導航:首頁 > 無線網路 > 無線感測器網路質心演算法例題

無線感測器網路質心演算法例題

發布時間:2022-11-18 07:17:04

A. 有關無線感測器網路中時間同步機制有哪些方法和策略

1  時間同步技術的重要性 
感測器節點的時鍾並不完美,會在時間上發生漂移,所以觀察到的時間對於網路中的節點來說是不同的。但很多網路協議的應用,都需要一個共同的時間以使得網路中的節點全部或部分在瞬間是同步的。 
第一,感測器節點需要彼此之間並行操作和協作去完成復雜的感測任務。如果在收集信息過程中,感測器節點缺乏統一的時間戳(即沒有同步),估計將是不準確的。 
第二,許多節能方案是利用時間同步來實現的。例如,感測器可以在適當的時候休眠(通過關閉感測器和收發器進入節能模式),在需要的時候再喚醒。在應用這種節能模式的時候,節點應該在同等的時間休眠和喚醒,也就是說當數據到來時,節點的接收器可以接收,這個需要感測器節點間精確的定時。 
2  時間同步技術所關注的主要性能參數 
時間同步技術的根本目的是為網路中節點的本地時鍾提供共同的時間戳。對無線感測器
網路WSN(Wireless Sensor Networks)[1]
的時間同步應主要應考慮以下幾個方面的問題: 
(1)能量效率。同步的時間越長,消耗的能量越多,效率就越低。設計WSN的時間同步演算法需以考慮感測器節點有效的能量資源為前提。 
(2) 可擴展性和健壯性。時間同步機制應該支持網路中節點的數目或者密度的有效擴展,並保障一旦有節點失效時,餘下網路有效且功能健全。 
(3)精確度。針對不同的應用和目的,精確度的需求有所不用。 
(4)同步期限。節點需要保持時間同步的時間長度可以是瞬時的,也可以和網路的壽命一樣長。 
(5)有效同步范圍。可以給網路內所有節點提供時間,也可以給局部區域的節點提供時間。 
(6)成本和尺寸。同步可能需要特定的硬體,另外,體積的大小也影響同步機制的實現。 (7)最大誤差。一組感測器節點之間的最大時間差,或相對外部標准時間的最大差。 3  現有主要時間同步方法研究 
時間同步技術是研究WSN的重要問題,許多具體應用都需要感測器節點本地時鍾的同步,要求各種程度的同步精度。WSN具有自組織性、多跳性、動態拓撲性和資源受限性,尤其是節點的能量資源、計算能力、通信帶寬、存儲容量有限等特點,使時間同步方案有其特
殊的需求,也使得傳統的時間同步演算法不適合於這些網路[2]
。因此越來越多的研究集中在設
計適合WSN的時間同步演算法[3]
。針對WSN,目前已經從不同角度提出了許多新的時間同步演算法[4]
。 
3.1  成對(pair-wise)同步的雙向同步模式 
代表演算法是感測器網路時間同步協議TPSN(Timing-Sync Protocol for Sensor 
Networks)[5~6]
。目的是提供WSN整個網路范圍內節點間的時間同步。 
該演算法分兩步:分級和同步。第一步的目的是建立分級的拓撲網路,每個節點有個級別。只有一個節點與外界通信獲取外界時間,將其定為零級,叫做根節點,作為整個網路系統的時間源。在第二步,每個i級節點與i-1(上一級)級節點同步,最終所有的節點都與根節點同步,從而達到整個網路的時間同步。詳細的時間同步過程如圖 1 所示。 
 

圖1  TPSN 同步過程 
 
設R為上層節點,S為下層節點,傳播時間為d,兩節點的時間偏差為θ。同步過程由節點R廣播開始同步信息,節點S接收到信息以後,就開始准備時間同步過程。在T1時刻,節點S發送同步信息包,包含信息(T1),節點R在T2接收到同步信息,並記錄下接收時間T2,這里滿足關系:21TTd 
節點R在T3時刻發送回復信息包,包含信息(T1,T2,T3)。在T4時刻S接收到同步信息包,滿足關系:43TTd 
最後,節點S利用上述2個時間表達式可計算出的值:(21)(43)2
TTTT 
TPSN由於採用了在MAC層給同步包標記時間戳的方式,降低了發送端的不確定性,消除了訪問時間帶來的時間同步誤差,使得同步效果更加有效。並且,TPSN演算法對任意節點的同步誤差取決於它距離根節點的跳數,而與網路中節點總數無關,使TPSN同步精度不會隨節點數目增加而降級,從而使TPSN具有較好的擴展性。TPSN演算法的缺點是一旦根節點失效,就要重新選擇根節點,並重新進行分級和同步階段的處理,增加了計算和能量開銷,並隨著跳數的增加,同步誤差呈線性增長,准確性較低。另外,TPSN演算法沒有對時鍾的頻差進行估計,這使得它需要頻繁同步,完成一次同步能量消耗較大。 
3.2  接收方-接收方(Receiver-Receiver)模式 
代表演算法是參考廣播時間同步協議RBS(Reference Broadcast Synchronization)[7]
。RBS是典型的基於接收方-接收方的同步演算法,是Elson等人以「第三節點」實現同步的思想而提出的。該演算法中,利用無線數據鏈路層的廣播信道特性,基本思想為:節點(作為發
送者)通過物理層廣播周期性地向其鄰居節點(作為接收者)發送信標消息[10]
,鄰居節點記錄下廣播信標達到的時間,並把這個時間作為參考點與時鍾的讀數相比較。為了計算時鍾偏移,要交換對等鄰居節點間的時間戳,確定它們之間的時間偏移量,然後其中一個根據接收
到的時間差值來修改其本地的時間,從而實現時間同步[11]
。 
假如該演算法在網路中有n個接收節點m個參考廣播包,則任意一個節點接收到m個參考包後,會拿這些參考包到達的時間與其它n-1個接收節點接收到的參考包到達的時間進行比較,然後進行信息交換。圖2為RBS演算法的關鍵路徑示意圖。 
網路介面卡
關鍵路徑
接收者1
發送者
接收者2
 
圖2  RBS演算法的關鍵路徑示意圖 
 
其計算公式如下: 
,,1
1,:[,]()m
jkikkinjnoffsetijTTm
 其中n表示接收者的數量,m表示參考包的數量,,rbT表示接收節點r接收到參考包b時的時鍾。 

此演算法並不是同步發送者和接收者,而是使接收者彼此同步,有效避免了發送訪問時間對同步的影響,將發送方延遲的不確定性從關鍵路徑中排除,誤差的來源主要是傳輸時間和接收時間的不確定性,從而獲得了比利用節點間雙向信息交換實現同步的方法更高的精確度。這種方法的最大弊端是信息的交換次數太多,發送節點和接收節點之間、接收節點彼此之間,都要經過消息交換後才能達到同步。計算復雜度較高,網路流量開銷和能耗太大,不適合能量供應有限的場合。 
3.3  發送方-接收方(Sender-Receiver)模式 
基於發送方-接收方機制的時間同步演算法的基本原理是:發送節點發送包含本地時間戳的時間同步消息,接收節點記錄本地接收時間,並將其與同步消息中的時間戳進行比較,調整本地時鍾。基於這種方法提出的時間同步演算法有以下兩種。 
3.3.1  FTSP 演算法[8]
 
泛洪時間同步協議FTSP(Flooding Time Synchronization Protocol)由Vanderbilt大學Branislav Kusy等提出,目標是實現整個網路的時間同步且誤差控制在微秒級。該演算法用單個廣播消息實現發送節點與接收節點之間的時間同步。 
其特點為:(1)通過對收發過程的分析,把時延細分為發送中斷處理時延、編碼時延、傳播時延、解碼時延、位元組對齊時延、接收中斷處理時延,進一步降低時延的不確定度;(2)通過發射多個信令包,使得接收節點可以利用最小方差線性擬合技術估算自己和發送節點的頻率差和初相位差;(3)設計一套根節點選舉機制,針對節點失效、新節點加入、拓撲變化
等情況進行優化,適合於惡劣環境[12]
。 
FTSP演算法對時鍾漂移進行了線性回歸分析。此演算法考慮到在特定時間范圍內節點時鍾晶振頻率是穩定的,因此節點間時鍾偏移量與時間成線性關系,通過發送節點周期性廣播時間同步消息,接收節點取得多個數據對,構造最佳擬合直線,通過回歸直線,在誤差允許的時間間隔內,節點可直接通過它來計算某一時間節點間的時鍾偏移量而不必發送時間同步消息進行計算,從而減少了消息的發送次數並降低了系統能量開銷。 
FTSP結合TPSN和RBS的優點,不僅排除了發送方延遲的影響,而且對報文傳輸中接收方的不確定延遲(如中斷處理時間、位元組對齊時間、硬體編解碼時間等)做了有效的估計。多跳的FTSP協議採用層次結構,根節點為同步源,可以適應大量感測器節點,對網路拓撲結構的變化和根節點的失效有健壯性,精確度較好。該演算法通過採用MAC層時間戳和線性回歸偏差補償彌補相關的錯誤源,通過對一個數據包打多個時戳,進而取平均和濾除抖動較大的時戳,大大降低了中斷和解碼時間的影響。FTSP 採用洪泛的方式向遠方節點傳遞時間基準節點的時間信息,洪泛的時間信息可由中轉節點生成,因此誤差累積不可避免。另外,FTSP的功耗和帶寬的開銷巨大。 
3.3.2  DMTS 演算法[9]
 
延遲測量時間同步DMTS (delay measurement time synchronization) 演算法的同步機制是基於發送方-接收方的同步機制。DMTS 演算法的實現策略是犧牲部分時間同步精度換取較低的計算復雜度和能耗,是一種能量消耗輕的時間同步演算法。 
DMTS演算法的基本原理為:選擇一個節點作為時間主節點廣播同步時間,所有接收節點通過精確地測量從發送節點到接收節點的單向時間廣播消息的延遲並結合發送節點時間戳,計算出時間調整值,接收節點設置它的時間為接收到消息攜帶的時間加上廣播消息的傳輸延遲,調整自己的邏輯時鍾值以和基準點達成同步,這樣所有得到廣播消息的節點都與主節點進行時間同步。發送節點和接收節點的時間延遲dt可由21()dtnttt得出。其中,nt為發送前導碼和起始字元所需的時間,n為發送的信息位個數,t為發送一位所需時間;1t為接收節點在消息到達時的本地時間;2t為接收節點在調整自己的時鍾之前的那一時刻記錄的本地時間,21()tt是接收處理延遲。 

DMTS 演算法的優點是結合鏈路層打時間戳和時延估計等技術,消除了發送時延和訪問時延的影響,演算法簡單,通信開銷小。但DMTS演算法沒有估計時鍾的頻率偏差,時鍾保持同步的時間較短,沒有對位偏移產生的時間延遲進行估計,也沒有消除時鍾計時精度對同步精度的影響,因此其同步精度比FTSP略有下降,不適用於定位等要求高精度同步的應用。 
基於發送方-接收方單向同步機制的演算法在上述三類方法中需要發送的時間同步消息數目最少。發送節點只要發送一次同步消息,因而具有較低的網路流量開銷和復雜度,減少了系統能耗。 
4  結論 
文章介紹了WSN時間同步演算法的類型以及各自具有代表性的演算法,分析了各演算法的設計原理和優缺點。這些協議解決了WSN中時間同步所遇到的主要問題,但對於大型網路,已有的方法或多或少存在著一些問題:擴展性差、穩定性不高、收斂速度變慢、網路通信沖突、能耗增大。今後的研究熱點將集中在節能和時間同步的安全性方面。這將對演算法的容錯性、有效范圍和可擴展性提出更高的要求。 

B. 無線感測器網路的特點與應用

無線感測器網路是一種新型的感測器網路,其主要是由大量的感測器節點組成,利用無線網路組成一個自動配置的網路系統,並將感知和收集到的信息發給管理部門。目前無線感測器網路在軍事、生態環境、醫療和家居方面都有一定應用,未來無線感測器網路的發展前景將是不可估量的。

一、無線感測器網路的特點

(一)節點數量多

在監測區通常都會安置許多感測器節點,並通過分布式處理信息,這樣就能夠提高監測的准確性,有效獲取更加精確的信息,並降低對節點感測器的精度要求。此外,由於節點數量多,因此存在許多冗餘節點,這樣就能使系統的容錯能力較強,並且節點數量多還能夠覆蓋到更廣闊的監測區域,有效減少監測盲區。

(二)動態拓撲

無線感測器網路屬於動態網路,其節點並非固定的。當某個節電出現故障或是耗盡電池後,將會退出網路,此外,還可能由於需要而被轉移添加到其他的網路當中。

(三)自組織網路

無線感測器的節點位置並不能進行精確預先設定。節點之間的相互位置也無法預知,例如通過使用飛機播散節點或隨意放置在無人或危險的區域內。在這種情況下,就要求感測器節點自身能夠具有一定的組織能力,能夠自動進行相關管理和配置。

(四)多跳路由

無線感測網路中,節點之間的距離通常都在幾十到幾百米,因此節點只能與其相鄰的節點進行直接通信。如果需要與范圍外的節點進行通信,就需要經過中間節點進行路由。無線感測網路中的多跳路由並不是專門的路由設備,所有傳輸工作都是由普通的節點完成的。

(五)以數據為中心

無線感測網路中的節點均利用編號標識。由於節點是隨機分布的,因此節點的編號和位置之間並沒有聯系。用戶在查詢事件時,只需要將事件報告給網路,並不需要告知節點編號。因此這是一種以數據為中心進行查詢、傳輸的方式。

(六)電源能力局限性

通常都是用電池對節點進行供電,而每個節點的能源都是有限的,因此一旦電池的能量消耗完,就是造成節點無法再進行正常工作。

二、無線感測器網路的應用

(一)環境監測應用

無線感測器可以用於進行氣象研究、檢測洪水和火災等,在生態環境監測中具有明顯優勢。隨著我國市場經濟的不斷發展,生態環境污染問題也越來越嚴重。我國是一個幅員遼闊、資源豐富的農業大國,因此在進行農業生產時利用無線感測器進行對生產環境變化進行監測能夠為農業生產帶來許多好處,這對我國市場經濟的'不斷發展有著重要意義。

(二)醫療護理應用

無線感測器網路通過使用互聯網路將收集到的信息傳送到接受埠,例如一些病人身上會有一些用於監測心率、血壓等的感測器節點,這樣醫生就可以隨時了解病人的病情,一旦病人出現問題就能夠及時進行臨時處理和救治。在醫療領域內感測器已經有了一些成功案例,例如芬蘭的技術人員設計出了一種可以穿在身上的無線感測器系統,還有SSIM(Smart Sensors and Integrated Microsystems)等。

(三)智能家居建築應用

文物保護單位的一個重要工作就是要對具有意義的古老建築實行保護措施。利用無線感測器網路的節點對古老建築內的溫度是、濕度、關照等進行監測,這樣就能夠對建築物進行長期有效的監控。對於一些珍貴文物的保存,對保護地的位置、溫度和濕度等提前進行檢測,可以提高展覽品或文物的保存品質。例如,英國一個博物館基於無線感測器網路設計了一個警報系統,利用放在溫度底部的節點檢測燈光、振動等信息,以此來保障文物的安全[5]。

目前我國基礎建設處在高速發展期,建設單位對各種建設工程的安全施工監測越來越關注。利用無線感測器網路使建築能夠檢測到自身狀況並將檢測數據發送給管理部門,這樣管理部門就能夠及時掌握建築狀況並根據優先等級來處理建築修復工作。

另外,在傢具或家電匯中設置無線感測器節點,利用無線網路與互聯網路,將家居環境打造成一個更加舒適方便的空間,為人們提供更加人性化和智能化的生活環境。通過實時監測屋內溫度、濕度、光照等,對房間內的細微變化進行監測和感知,進而對空調、門窗等進行智能控制,這樣就能夠為人們提供一個更加舒適的生活環境。

(四)軍事應用

無線感測器網路具有低能耗、小體積、高抗毀等特性,且其具有高隱蔽性和高度的自組織能力,這為軍事偵察提供有效手段。美國在20世紀90年代就開始在軍事研究中應用無線感測器網路。無線感測器網路在惡劣的戰場內能夠實時監控區域內敵軍的裝備,並對戰場上的狀況進行監控,對攻擊目標進行定位並能夠檢測生化武器。

目前無線感測器網路在全球許多國家的軍事、研究、工業部門都得到了廣泛的關注,尤其受到美國國防部和軍事部門的重視,美國基於C4ISR又提出了C4KISR的計劃,對戰場情報的感知和信息綜合能力又提出新的要求,並開設了如NSOF系統等的一系列軍事無線感測器網路研究。

總之,隨著無線感測器網路的研究不斷深入和擴展,人們對無線感測器的認識也越來越清晰,然而目前無線感測器網路的在技術上還存在一定問題需要解決,例如存儲能力、傳輸能力、覆蓋率等。盡管無線感測器網路還有許多技術問題待解決使得現在無法廣泛推廣和運用,但相信其未來發展前景不可估量。

C. 無線感測器網路加權質心定位演算法Matlab模擬的一些疑問。

你沒有定義信標節點(BeaconAmount)的個數。不定義肯定報錯啊。一下是我最近隨便編的一段類似於質心演算法的東西的核心部分,你的同學應該能看懂,有點幫助。
if num_of_neb_anchor(i)>1&&num_of_neb_anchor(i)<6
%如果未知節點i的鄰居錨節點個數在2和5之間
fenmu(i)=0;
fenzi_x(i)=0;
fenzi_y(i)=0;
fenzi_z(i)=0;
for k=1:num_of_neb_anchor(i)
distant_rssi(i,k)=sqrt((node_x(i)-neighbor_anchor_x(i,k))^2+(node_y(i)-neighbor_anchor_y(i,k))^2+(node_z(i)-neighbor_anchor_z(i,k))^2);
fenmu(i)=fenmu(i)+1/distant_rssi(i,k);
fenzi_x(i)=fenzi_x(i)+neighbor_anchor_x(i,k)/distant_rssi(i,k);
fenzi_y(i)=fenzi_y(i)+neighbor_anchor_y(i,k)/distant_rssi(i,k);
fenzi_z(i)=fenzi_z(i)+neighbor_anchor_z(i,k)/distant_rssi(i,k);
end
esti_node_x(i)=fenzi_x(i)/fenmu(i);
esti_node_y(i)=fenzi_y(i)/fenmu(i);
esti_node_z(i)=fenzi_z(i)/fenmu(i);%未知節點的估計坐標
end

D. 質心演算法matlab求講解

自從網路文庫和網路知道通道阻塞後,好久沒回答問題了,今天抽空回答一下:
clear
clc
for i=1:1:10
for j=1:1:10
x(j+(i-1)*10)=(i-1)*10;
y(j+(i-1)*10)=(j-1)*10;
end
end
figure
plot(x,y,'.')

hold on
axis([0 100 0 100])
xy=[x;y]
hold on
xm=90;
ym=90;
n=50;%在原有100個點中隨機產生50個點
for i=1:1:n
Sx(i)=rand(1,1)*xm;
Sy(i)=rand(1,1)*ym;
plot(Sx(i),Sy(i),'r*')
xlabel('x軸')
ylabel('y軸')
hold on
end
dm=30
m=100;%%%以上都知道,就是下面看不懂,求講解
for j=1:1:n
SS=[Sx(j);Sy(j)];%選擇一個點
k=0;
for i=1:1:m
d=norm((xy(:,i)-SS),2);%計算這個點和其它100點的距離(用歐式距離)
if d<=dm %距離小於閾值則記錄
xx(j,i)=xy(1,i);
yy(j,i)=xy(2,i);
k=k+1;
else%距離太大就不記錄(可以這么理解:將隨機點的周圍點作為一組,太遠的點就不作為這一組了)
xx(j,i)=0;
yy(j,i)=0;
end
end
if k~=0%如果這個隨機點所在的組不是空集,則計算該組的均值
cent(:,j)=[sum(xx(j,:));sum(yy(j,:))]/k;
else
cent(:,j)=0;
end
plot(cent(1,j),cent(2,j),'o')%畫出這個組的質心(將一張圖分為幾組)
hold on
plot([cent(1,j) Sx(j)],[cent(2,j) Sy(j)],'R') %畫出這個隨機點所屬於的質心
Title('Centroid')
hold on
MM=[cent(1,j);cent(2,j)]
e(j)=norm((MM-SS),2)/dm%計算誤差(質心和隨機點)
end
figure
axis([0 n 0 1])
j=1:1:n
plot(j,e(j) ,'-r.')%畫出這50個點的誤差,即距離質心的距離
hold on
Title('Centroid')
E=sum(e)/n

E. 無線感測器網路的連接可靠性模型有哪些

為了解決測量無線感測器網路可靠性的問題,提出一種可靠性評估模型,此模型綜合考慮了基於容錯的網路抗毀性和基於能效的網路壽命這兩個主要因素。通過確定K-覆蓋和K-連通,可有效評估自然失效和能量約束條件下的網路可靠性,同時可以延長網路壽命並提高網路的魯棒性。實驗結果表明在無線感測器網路中可靠性與感測器密度存在一定關系。通過實現可靠性模型中的最優化目標,滿足了感測器覆蓋率和網路連通率要求,提高了無線感測器網路的安全性能。http://www.big-bit.com
無線感測器網路W
SN(w ireless sensor net-w
orks)[1]是由一組稠密布置、隨機撒布的感測器組成的無線自組織網路,以其隨機布置、自組織、適應苛刻環境等優勢,具有在多種場合滿足軍事信息獲取的實時性、准確性、全面性等需求的潛力。然而,在大多數應用環境中對無線感測器網路

F. 無線感測器的應用實例

橋梁健康檢測及監測橋梁結構健康監測(SHM)是一種基於感測器的主動防禦型方法,可以彌補目前安全性能十分重要的結構中,把感測器網路安置到橋梁、建築和飛機中,利用感測器進行SHM是一種可靠且不昂貴的做法,可以在第一時間檢測到缺陷的形成。這種網路可以提早向維修人員報告在關鍵結構中出現的缺陷,從而避免災難性事故。糧倉溫濕度監測無線感測器網路技術在糧庫糧倉溫度濕度監測領域應用最為普遍,這是由於糧庫糧倉溫度濕度的測點多,分布廣,使用縱橫交錯的信號線會降低防火安全系數,應用無線感測器網路技術具有低功耗,低成本,布線簡單,安裝方便,易於組網,便於管理維護等特點。混凝土澆灌溫度監測在混凝土施工過程中,將數字溫度感測器裝入導熱良好的金屬套管內,可保證感測器對混凝土溫度變化作出迅速的反應。每個溫度監測金屬管接入一個無線溫度節點,整個現場的無線溫度節點通過無線網路傳輸到施工監控中心,不需要在施工現場布放長電纜,安裝布放方便,能夠有效解決溫度測量點因為施工人員損壞電纜造成的成活率較低的問題.地震監測通過使用由大量互連的微型感測器節點組成的感測器網路,可以對不同環境進行不間斷的高精度數據搜集。採用低功耗的無線通信模塊和無線通信協議可以使感測器網路的生命期延續很長時間。保證了感測器網路的實用性。無線感測器網路相對於傳統的網路,其最明顯的特色可以用六個字來概括即:「自組織,自癒合」。這些特點使得無線感測器網路能夠適應復雜多變的環境,去監測人力難以到達的惡劣環境地區。BEETECH無線感測器網路節點體積小巧,不需現場拉線供電,非常方便在應急情況下進行靈活部署監測並預測地質災害的發生情況。建築物振動檢測建築物懸臂部分不會因為旁邊公路及地鐵交通所引發的振動而超過舒適度的要求;通過現場測量,收集數據以驗證由公路及地鐵交通所引發的振動與主樓懸臂振動之相互關系; 同時,通過模態分析得到主樓結構在小振幅脈動振動工況下前幾階振動模態的阻尼比,為將來進行結構的小振幅動力分析提供關鍵數據。本次應用採用高精度加速度感測器,捕捉大型結構微弱振動,同樣適用於風載,車輛等引起的脈動測量。

G. 無線感測器網路的組成(三個部分,詳細介紹)

很詳細,你可以到書店去買這類的書看即可。

以下是來自網路:http://www.sensorexpert.com.cn/Article/wuxianchanganqiwang_1.html。

無線感測器網路組成和特點
發表時間:2012-11-14 14:28:00
文章出處:感測器專家網
相關專題:感測器基礎
無線感測器網路的構想最初是由美國軍方提出的,美國國防部高級研究所計劃署(DARPA)於1978年開始資助卡耐基-梅隆大學進行分布式感測器網路的研究,這被看成是無線感測器網路的雛形。從那以後,類似的項目在全美高校間廣泛展開,著名的有UCBerkeley的SmartDuST項目,UCLA的WINS項目,以及多所機構聯合攻關的SensIT計劃,等等。在這些項目取得進展的同時,其應用也從軍用轉向民用。在森林火災、洪水監測之類的環境應用中,在人體生理數據監測、葯品管理之類的醫療應用中,在家庭環境的智能化應用以及商務應用中都已出現了它的身影。目下,無線感測器網路的商業化應用也已逐步興起。美國Crossbow公司就利用SMArtDust項目的成果開發出了名為Mote的智能感測器節點,還有用於研究機構二次開發的MoteWorkTM開發平台。這些產品都很受使用者的歡迎。

無線感測器網路可以看成是由數據獲取網路、數據分布網路和控制管理中心三部分組成的。其主要組成部分是集成有感測器、數據處理單元和通信模塊的節點,各節點通過協議自組成一個分布式網路,再將採集來的數據通過優化後經無線電波傳輸給信息處理中心。

因為節點的數量巨大,而且還處在隨時變化的環境中,這就使它有著不同於普通感測器網路的獨特「個性」。首先是無中心和自組網特性。在無線感測器網路中,所有節點的地位都是平等的,沒有預先指定的中心,各節點通過分布式演算法來相互協調,在無人值守的情況下,節點就能自動組織起一個測量網路。而正因為沒有中心,網路便不會因為單個節點的脫離而受到損害。

其次是網路拓撲的動態變化性。網路中的節點是處於不斷變化的環境中,它的狀態也在相應地發生變化,加之無線通信信道的不穩定性,網路拓撲因此也在不斷地調整變化,而這種變化方式是無人能准確預測出來的。

第三是傳輸能力的有限性。無線感測器網路通過無線電波進行數據傳輸,雖然省去了布線的煩惱,但是相對於有線網路,低帶寬則成為它的天生缺陷。同時,信號之間還存在相互干擾,信號自身也在不斷地衰減,諸如此類。不過因為單個節點傳輸的數據量並不算大,這個缺點還是能忍受的。

第四是能量的限制。為了測量真實世界的具體值,各個節點會密集地分布於待測區域內,人工補充能量的方法已經不再適用。每個節點都要儲備可供長期使用的能量,或者自己從外汲取能量(太陽能)。

第五是安全性的問題。無線信道、有限的能量,分布式控制都使得無線感測器網路更容易受到攻擊。被動竊聽、主動入侵、拒絕服務則是這些攻擊的常見方式。因此,安全性在網路的設計中至關重要。

H. 在無線感測器網路中,如何根據接收信號的強度來判斷發送者的距離有具體的計算公式么

基於RSSI的定位
RSSI測量,一般利用信號傳播的經驗模型與理論模型。
對於經驗模型,在實際定位前,先選取若干測試點,記錄在這些點各基站收到的信號強度,建立各個點上的位置和信號強度關系的離線資料庫(x,y,ss1,ss2,ss3)。在實際定位時,根據測得的信號強度(ss1′,ss2′,ss3′)和資料庫中記錄的信號強度進行比較,信號強度均方差最小的那個點的坐標作為節點的坐標。
對於理論模型,常採用無線電傳播路徑損耗模型進行分析。常用的傳播路徑損耗模型有:自由空間傳播模型、對數距離路徑損耗模型、哈它模型、對數一常態分布模型等。自由空間無線電傳播路徑損耗模型為:

式中,d為距信源的距離,單位為km;f為頻率,單位為MHz;k為路徑衰減因子。其他的模型模擬現實環境,但與現實環境還是有一定的差距。比如對數一常態分布模型,其路徑損耗的計算公式為:

式中,Xσ是平均值為O的高斯分布隨機變數,其標准差范圍為4~10;k的范圍在2~5之間。取d=1,代入式(1)可得,LOSS,即PL(d0)的值。此時各未知節點接收錨節點信號時的信號強度為:

RSSI=發射功率+天線增益一路徑損耗(PL(d))
2.2 基於RSSI的三角形質心定位演算法的數學模型
不論哪種模型,計算出的接收信號強度總與實際情況下有誤差,因為實際環境的復雜性,換算出的錨節點到未知節點的距離d總是大於實際兩節點間的距離。如圖1所示,錨節點A,B,C,未知節點D,根據RSSI模型計算出的節點A和D的距離為rA;節點B和D的距離為rB;節點C和D的距離為rC。分別以A,B,C為圓心;rA,rB,rC為半徑畫圓,可得交疊區域。這里的三角形質心定位演算法的基本思想是:計算三圓交疊區域的3個特徵點的坐標,以這三個點為三角形的頂點,未知點即為三角形質心,如圖2所示,特徵點為E,F,G,特徵點E點的計算方法為:

同理,可計算出F,G,此時未知點的坐標為由模擬得,在圖2中,實際點為D;三角形質心演算法出的估計點為M;三邊測量法算出的估計點為N。可知,三角形質心演算法的准確度更高。

3 基於RSSI的三角形質心演算法過程
3.1 步驟
(1)錨節點周期性向周圍廣播信息,信息中包括自身節點ID及坐標。普通節點收到該信息後,對同一錨節點的RSSI取均值。
(2)當普通節點收集到一定數量的錨節點信息時,不再接收新信息。普通節點根據RSSI從強到弱對錨節點排序,並建立RSSI值與節點到錨節點距離的映射。建立3個集合。
錨節點集合:

(3)選取RSSI值大的前幾個錨節點進行自身定位計算。
在B_set:中優先選擇RSSI值大的信標節點組合成下面的錨節點集合,這是提高定位精度的關鍵。

對錨節點集合,依次根據(3)式算出3個交點的坐標,最後由質心演算法,得出未知節點坐標。
(4)對求出的未知節點坐標集合取平均,得未知節點坐標。
3.2 誤差定義
定義定位誤差為ER,假設得到的未知節點的坐標為(xm,ym),其真實位置為(x,y),則定位誤差ER為:

4 仿 真
利用Matlab模擬工具模擬三角形質心演算法,考察該演算法的性能。假設在100 m×100 m的正方形區域內,36個錨節點均勻分布,未知節點70個,分別用三邊測量法和三角形質心定位演算法進行模擬,模擬結果如圖3所示。由圖3可知,三角形質心演算法比三邊測量法,定位精度更高,當測距誤差變大時,用三角形質心演算法得出的平均定位誤差比用三邊測量法得出的小得多。

5 結 語
在此提出了將RSSI方法和三角形質心定位演算法相結合的方法,通過模擬實驗,將該演算法和三邊測量演算法相比較,證明了該演算法的優越性。下一步將研究在錨節點數量不同時的平均定位誤差。

I. 無線感測器網路中的部署問題,200分!!追加!!

無線感測器網路是近幾年發展起來的一種新興技術,在條件惡劣和無人堅守的環境監測和事件跟蹤中顯示了很大的應用價值。節點部署是無線感測器網路工作的基礎,對網路的運行情況和壽命有很大的影響。部署問題涉及覆蓋、連接和節約能量消耗3個方面。該文重點討論了網路部署中的覆蓋問題,綜述了現有的研究成果,總結了今後的熱點研究方向,為以後的研究奠定了基礎。
基於虛擬勢場的有向感測器網路覆蓋增強演算法
摘 要: 首先從視頻感測器節點方向性感知特性出發,設計了一種方向可調感知模型,並以此為基礎對有向感測器網路覆蓋增強問題進行分析與定義;其次,提出了一種基於虛擬勢場的有向感測器網路覆蓋增強演算法PFCEA (potential field based coverage-enhancing algorithm).通過引入「質心」概念,將有向感測器網路覆蓋增強問題轉化為質心均勻分布問題,以質心點作圓周運動代替感測器節點感測方向的轉動.質心在虛擬力作用下作擴散運動,以消除網路中感知重疊區和盲區,進而增強整個有向感測器網路覆蓋.一系列模擬實驗驗證了該演算法的有效性.
關鍵詞: 有向感測器網路;有向感知模型;虛擬勢場;覆蓋增強
中圖法分類號: TP393 文獻標識碼: A
覆蓋作為感測器網路中的一個基本問題,反映了感測器網路所能提供的「感知」服務質量.優化感測器網路覆蓋對於合理分配網路的空間資源,更好地完成環境感知、信息獲取任務以及提高網路生存能力都具有重要的意義[1].目前,感測器網路的初期部署有兩種策略:一種是大規模的隨機部署;另一種是針對特定的用途進行計劃部署.由於感測器網路通常工作在復雜的環境下,而且網路中感測器節點眾多,因此大都採用隨機部署方式.然而,這種大規模隨機投放方式很難一次性地將數目眾多的感測器節點放置在適合的位置,極容易造成感測器網路覆蓋的不合理(比如,局部目標區域感測器節點分布過密或過疏),進而形成感知重疊區和盲區.因此,在感測器網路初始部署後,我們需要採用覆蓋增強策略以獲得理想的網路覆蓋性能.
目前,國內外學者相繼開展了相關覆蓋增強問題的研究,並取得了一定的進展[25].從目前可獲取的資料來看,絕大多數覆蓋問題研究都是針對基於全向感知模型(omni-directional sensing model)的感測器網路展開的[6],
即網路中節點的感知范圍是一個以節點為圓心、以其感知距離為半徑的圓形區域.通常採用休眠冗餘節點[2,7]、
重新調整節點分布[811]或添加新節點[11]等方法實現感測器網路覆蓋增強.
實際上,有向感知模型(directional sensing model)也是感測器網路中的一種典型的感知模型[12],即節點的感知范圍是一個以節點為圓心、半徑為其感知距離的扇形區域.由基於有向感知模型的感測器節點所構成的網路稱為有向感測器網路.視頻感測器網路是有向感測器網路的一個典型實例.感知模型的差異造成了現有基於全向感知模型的覆蓋研究成果不能直接應用於有向感測器網路,迫切需要設計出一系列新方法.
在早期的工作中[13],我們率先開展有向感測器網路中覆蓋問題的研究,設計一種基本的有向感知模型,用以刻畫視頻感測器節點的方向性感知特性,並研究有向感測器網路覆蓋完整性以及通信連通性問題.同時,考慮到有向感測器節點感測方嚮往往具有可調整特性(比如PTZ攝像頭的推拉搖移功能),我們進一步提出一種基於圖論和計算幾何的集中式覆蓋增強演算法[14],調整方案一經確定,網路中所有有向感測器節點並發地進行感測方向的一次性調整,以此獲得網路覆蓋性能的增強.但由於未能充分考慮到有向感測器節點局部位置及感測方向信息,因而,該演算法對有向感測器網路覆蓋增強的能力相對有限.
本文將基本的有向感知模型擴展為方向可調感知模型,研究有向感測器網路覆蓋增強問題.首先定義了方向可調感知模型,並分析隨機部署策略對有向感測器網路覆蓋率的影響.在此基礎上,分析了有向感測器網路覆蓋增強問題.本文通過引入「質心」概念,將待解決問題轉化為質心均勻分布問題,提出了一種基於虛擬勢場的有向感測器網路覆蓋增強演算法PFCEA(potential field based coverage-enhancing algorithm).質心在虛擬力作用下作擴散運動,逐步消除網路中感知重疊區和盲區,增強整個網路覆蓋性能.最後,一系列模擬實驗驗證了PFCEA演算法的有效性.
1 有向感測器網路覆蓋增強問題
本節旨在分析和定義有向感測器網路覆蓋增強問題.在此之前,我們對方向可調感知模型進行簡要介紹.
1.1 方向可調感知模型
不同於目前已有的全向感知模型,方向可調感知模型的感知區域受「視角」的限制,並非一個完整的圓形區域.在某時刻t,有向感測器節點具有方向性感知特性;隨著其感測方向的不斷調整(即旋轉),有向感測器節點有能力覆蓋到其感測距離內的所有圓形區域.由此,通過簡單的幾何抽象,我們可以得到有向感測器節點的方向可調感知模型,如圖1所示.
定義1. 方向可調感知模型可用一個四元組P,R, ,
表示.其中,P=(x,y)表示有向感測器節點的位置坐標;R表示節
點的最大感測范圍,即感測半徑;單位向量 = 為扇形感知區域的中軸線,即節點在某時刻t時的感測方向; 和 分別是單位向量 在X軸和Y軸方向上的投影分量;表示邊界距離感測向量 的感測夾角,2代表感測區域視角,記作FOV.
特別地,當=時,傳統的全向感知模型是方向可調感知模型的一個特例.
若點P1被有向感測器節點vi覆蓋成立,記為viP1,當且僅當滿足以下條件:
(1) ,其中, 代表點P1到該節點的歐氏距離;
(2) 與 間夾角取值屬於[,].
判別點P1是否被有向感測器節點覆蓋的一個簡單方法是:如果 且 ,那麼,點P1
被有向感測器節點覆蓋;否則,覆蓋不成立.另外,若區域A被有向感測節點覆蓋,當且僅當區域A中任何一個點都被有向感測節點覆蓋.除非特別說明,下文中出現的「節點」和「感測器節點」均滿足上述方向可調感知模型.
1.2 有向感測器網路覆蓋增強問題的分析與定義
在研究本文內容之前,我們需要作以下必要假設:
A1. 有向感測器網路中所有節點同構,即所有節點的感測半徑(R)、感測夾角()參數規格分別相同;
A2. 有向感測器網路中所有節點一經部署,則位置固定不變,但其感測方向可調;
A3. 有向感測器網路中各節點都了解自身位置及感測方向信息,且各節點對自身感測方向可控.
假設目標區域的面積為S,隨機部署的感測器節點位置滿足均勻分布模型,且目標區域內任意兩個感測器節點不在同一位置.感測器節點的感測方向在[0,2]上也滿足均勻分布模型.在不考慮感測器節點可能落入邊界區域造成有效覆蓋區域減小的情況下,由於每個感測器節點所監控的區域面積為R2,則每個感測器節點能監測整個目標區域的概率為R2/S.目標區域被N個感測器節點覆蓋的初始概率p0的計算公式為(具體推導過程參見文獻[14])
(1)
由公式(1)可知,當目標區域內網路覆蓋率至少達到p0時,需要部署的節點規模計算公式為
(2)
當網路覆蓋率分別為p0和p0+p時,所需部署的感測器節點數目分別為ln(1p0)/,ln(1(p0+p))/.其中, =ln(SR2)lnS.因此,感測器節點數目差異N由公式(3)可得,
(3)
當目標區域面積S、節點感測半徑R和感測夾角一定時,為一常數.此時,N與p0,p滿足關系如圖2所示(S=500500m2,R=60m,=45º).從圖中我們可以看出,當p0一定時,N隨著p的增加而增加;當p一定時,N隨著p0的增加而增加,且增加率越來越大.因此,當需要將覆蓋率增大p時,則需多部署N個節點(p0取值較大時(80%),p取值每增加1%,N就有數十、甚至數百的增加).如果採用一定的覆蓋增強策略,無須多部署節點,就可以使網路覆蓋率達到p0+p,大量節省了感測器網路部署成本.
設Si(t)表示節點vi在感測向量為 時所覆蓋的區域面積.運算操作Si(t)Sj(t)代表節點vi和節點vj所能覆蓋到的區域總面積.這樣,當網路中節點感測向量取值為 時,有向感測器網路覆蓋率可表
示如下:
(4)
因此,有向感測器網路覆蓋增強問題歸納如下:
問題:求解一組 ,使得對於初始的 ,有 取值
接近最大.

Fig.2 The relation among p0, p and N
圖2 p0,p和N三者之間的關系
2 基於虛擬勢場的覆蓋增強演算法
2.1 傳統虛擬勢場方法
虛擬勢場(virtual potential field)的概念最初應用於機器人的路徑規劃和障礙躲避.Howard等人[8]和Pori等人[9]先後將這一概念引入到感測器網路的覆蓋增強問題中來.其基本思想是把網路中每個感測器節點看作一個虛擬的電荷,各節點受到其他節點的虛擬力作用,向目標區域中的其他區域擴散,最終達到平衡狀態,即實現目標區域的充分覆蓋狀態.Zou等人[15]提出了一種虛擬力演算法(virtual force algorithm,簡稱VFA),初始節點隨機部署後自動完善網路覆蓋性能,以均勻網路覆蓋並保證網路覆蓋范圍最大化.在執行過程中,感測器節點並不移動,而是計算出隨機部署的感測器節點虛擬移動軌跡.一旦感測器節點位置確定後,則對相應節點進行一次移動操作.Li等人[10]為解決感測器網路布局優化,在文獻[15]的基礎上提出了涉及目標的虛擬力演算法(target involved virtual force algorithm,簡稱TIVFA),通過計算節點與目標、熱點區域、障礙物和其他感測器之間的虛擬力,為各節點尋找受力平衡點,並將其作為該感測器節點的新位置.
上述利用虛擬勢場方法優化感測器網路覆蓋的研究成果都是基於全向感知模型展開的.假定感測器節點間存在兩種虛擬力作用:一種是斥力,使感測器節點足夠稀疏,避免節點過於密集而形成感知重疊區域;另一種是引力,使感測器節點保持一定的分布密度,避免節點過於分離而形成感知盲區[15].最終利用感測器節點的位置移動來實現感測器網路覆蓋增強.
2.2 基於虛擬勢場的有向感測器網路覆蓋增強演算法
在實際應用中,考慮到感測器網路部署成本,所有部署的感測器節點都具有移動能力是不現實的.另外,感測器節點位置的移動極易引起部分感測器節點的失效,進而造成整個感測器網路拓撲發生變化.這些無疑都會增加網路維護成本.因而,本文的研究工作基於感測器節點位置不變、感測方向可調的假設.上述假設使得直接利用虛擬勢場方法解決有向感測器網路覆蓋增強問題遇到了麻煩.在傳統的虛擬勢場方法中,感測器節點在勢場力的作用下進行平動(如圖3(a)所示),而基於本文的假設,感測器節點表現為其扇形感知區域在勢場力的作用下以感測器節點為軸心進行旋轉(如圖3(b)所示).
為了簡化扇形感知區域的轉動模型,我們引入「質心(centroid)」的概念.質心是質點系中一個特定的點,它與物體的平衡、運動以及內力分布密切相關.感測器節點的位置不變,其感測方向的不斷調整可近似地看作是扇形感知區域的質心點繞感測器節點作圓周運動.如圖3(b)所示,一個均勻扇形感知區域的質心點位於其對稱軸上且與圓心距離為2Rsin/3.每個感測器節點有且僅有一個質心點與其對應.我們用c表示感測器節點v所對應的質心點.本文將有向感測器網路覆蓋增強問題轉化為利用傳統虛擬勢場方法可解的質心點均勻分布問題,如圖4所示.

Fig.3 Moving models of sensor node
圖3 感測器節點的運動模型

Fig.4 The issue description of coverage enhancement in directional sensor networks
圖4 有向感測器網路覆蓋增強問題描述
2.2.1 受力分析
利用虛擬勢場方法增強有向感測器網路覆蓋,可以近似等價於質心點-質心點(c-c)之間虛擬力作用問題.我們假設質心點-質心點之間存在斥力,在斥力作用下,相鄰質心點逐步擴散開來,在降低冗餘覆蓋的同時,逐漸實現整個監測區域的充分高效覆蓋,最終增強有向感測器網路的覆蓋性能.在虛擬勢場作用下,質心點受來自相鄰一個或多個質心點的斥力作用.下面給出質心點受力的計算方法.
如圖5所示,dij表示感測器節點vi與vj之間的歐氏距離.只有當dij小於感測器節點感測半徑(R)的2倍時,它們的感知區域才存在重疊的可能,故它們之間才存在產生斥力的作用,該斥力作用於感測器節點相應的質心點ci和cj上.
定義2. 有向感測器網路中,歐氏距離不大於節點感測半徑(R)2倍的一對節點互為鄰居節點.節點vi的鄰居節點集合記作i.即i={vj|Dis(vi,vj)2R,ij}.
我們定義質心點vj對質心點vi的斥力模型 ,見公式(5).
(5)
其中,Dij表示質心點ci和cj之間的歐氏距離;kR表示斥力系數(常數,本文取kR=1);ij為單位向量,指示斥力方向(由質心點cj指向ci).公式(5)表明,只有當感測器節點vi和vj互為鄰居節點時(即有可能形成冗餘覆蓋時),其相應的質心點ci和cj之間才存在斥力作用.質心點所受斥力大小與ci和cj之間的歐氏距離成反比,而質心點所受斥力方向由ci和cj之間的相互位置關系所決定.
質心點ci所受合力是其受到相鄰k個質心點排斥力的矢量和.公式(6)描述質心點ci所受合力模型 .
(6)
通過如圖6所示的實例,我們分析質心點的受力情況.圖中包括4個感測器節點:v1,v2,v3和v4,其相應的質心
點分別為c1,c2,c3和c4.以質心點c1為例,由於d122R,故 ,質心點c1僅受到來自質心點c3和c4的斥力,其所受合力 .感測器節點感測方向旋轉導致質心點的運動軌跡並不是任意的,而是固定繞感測器節點作圓周運動.因此,質心點的運動僅僅受合力沿圓周切線方向分量 的影響.

Fig.6 The force on centroid
圖6 質心點受力
2.2.2 控制規則(control law)
本文基於一個虛擬物理世界研究質心點運動問題,其中作用力、質心點等都是虛擬的.該虛擬物理世界的構建是建立在求解問題特徵的基礎上的.在此,我們定義控制規則,即規定質心點受力與運動之間的關系,以達到質心點的均勻分布.
質心點在 作用下運動,受到運動學和動力學的雙重約束,具體表現如下:
(1) 運動學約束
在傳統感測器網路中利用虛擬勢場方法移動感測器節點的情況下,由於感測器節點向任意方向運動的概率是等同的,我們大都忽略其所受的運動學約束[8].而在轉動模型中,質心點的運動不是任意方向的,受合力沿圓
周切線方向分量 的影響,只能繞其感測器節點作圓周運動.
質心點在運動過程中受到的虛擬力是變化的,但對感測器網路系統來說,感測器節點之間每時每刻都交換鄰居節點位置及感測方向信息是不現實的.因此,我們設定鄰居節點間每隔時間步長t交換一次位置及感測方向信息,根據交換信息計算當前時間步長質心點所受合力,得出轉動方向及弧長.同時,問題求解的目的在於將節點的感測方向調整至一個合適的位置.在此,我們不考慮速度和加速度與轉動弧長之間的關系.
(2) 動力學約束
動力學約束研究受力與運動之間的關系.本運動模型中的動力學約束主要包含兩方面內容:
• 每個時間步長t內,質心點所受合力與轉動方向及弧長之間的關系;
• 質心點運動的靜止條件.
在傳統感測器網路中利用虛擬勢場方法移動感測器節點的情況下,在每個時間步長內,感測器節點的運動速度受限於最大運動速度vmax,而不是隨感測器節點受力無止境地增加.通過此舉保證微調方法的快速收斂.在本轉動模型中,我們同樣假設質心點每次固定以較小的轉動角度進行轉動,通過多次微調方法逐步趨向最優解,即在每個時間步長t內,質心點轉動的方向沿所受合力在圓周切線方向分量,轉動大小不是任意的,而是具有固定轉動角度.採用上述方法的原因有兩個:
• 運動過程中,質心點受力不斷變化,且變化規律很難用簡單的函數進行表示,加之上述運動學約束和問題特徵等因素影響,我們很難得出一個簡明而合理的質心點所受合力與轉動弧長之間的關系.
• 運動過程中,質心點按固定角度進行轉動,有利於簡化計算過程,減少節點的計算負擔.同時,我們通過分析模擬實驗數據發現,該方法具有較為理想的收斂性(具體討論參見第3.2節).
固定轉動角度取值不同對PFCEA演算法性能具有較大的影響,這在第3.3節中將加以詳細的分析和說明.
當質心點所受合力沿圓周切線方向分量為0時,其到達理想位置轉動停止.如圖7所示,我們假定質心點在圓周上O點處合力切向分量為0.由於質心點按固定轉動角度進行轉動,因此,它
未必會剛好轉動到O點處.當質心點處於圖7中弧 或 時,會
因合力切向分量不為0而導致質心點圍繞O點附近往復振動.因此,為避免出現振動現象,加速質心點達到穩定狀態,我們需要進一步限定質心點運動的停止條件.
當質心點圍繞O點附近往復振動時,其受合力的切向分量很
小.因此,我們設定受力門限,當 (本文取=10e6),即可認
定質心點已達到穩定狀態,無須再運動.經過數個時間步長t後,當網路中所有質心點達到穩定狀態時,整個感測器網路即達到穩定狀態,此時對應的一組 ,該
組解通常為本文覆蓋增強的較優解.
2.3 演算法描述
基於上述分析,本文提出了基於虛擬勢場的網路覆蓋增強演算法(PFCEA),該演算法是一個分布式演算法,在每個感測器節點上並發執行.PFCEA演算法描述如下:
輸入:節點vi及其鄰居節點的位置和感測方向信息.
輸出:節點vi最終的感測方向信息 .
1. t0; //初始化時間步長計數器
2. 計算節點vi相應質心點ci初始位置 ;
3. 計算節點vi鄰居節點集合i,M表示鄰居節點集合中元素數目;
4. While (1)
4.1 tt+1;
4.2 ;
4.3 For (j=0; j<M; j++)
4.3.1 計算質心點cj對ci的當前斥力 ,其中,vji;
4.3.2 ;
4.4 計算質心點ci當前所受合力 沿圓周切線分量 ;
4.5 確定質心點ci運動方向;
4.6 If ( ) Then
4.6.1 質心點ci沿 方向轉動固定角度;
4.6.2 調整質心點ci至新位置 ;
4.6.3 計算節點vj指向當前質心點ci向量並單位化,得到節點vi最終的感測方向信息 ;
4.7 Sleep (t);
5. End.
3 演算法模擬與性能分析
我們利用VC6.0自行開發了適用於感測器網路部署及覆蓋研究的模擬軟體Senetest2.0,並利用該軟體進行了大量模擬實驗,以驗證PFCEA演算法的有效性.實驗中參數的取值見表1.為簡化實驗,假設目標區域中所有感測器節點同構,即所有節點的感測半徑及感測夾角規格分別相同.
Table 1 Experimental parameters
表1 實驗參數
Parameter Variation
Target area S 500500m2
Area coverage p 0~1
Sensor number N 0~250
Sensing radius Rs 0~100m
Sensing offset angel  0º~90º
3.1 實例研究
在本節中,我們通過一個具體實例說明PFCEA演算法對有向感測器網路覆蓋增強.在500500m2的目標區域內,我們部署感測半徑R=60m、感測夾角=45º的感測器節點完成場景監測.若達到預期的網路覆蓋率p=70%, 通過公式(1),我們可預先估算出所需部署的感測器節點數目,
.
針對上述實例,我們記錄了PFCEA演算法運行不同時間步長時有向感測器網路覆蓋增強情況,如圖8所示.

(a) Initial coverage, p0=65.74%
(a) 初始覆蓋,p0=65.74% (b) The 10th time step, p10=76.03%
(b) 第10個時間步長,p10=76.03%

(c) The 20th time step, p20=80.20%
(c) 第20個時間步長,p20=80.20% (d) The 30th time step, p30=81.45%
(d) 第30個時間步長,p30=81.45%
Fig.8 Coverage enhancement using PFCEA algorithm
圖8 PFCEA演算法實現覆蓋增強
直觀看來,質心點在虛擬斥力作用下進行擴散運動,逐步消除網路中感知重疊區和盲區,最終實現有向感測器網路覆蓋增強.此例中,網路感測器節點分別經過30個時間步長的調整,網路覆蓋率由最初的65.74%提高到81.45%,網路覆蓋增強達15.71個百分點.
圖9顯示了逐個時間步長調整所帶來的網路覆蓋增強.我們發現,隨著時間步長的增加,網路覆蓋率也不斷增加,且近似滿足指數關系.當時間步長達到30次以後,網路中絕大多數節點的感測方向出現振動現象,直觀表現為網路覆蓋率在81.20%附近在允許的范圍振盪.此時,我們認定有向感測器網路覆蓋性能近似增強至最優.
網路覆蓋性能可以顯著地降低網路部署成本.實例通過節點感測方向的自調整,在僅僅部署105個感測器節點的情況下,最終獲得81.45%的網路覆蓋率.若預期的網路覆蓋率為81.45%,通過公式(1)的計算可知,我們至少需要部署148個感測器節點.由此可見,利用PFCEA演算法實現網路覆蓋增強的直接效果是可以節省近43個感測器節點,極大地降低了網路部署成本.
3.2 收斂性分析
為了討論本文演算法的收斂性,我們針對4種不同的網路節點規模進行多組實驗.我們針對各網路節點規模隨機生成10個拓撲結構,分別計算演算法收斂次數,並取平均值,實驗數據見表2.其他實驗參數為R=60m,=45º, =5º.
Table 2 Experimental data for convergence analysis
表2 實驗數據收斂性分析

(%)
(%)

1 50 41.28 52.73 24
2 70 52.74 64.98 21
3 90 60.76 73.24 28
4 110 65.58 78.02 27
分析上述實驗數據,我們可以得出,PFCEA演算法的收斂性即調整的次數,並不隨感測器網路節點規模的變化而發生顯著的改變,其取值一般維持在[20,30]范圍內.由此可見,本文PFCEA演算法具有較好的收斂性,可以在較短的時間步長內完成有向感測器網路的覆蓋增強過程.
3.3 模擬分析
在本節中,我們通過一系列模擬實驗來說明4個主要參數對本文PFCEA演算法性能的影響.它們分別是:節點規模N、感測半徑R、感測夾角和(質心點)轉動角度.針對前3個參數,我們與以往研究的一種集中式覆蓋增強演算法[14]進行性能分析和比較.
A. 節點規模N、感測半徑R以及感測角度
我們分別取不同節點規模進行模擬實驗.從圖10(a)變化曲線可以看出,當R和一定時,N取值較小導致網路初始覆蓋率較小.此時,隨著N的增大,p取值呈現持續上升趨勢.當N=200時,網路覆蓋率增強可達14.40個百分點.此後,p取值有所下降.這是由於當節點規模N增加導致網路初始覆蓋率較高時(如60%),相鄰多感測器節點間形成覆蓋盲區的概率大為降低,無疑削弱了PFCEA演算法的性能.另外,部分感測器節點落入邊界區域,也會間接起到削弱PFCEA演算法性能的作用.
另外,感測半徑、感測角度對PFCEA演算法性能的影響與此類似.當節點規模一定時,節點感測半徑或感測角度取值越小,單個節點的覆蓋區域越小,各相鄰節點間形成感知重疊區域的可能性也就越小.此時,PFCEA演算法對網路覆蓋性能改善並不顯著.隨著感測半徑或感測角度的增加,p不斷增加.當R=70m且=45º時,網路覆蓋率最高可提升15.91%.但隨著感測半徑或感測角度取值的不斷增加,PFCEA演算法帶來的網路覆蓋效果降低,如圖10(b)、圖10(c)所示.

(c) The effect of sensing offset angle , other parameters meet N=100, R=40m, =5º
(c) 感測角度的影響,其他實驗參數滿足:N=100,R=40m,=5º

J. 無線感測網多跳路由節點能耗怎麼計算

(1)根據無線感測器網路中因節點有效傳輸半徑對路由選擇的制約,改進基於最小生成樹的分簇多跳路由演算法,改善因路由選擇對網路能耗的影響。該演算法利用Voronoi圖的泊松過程特性優化簇首節點數,並結合最小生成樹動態調整簇內外節點的路由發現實現網路能耗優化。模擬結果表明該演算法在開銷容忍的前提下,網路均衡負載,並與相同模擬條件下的基於LEACH的分層多跳路由演算法相比,更有效地延長了網路壽命,同時降低了計算時間復雜度。
(2)針對無線感測器網路中感測器節點投放分布對投放區域有效通信信號覆蓋的影響,改進了一種基於通信覆蓋的分布式投放概率覆蓋演算法。在保證投放精度的前提下,該演算法根據感測器節點在投放區域中位置的不確定性以及信號衰減特性,建立信號覆蓋模型,並通過信號覆蓋率計算出各節點預定投放位置,由感測器節點的自定位演算法獲取定位信息為前提,獲取節點的投放位置和投放數目。在改善區域通信覆蓋的同時,提高了節點分布效率,達到節省網路資源的目的。通過模擬比較了在不同定位投放方法下的各相關性數據,驗證了該演算法可實現高效投放的優越性能。
(3)在關於無線感測器網路應用方面,提出了在實現投放區域有效通信信號覆蓋的基礎上保證局部能量有效損耗的路由設計要求,由此提出了基於多跳路徑劃分子空間的分簇路由演算法。該路由演算法在獲得相應的節點拓撲分布的前提下實現了能量平均損耗,而節點拓撲的獲取則通過採用高斯分布的定位誤差模型與馬爾可夫鏈性質相結合,改進了以前演算法對於感測器節點拓撲結構的獲取。通過對整個演算法的模擬,得到的相關數據證明了演算法在實現網路硬體資源優化和能量有效損耗方面所具有的較好的性能。
(4)在對運動目標跟蹤定位的研究中,對於無法得知目標的運動狀態方程和觀測雜訊的概率密度分布的情況時,提出基於粒子濾波和曲線准線性優化的目標跟蹤演算法。演算法利用感測器節點的感知圓的幾何特性確定目標的運動區域的邊界限制,借鑒cost
reference粒子濾波演算法,估計出目標的運動軌跡,隨後通過曲線的線性近似簡化了目標運動軌跡的估計,同時也獲取了目標的速率的可控估計,模擬結果證明了所提演算法的高效性。根據實際應用中可能出現部分的感測器節點失效的情況,引入了節點的失效檢測,並以貝葉斯概率分布估計糾正失效節點對原目標狀態做的判斷,提高失效節點所在感知區域的容錯能力,改善了目標跟蹤定位的精度。

閱讀全文

與無線感測器網路質心演算法例題相關的資料

熱點內容
網路共享中心沒有網卡 瀏覽:521
電腦無法檢測到網路代理 瀏覽:1374
筆記本電腦一天會用多少流量 瀏覽:576
蘋果電腦整機轉移新機 瀏覽:1376
突然無法連接工作網路 瀏覽:1059
聯通網路怎麼設置才好 瀏覽:1224
小區網路電腦怎麼連接路由器 瀏覽:1034
p1108列印機網路共享 瀏覽:1212
怎麼調節台式電腦護眼 瀏覽:695
深圳天虹蘋果電腦 瀏覽:932
網路總是異常斷開 瀏覽:612
中級配置台式電腦 瀏覽:991
中國網路安全的戰士 瀏覽:630
同志網站在哪裡 瀏覽:1413
版觀看完整完結免費手機在線 瀏覽:1459
怎樣切換默認數據網路設置 瀏覽:1110
肯德基無線網無法訪問網路 瀏覽:1286
光纖貓怎麼連接不上網路 瀏覽:1474
神武3手游網路連接 瀏覽:965
局網列印機網路共享 瀏覽:1000