們各自 的偵聽/休眠時間表。然而,為了降低控制開銷,我們更希望鄰居節點保持同步,也就是說它們同時偵聽和 同時進入休眠。值得注意的是,在多跳網路中不是所有的鄰居節點都能夠保持同步。如果節點A和節點B必須 分別與不同的節點C和節點D同步,那麼節點A和節點B可能具有不同的時間表,鄰居節點A和B具有不同的時間表,它們分別與節點C和節點D保持同步。
節點通過周期地向它們的直接鄰居廣播SYNC包來交換它們的時間表。一個節點在預定偵聽時間與它的鄰居 節點通信,以確保所有鄰居節點能夠通信,即使它們具有不同的時間表。比如,如果節點A想與 節點B通信,節點A必須等待直到節點B在偵聽c一個節點發送一個SYNC包的時間稱為同步時間。S——MAC的一個 特徵是它將節點形成一個平面型的對等拓撲結構,不像簇協議,SMAC不需要通過簇頭協作。相反,節點在公 用時間表形成虛擬簇,與對等節點之間直接通信。該方法的一個優點是在拓撲發生變化時,它比基於簇方法 健壯。該機制的不足是由於周期休眠增加了延遲,而且,延遲有可能在每跳積聚。
2.沖突避免
如果多個鄰居節點同時想與一個節點通信,它們將試圖在該節點開始偵聽時發送消息,在該情況下,它們需要競爭媒體。在競爭協議中,IEEE 802.II在沖突避免這方面做得很好。S——MAC遵循類似的流程,包括虛擬載波偵聽和物理載波偵聽,解決隱藏終端問題的RTS/CTS(請求發送/清除發送)交換。每個傳輸包中都有一個持續時閭域來標識該包要傳輸多長時間,如果一個節點收到一個傳輸給另外一個節點的包,該節點就能從持續時間域知道在多長時間內不能發送數據。節點以變數形式記錄該值,被稱為網路分配矢量(NAV),NAV可以被看成一個計時器,每次計時器開始計時,節點遞減它的NAV,直到減少到0。在傳輸之前,節點首先檢查它的NAV,如果它的值不為0,節點就認為媒體忙,這被稱為虛擬載波偵聽。物理載波偵聽在物理層執行,通過偵聽信道進行可能的傳輸。載波偵聽時間是競爭窗口內的一個隨機值,以避免沖突和飢餓現象。如果虛擬載波偵聽和物理載波偵聽都標識媒體空閑,那麼媒體就是空閑的。
在開始傳輸前,所有發送者都執行載波偵聽。如果一個節點沒有獲得媒體,它將進入休眠,當接收機空閑和再一次偵聽時喚醒。廣播分組的發送不需要RTS/CTS,單播分組在發送者和接收者之間遵循RTS/CTS/DATA/ACK序列。RTS和CTS成功交換後,兩個節點將利用它們的休眠時間進行數據分組傳輸,直到它們完成傳輸後才遵循它們的休眠時間表。在每個偵聽間隔內,由於占空比操作和競爭機制,S-MAC有效地標識由於偵聽和碰撞產生的能量消耗。
4.S-MAC協議實現的關鍵技術如下。
(1)數據包的嵌套結構
在S-MAC協議中,上一層數據包包含了下一層數據包的內容。數據包傳送到哪一層,那一層只需要處理屬於它的部分。
(2)堆棧結構和功能
在S-MAC協議堆棧內,當MAC層接收到上層傳送過來的數據包後,它就開始載波偵聽。如果結果顯示MAC層空閑,它就會把數據傳到物理層;如果MAC層忙,它將會進入睡眠狀態,直到下一個可用時間的到來,再重新發送。當MAC層在收到物理層傳送過來的數據包後,先通過循環冗餘校驗(CRC)表示沒有錯誤,MAC層就會將數據包傳向上層。
(3)選擇和維護調度表
在開始周期性偵聽和睡眠之前,每個節點都需要選擇睡眠調度機制並與鄰居節點一致。如何選擇和保持調度機制分為以下3種情況。
①節點在偵聽時間內,如果它沒有偵聽到其他節點的睡眠調度機制,則立即選擇一個睡眠調度機制。
②當節點在選擇和宣布自己的調度機制之前,收到了鄰居節點廣播的睡眠調度機制,它將採用鄰居節點的睡眠調度機制。
③當節點在選擇和廣播自已的睡眠調度機制之後,收到幾種不同的睡眠調度機制時,就要分以下兩種情況考慮:當節點沒有鄰居節點時,它會舍棄自己當前的睡眠調度機制,採用剛接收到的睡眠調度機制;當節點有一個或更多鄰居節點時,它將同時採用不同的調度機制。
(4)時間同步
在S-MAC協議中,節點與鄰居節點需要保持時間同步來同時偵聽和睡眠。S-MAC協議採用的是相對而不是絕對的時間戳,同時使偵聽時間遠大於時鍾誤差和漂移,來減少同步誤差,並且節點會根據收到的鄰居節點的數據包來更新自己的時間,從而與鄰居節點保持時間同步。
(5)帶沖突避免的載波偵聽多路訪問
帶沖突避免的載波偵聽多路訪問( CSMA/CA)的基本機制是在接收者和發送者之間建立一個握手機制來傳輸數據。
握手機制是:由發送端發送一個請求發送( RTS)包給它的接收者,接收者在收到以後就回復一個准備接收(CTS)包,發送端在收到CTS包後,開始發送數據包,RTS與CTS之間的握手是為了使發送端和接收端的鄰居節點知道它們正在進行數據傳輸,從而減少傳輸碰撞。
(6)網路分配矢量
在S-MAC協議中,每個節點都保持了一個網路分配矢量(NAV)來表示鄰居節點的活動時間,S-MAC協議中在每個數據包中都包含了一個持續時間指示值,持續時間指示值表示目前這個通信需要持續的時間。鄰居節點收到發送者或接收者發往其他節點的數據包時,就可以知道它需要睡眠多久,即用數據包中的持續時間更新NAV昀值,當NAV的值不為零時,節點應該進入睡眠狀態來避免串音。當NAV變為零時,它就馬上醒來,准備進行通信。
與IEEE 802.11 MAC相比,S-MAC協議盡量延長其他節點的休眠時間,降低了碰撞概率,減少了空閑偵聽所消耗的能源;通過流量自適應的偵聽機制,減少消息在網路中的傳輸延遲;採用帶內信令來減少重傳和避免監聽不必要的數據;通過消息分割和突發傳遞機制來和帶內數據處理來減少控制消息的開銷和消息的傳遞延遲。因而S-MAC協議具有很好的節能特性,這對無線感測網路的需求和特點來說是合理的,但是由於S-MAC中占空比固定不變,因此它不能很好地適應網路流量的變化,而且協議的實現非常復雜,需要佔用大量的存儲空間。這個對於資源受限的感測器節點尤為突出。
② 無線感測器網路通信協議的目錄
第1章 無線感測器網路概述
1.1 引言
1.2 無線感測器網路介紹
1.2.1 無線感測器網路體系結構
1.2.2 無線感測器網路的特點和關鍵技術
1.2.3 無線感測器網路的應用
1.3 無線感測器網路路由演算法
1.3.1 無線感測器網路路由演算法研究的主要思路
1.3.2 無線感測器網路路由演算法的分類
1.3.3 無線感測器網路QoS路由演算法研究的基本思想
1.3.4 無線感測器網路QoS路由演算法研究的分類
1.3.5 平面路由的主流演算法
1.3.6 分簇路由的主流演算法
1.4 ZigBee技術
1.4.1 ZigBee技術的特點
1.4.2 ZigBee協議框架
1.4.3 ZigBee的網路拓撲結構
1.5 無線感測器安全研究
1.5.1 無線感測器網路的安全需求
1.5.2 無線感測器網路安全的研究進展
1.5.3 無線感測器網路安全的研究方向
1.6 水下感測器網路
1.7 無線感測器網路定位
1.7.1 存在的問題
1.7.2 性能評價
1.7.3 基於測距的定位方法
1.7.4 非測距定位演算法
1.7.5 移動節點定位
第2章 無線感測器網路的分布式能量有效非均勻成簇演算法
2.1 引言
2.2 相關研究工作
2.2.1 單跳成簇演算法
2.2.2 多跳成簇演算法
2.3 DEEUC成簇路由演算法
2.3.1 網路模型
2.3.2 DEEUC成簇演算法
2.3.3 候選簇頭的產生
2.3.4 估計平均能量
2.3.5 最終簇頭的產生
2.3.6 平衡簇頭區節點能量
2.3.7 演算法分析
2.4 模擬和分析
2.5 結論及下一步工作
參考文獻
第3章 無線感測器網路分簇多跳能量均衡路由演算法
3.1 無線傳輸能量模型
3.2 無線感測器網路路由策略研究
3.2.1 平面路由
3.2.2 單跳分簇路由演算法研究
3.2.3 多跳層次路由演算法研究
3.3 LEACH-L演算法
3.3.1 LEACH-L的改進思路
3.3.2 LEACH-L演算法模型
3.3.3 LEACH-L描述
3.4 LEACH-L的分析
3.5 實驗模擬
3.5.1 評價參數
3.5.2 模擬環境
3.5.3 模擬結果
3.6 總結及未來的工作
3.6.1 總結
3.6.2 未來的工作
參考文獻
第4章 基於生成樹的無線感測器網路分簇通信協議
4.1 引言
4.2 無線傳輸能量模型
4.3 基於時間延遲機制的分簇演算法(CHTD)
4.3.1 CHTD的改進思路
4.3.2 CHTD簇頭的產生
4.3.3 CHTD簇頭數目的確定
4.3.4 CHTD最優簇半徑
4.3.5 CHTD描述
4.3.6 CHTD的特性
4.4 CHTD簇數據傳輸研究
4.4.1 引言
4.4.2 改進的CHTD演算法(CHTD-M)
4.4.3 CHTD-M的分析
4.5 模擬分析
4.5.1 生命周期
4.5.2 接收數據包量
4.5.3 能量消耗
4.5.4 負載均衡
4.6 總結及未來的工作
4.6.1 總結
4.6.2 未來的工作
參考文獻
第5章 基於自適應蟻群系統的感測器網路QoS路由演算法
5.1 引言
5.2 蟻群演算法
5.3 APAS演算法的信息素自適應機制
5.4 APAS演算法的揮發系數自適應機制
5.5 APAS演算法的QoS改進參數
5.6 APAS演算法的信息素分發機制
5.7 APAS演算法的定向廣播機制
5.8 模擬實驗及結果分析
5.8.1 模擬環境
5.8.2 模擬結果及分析
5.9 總結及未來的工作
5.9.1 總結
5.9.2 未來的工作
參考文獻
第6章 無線感測器網路簇頭選擇演算法
6.1 引言
6.2 LEACH NEW演算法
6.2.1 網路模型
6.2.2 LEACH NEW簇頭選擇機制
6.2.3 簇的生成
6.2.4 簇頭間多跳路徑的建立
6.3 模擬實現
6.4 結論及未來的工作
參考文獻
第7章 水下無線感測網路中基於向量的低延遲轉發協議
7.1 引言
7.2 相關工作
7.3 網路模型
7.3.1 問題的數學描述
7.3.2 網路模型
7.4 基於向量的低延遲轉發協議
7.4.1 基於向量轉發協議的分析
7.4.2 基於向量的低延遲轉發演算法
7.5 模擬實驗
7.5.1 模擬環境
7.5.2 模擬分析
7.6 總結
參考文獻
第8章 無線感測器網路數據融合演算法研究
8.1 引言
8.2 節能路由演算法
8.2.1 平面式路由演算法
8.2.2 層狀式路由演算法
8.3 數據融合模型
8.3.1 數據融合系統
8.3.2 LEACH簇頭選擇演算法
8.3.3 簇內融合路徑
8.3.4 環境設定和能耗公式
8.4 數據融合模擬
8.4.1 模擬分析
8.4.2 模擬結果分析
8.5 結論
參考文獻
第9章 無線感測器網路相關技術
9.1 超寬頻技術
9.1.1 系統結構的實現比較簡單
9.1.2 空間傳輸容量大
9.1.3 多徑分辨能力強
9.1.4 安全性高
9.1.5 定位精確
9.2 物聯網技術
9.2.1 物聯網原理
9.2.2 物聯網的背景與前景
9.3 雲計算技術
9.3.1 SaaS軟體即服務
9.3.2 公用/效用計算
9.3.3 雲計算領域的Web服務
9.4 認知無線電技術
9.4.1 傳統的Ad-hoc方式中無線感測器網路的不足
9.4.2 在ZigBee無線感測器網路中的應用
參考文獻
第10章 無線感測器網路應用
10.1 軍事應用
10.2 農業應用
10.3 環保監測
10.4 建築應用
10.5 醫療監護
10.6 工業應用
10.6.1 工業安全
10.6.2 先進製造
10.6.3 交通控制管理
10.6.4 倉儲物流管理
10.7 空間、海洋探索
10.8 智能家居應用
③ 無線感測器網路可能採用哪些無線通信方式
基於XL.SN智能感測網路的無線感測器數據採集傳輸系統,可以實現對溫度,壓力,氣體,溫濕度,液位,流量,光照,降雨量,振動,轉速等數據參數的實時採集,無線傳輸,無線監控與預警。在實際應用中,無線感測器數據採集傳輸系統常見的包括深圳信立科技農業物聯網智能大棚環境監控系統,智慧養殖環境監控系統,智慧管網管溝監控系統,倉儲館藏環境監控系統,機房實驗室環境監控系統,危險品倉庫環境監控系統,大氣環境監控系統,智能製造運行過程監控系統,能源管理系統,電力監控系統等。
無線感測器數據採集傳輸系統,比較常用的的無線數據傳輸組網技術包括433MHZ,Zigbee(2.4G),運營商網路(GPRS)等三種方式,其中433MHZ,Zigbee(2.4G)屬於近距離無線通訊技術,並且都使用ISM免執照頻段。運營商網路(GPRS)屬於遠距離無線通訊技術,按數據流量收費。
1、基於Zigbee(2.4G)的智能感測網路
ZigBee的特點是低功耗、高可靠性、強抗干擾性,布網容易,通過無線中繼器可以非常方便地將網路覆蓋范圍擴展至數十倍,因此從小空間到大空間、從簡單空間環境到復雜空間環境的場合都可以使用。但相比於WiFi技術,Zigbee是定位於低傳輸速率的應用,因此Zigbee顯然不適合於高速上網、大文件下載等場合。對於餐飲行業的無線點餐應用,由於其數據傳輸量一般來說都不是很大,因此Zigbee技術是非常適合該應用的。
2、基於433MHz的智能感測網路
433MHz技術使用433MHz無線頻段,因此相比於WiFi和Zigbee,433MHz的顯著優勢是無線信號的穿透性強、能夠傳播得更遠。但其缺點也是很明顯的,就是其數據傳輸速率只有9600bps,遠遠小於WiFi和Zigbee的數據速率,因此433Mhz技術一般只適用於數據傳輸量較少的應用場合。從通訊可靠性的角度來講,433Mhz技術和WiFi一樣,只支持星型網路的拓撲結構,通過多基站的方式實現網路覆蓋空間的擴展,因此其無線通訊的可靠性和穩定性也遜於Zigbee技術。另外,不同於Zigbee和WiFi技術中所採用的加密功能,433Mhz網路中一般採用數據透明傳輸協議,因此其網路安全可靠性也是較差的。
3、基於運營商的智能感測網路
GPRS無線傳輸設備主要針對工業級應用,是一款內嵌GSM/GPRS核心單元的無線Modem,採用GSM/GPRS網路為傳輸媒介,是一款基於移動GSM短消息平台和GPRS數據業務的工業級通訊終端。它利用GSM 移動通信網路的簡訊息和GPRS業務為用戶搭建了一個超遠距離的數據傳輸平台。
標准工業規格設計,提供RS232標准介面,直接與用戶設備連接,實現中英文簡訊功能,彩信功能,GPRS數據傳輸功能。具有完備的電源管理系統,標準的串列數據介面。外觀小巧,軟體介面簡單易用。可廣泛應用於工業簡訊收發、GPRS實時數據傳輸等諸多工業與民用領域。
④ zigbee無線感測器網路是大量感測器節點以什麼方式構成的
ZigBee是一種近距離、低功耗、低速率、低成本的無線網路技術,主要用於近距離網狀網連接。Zigbee有如下優點:
低功耗。在低耗電待機模式下,2節5號干電池可支持1個節點工作6~24個月,甚至更長。這是ZigBee的突出優勢。相比之下藍牙可以工作數周、WiFi可以工作數小時。
2.低成本。通過大幅簡化協議(不到藍牙的1/10),降低了對通信控制器的要求,以8051的8位微控制器測算,全功能的主節點需要32KB代碼,子功能節點少至4KB代碼,而且ZigBee免協議專利費。每塊晶元的價格大約為2美元。
3.低速率。ZigBee工作在20~250kbps的速率,分別提供250 kbps(2.4GHz)、40kbps(915 MHz)和20kbps(868 MHz)的原始數據吞吐率,滿足低速率傳輸數據的應用需求。
4.近距離。傳輸范圍一般介於10~100m之間,在增加發射功率後,亦可增加到1~3km。這指的是相鄰節點間的距離。如果通過路由和節點間通信的接力,傳輸距離將可以更遠。
5.短時延。ZigBee的響應速度較快,一般從睡眠轉入工作狀態只需15ms,節點連接進入網路只需30ms,進一步節省了電能。相比較,藍牙需要3~10s、WiFi 需要3 s。
6.高容量。ZigBee可採用星狀、片狀和網狀網路結構,由一個主節點管理若乾子節點,最多一個主節點可管理254個子節點;同時主節點還可由上一層網路節點管理,最多可組成65000 個節點的大網。
7.高安全。ZigBee提供了三級安全模式,包括無安全設定、使用訪問控制清單(Access Control List, ACL) 防止非法獲取數據以及採用高級加密標准(AES 128)的對稱密碼,以靈活確定其安全屬性。
8.免執照頻段。使用工業科學醫療(ISM)頻段,915MHz(美國), 868MHz(歐洲), 2. 4GHz(全球) 。這三個頻帶的擴頻和調制方式亦有區別。
總的來講,Zigbee最大的優點是:低功耗(但是只針對終端節點來講)、組網靈活(網路中設備較多時有優勢)、低成本(相對藍牙和WiFi來將的)
⑤ 什麼是無線感測技術
早在上世紀70年代,就出現了將傳統感測器採用點對點傳輸、連接感測控制器而構成感測網路雛形,我們把它歸之為第一代感測器網路。隨著相關學科的不斷發展和進步,感測器網路同時還具有了獲取多種信息信號的綜合處理能力,並通過與感測控制的相聯,組成了有信息綜合和處理能力的感測器網路,這是第二代感測器網路。而從上世紀末開始,現場匯流排技術開始應用於感測器網路,人們用其組建智能化感測器網路,大量多功能感測器被運用,並使用無線技術連接,無線感測器網路逐漸形成。
無線感測器網路是新一代的感測器網路,具有非常上世紀70年代,其發展和應用,將會給人類的生活和生產的各個領域帶來深遠影響。
無線感測器網路可以看成是由數據獲取網路、數據頒布網路和控制管理中心三部分組成的。其主要組成部分是集成有感測器、處理單元和通信模塊的節點,各節點通過協議自組成一個分布式網路,再將採集來的數據通過優化後經無線電波傳輸給信息處理中心。
⑥ 無線感測器網路具有怎樣的協議棧結構
物理層
數據鏈路層
網路層
傳輸層
應用層
⑦ 無線感測器網路協議層次結構圖是什麼樣的
你說的不知道是不是WN60無線感測器的自動組網,信立科技WN60無線感測器說明文檔上有相關的參數介紹。
⑧ 無線感測器網路MAC協議有哪些基本分類
沒有統一的MAC協議分類方式,但是大體依據標准分為三種,如根據網路拓撲結構方式(分布式和集中式控制);使用單一或多信道方式;採用固定分配信道還是隨機訪問信道方式。
已有的參考文獻也將無線感測器網路MAC協議分為三類:確定性分配、競爭佔用和隨機訪問。前兩者不是感測器網路的理想選擇。因為TDMA固定時隙的發送模式功耗過大,為了節省功耗,空閑狀態應關閉發射機。競爭佔用方案需要實時監測信道狀態也不是一種合理的選擇。隨機介質訪問模式比較適合於無線感測網路的節能要求。
下面介紹根據信道分配使用方式,將無線感測器網路MAC協議分為基於無線信道隨機競爭方式和時分復用方式及基於時分和頻分復用等其他混合方式三種。
1) 無線信道隨機競爭接入方式(CSMA)
節點需要發送數據時採用隨機方式使用無線信道,典型的如採用載波監聽多路訪問(CSMA)的MAC協議,需要注意隱藏終端和暴露終端問題,盡量減少節點間的干擾。
2) 無線信道時分復用無競爭接入方式(TDMA)
採用時分復用(TDMA)方式給每個節點分配了一個固定的無線信道使用時段,可以有效避免節點間的干擾。
3) 無線信道時分/頻分/碼分等混合復用接入方式(TDMA/FDMA/CDMA)
通過混合採用時分和頻分或碼分等復用方式,實現節點間的無沖突信道分配策略。