導航:首頁 > 無線網路 > 無線供電網路最新研究方向

無線供電網路最新研究方向

發布時間:2022-12-22 18:37:45

1. 無線電力傳輸技術的基本原理與應用前景

摘 要: 無線電力傳輸是一種傳輸電力的新技術,它將電力通過電磁耦合、射頻微波、激光等載體進行傳輸。這種技術解除了對於導線的依賴,從而得到更加方便和廣闊的應用。本文就無線電力傳輸的發展歷史和基本原理做了一些介紹,並對其未來可能的應用做了一些探討。
關鍵詞: 無線電力傳輸技術 電磁感應 射頻 原理與應用前景

1.引言
自17世紀人類發現如何發電後就用金屬電線來四處傳輸電力。時至今日,供電網、高壓線已遍布全球的角角落落。在工作和生活中,越來越多的電器給我們帶來極大便捷的同時,不知不覺各種“理不清”的電源線、數據線帶來的困擾也與日俱增。不過,這些年的科技發展表明,在無線數據傳輸技術日益普及之時,科學家對無線電力傳輸(Wireless Power Transmission,WPT)的研究也有了很大突破,從某種意義上來講,無線電力傳輸也不再是幻想——在未來的生活中擺脫那些紛亂的電源線已成為可能。
2.無線電力傳輸的發展歷史
19世紀末被譽為“迎來電力時代的天才”的名尼古拉·特斯拉(Nikola Tesla,1856—1943)在電氣與無線電技術方面作出了突出貢獻。他1881年發現了旋轉磁場原理,並用於製造感應電動機;1888年發明多相交流傳輸及配電系統;1889—1890年製成赫茲振盪器;1891年發明高頻變壓器(特斯拉線圈),現仍廣泛用於無線電、電視機及其他電子設備。他曾致力於研究無線傳輸信號及能量的可能性,並在1899年演示了不用導線採用高頻電流的電動機,但由於效率低和對安全方面的擔憂,無線電力傳輸的技術無突破性進展[1]。1901—1905年在紐約附近的長島建造Wardenclyffe塔,是一座復雜的電磁振盪器,設想它將能夠把電力輸送到世界上任何一個角落,特斯拉利用此塔實現地球與電離層共振。
2001年5月,法國國家科學研究中心的皮格努萊特,利用微波無線傳輸電能點亮40m外一個200W的燈泡。其後,2003年在島上建造的10kW試驗型微波輸電裝置,已開始以2.45GHz頻率向接近1km的格朗巴桑村進行點對點無線供電。
2005年,香港城市大學電子工程學系教授許樹源成功研製出“無線電池充電平台”,但其使用時仍然要將產品與充電器接觸。
2006年10月,日本展出了無線電力傳輸系統。此系統輸出端電力為7V、400mA,收發線圈間距為4mm時,輸電效率最大為50%,用於手機快速充電。
2007年6月,美國麻省理工學院的物理學助理教授馬林·索爾賈希克研究團隊實現了在短距離內的無線電力傳輸。他們給一個直徑60厘米的線圈通電,6英尺(約1.83米)之外連接在另一個線圈上的60瓦的燈泡被點亮了。這種馬林稱之為“WiTricity”技術的原理是“磁耦合共振”。
2008年9月,北美電力研討會發布的論文顯示,他們已經在美國內華達州的雷電實驗室成功地將800W電力用無線的方式傳輸到5m遠的距離。
2009年10月,日本奈良市針對充電式混合動力巴士進行了無線充電實驗。供電線圈埋入充電台的混凝土中,汽車駛上充電台,將車載線圈對准供電線圈就能開始充電。
3.無線電力傳輸的基本原理
3.1電磁感應——短程傳輸
電磁感應現象是電磁學中最重大的發現之一,它顯示了電、磁現象之間的相互聯系與轉化。電磁感應是電磁學中的基本原理,變壓器就是利用電磁感應的基本原理進行工作的。利用電磁感應進行短程電力傳輸的基本原理如圖1所示,發射線圈L1和接收線圈L2之間利用磁耦合來傳遞能量。若線圈L1中通已交變電流,該電流將在周圍介質中形成一個交變磁場,線圈L2中產生的感應電勢可供電給移動設備或者給電池充電。
3.2電磁耦合共振——中程傳輸
中程無線電力傳輸方式是以電磁波“射頻”或者非輻射性諧振“磁耦合”等形式將電能進行傳輸。它基於電磁共振耦合原理,利用非輻射磁場實現電力高效傳輸。在電子學的理論中,當交變電流通過導體,導體的周圍會形成交變的電磁場,稱為電磁波。在電磁波的頻率低於100khz時,電磁波就會被地表吸收,不能形成有效的傳輸,當電磁波頻率高於100khz時,電磁波便可以在空氣中傳播,並且經大氣層外緣的電離層反射,形成較遠距離傳輸能力,人們把具有較遠距離傳輸能力的高頻電磁波稱為射頻(即:RF)。將電信息源(模擬或者數字)用高頻電流進行調制(調幅或者調頻),形成射頻信號後,經過天線發射到空中;較遠的距離將射頻信號接收後需要進行反調制,再還原成電信息源,這一過程稱為無線傳輸。中程傳輸是利用電磁波損失小的天線技術,並藉助二極體、非接觸IC卡、無線電子標簽,等等,實現效率較高的無線電力傳輸。
具體來說,整個裝置包含兩個線圈,每一個線圈都是一個自振系統。其中一個是發射裝置,與能量相連,它並不向外發射電磁波,而是利用振盪器產生高頻振盪電流,通過發射線圈向外發射電磁波,在周圍形成一個非輻射磁場,即將電能轉化為磁場。當接收裝置的固有頻率與收到的電磁波頻率相同時,接收電路中產生的振盪電流最強,完成磁場到電能的轉換,從而實現電能的高效傳輸。圖2是一個典型的利用電磁共振來實現無線電力傳輸的系統方案。電磁波的頻率越高其向空間輻射的能量就越大,傳輸效率就越高。
3.3微波/激光——遠程傳輸
理論上講,無線電波的波長越短,其定向性越好,彌散就越小。所以,可以利用微波或激光形式來實現電能的遠程傳輸,這對於新能源的開發利用、解決未來能源短缺問題也有著重要意義。1968年,美國工程師彼得格拉提出了空間太陽能發電(Space Solar Power,SSP)的概念。其構想是在地球外層空間建立太能能發電基地,通過微波將電能送回地球。
4.無線電力技術的應用前景
無線電力傳輸作為一種先進的技術一般應用於特殊的場合,具有廣泛的應用前景。
4.1給一些難以架設線路或危險的地區供應電能
高山、森林、沙漠、海島等地的台站經常遇到架設電力線路困難的問題,而工作在這些地方的邊防哨所、無線電導航台、衛星監控站、天文觀測點等需要生活和工作用電,無線輸電可補充電力不足。此外,無線輸電技術還可以給游牧等分散區村落無變壓器供電和給用於開采放射性礦物、伐木的機器人供電。
4.2解決地面太陽能電站、水電站、風力電站、原子能電站的電能輸送問題
我國的新疆、西藏、青海等地降雨量少、日照充足且存在大片荒蕪土地,南方部分地區水力、風力資源豐富,這些地區有利於建造地面太陽能發電站或水電站、風力電站。可是,這些地區人煙稀少、地形復雜,在崇山峻嶺之中難以架設線路,這時無線輸電技術就有了用武之地。採用無線輸電技術,還可以把核電站建在沙漠、荒島等地。這樣一方面便於埋葬核廢料,另一方面當電站運行發生故障時也可以避免對周圍動植物的大量傷害和耕地的污染。
4.3傳送衛星太陽能電站的電能
所謂衛星太陽能電站,就是用運載火箭或太空梭將太陽能電池板或太陽能聚光鏡等材料發送到赤道上空35800km的地球靜止同步軌道上。在太空的太陽光線沒有地球大氣層的影響,輻射能量十分穩定,是“取之不盡”的潔凈能源。並且一年中有99%的時間是白天,其利用效率比地面上要高出6—15倍[3]。在那裡利用太陽能電池板把陽光直接轉變為電能,或者用太陽能聚光鏡把陽光匯聚起來作為熱源,像地面熱電廠一樣發電。這樣產生的電能供給微波源或激光器,然後採用無線輸電技術將大功率電磁射束發送至地面,接收到的微波能量經整流器後變成直流電,由變、配電設施供給用戶。

4.4無接點充電插座
隨著無線電力技術的發展,一些小型用電設備已經實現了無線供電。如:電動牙刷、“免電池”無線滑鼠、無線供電“膜片”/“墊”等。無線供電“膜片”/“墊”是一種家用電器無線供電方式,用一片圖書大小的柔軟塑料膜片就可對家電進行無線供電,可為聖誕樹上的LED、裝飾燈、魚缸水中的燈泡、小型電機、手機、MP3、隨身聽、溫度感測器、助聽器、汽車零部件、甚至是植入式醫療器件等供電。
4.5給以微波發動機推進的交通運輸工具供電
現在大部分交通運輸工具燃燒石油產品,其發動機叫做柴油發動機、汽油發動機等。與此類比,以微波作為能源推進的發動機叫做微波發動機。微波是工作頻率在0.3—300GHz的電磁波,不能直接用它來驅動電動機,因為要設計出在如此高的頻率下工作的發動機非常困難。如果思路加以改變,把微波能量轉變為直流電流的整流器,那麼微波就可以直接作為交通工具的能源了。煤、石油、天然氣的存儲量有限,而日消耗量巨大,總有耗盡之日,到那時衛星太陽能電站可望成為能源供給的主幹,通過無線輸電技術就可以直接把微波能量輸給交通運輸工具。
4.6在月球和地球之間架起能量之橋
世界人口的不斷增長和地球資源的日益耗盡,太陽系中其他星球的開發利用是人類一直以來的夙願。月球是地球的天然衛星,其上資源豐富,地域遼闊,是首先要開發的星體。未來人類對月球的利用主要是移民和資源獲取。月球的土壤里富含SiO2,是製造太陽能電池的原料。如果先在月球上建立起工廠,然後把太陽能電站直接建在月球上,比起建在地球靜止同步軌道上要容易些,藉助於微波束或激光束把電能發送到地球。
5.結語
隨著無線電力傳輸技術的不斷發展與成熟,不但使人們未來的生活有望擺脫手機、相機、 筆記本 電腦等移動設備電源線的束縛,享受在機場、車站、酒店多種場所提供的無線電力,而且可用於一些特殊場合,如人體植入儀器如心臟起搏器等的輸電問題、新能源(電動)汽車、低軌道軍用衛星、太陽能衛星發電站等。在世界經濟迅速發展的今天,節能和新的、可再生能源的開發是擺在能源工作者面前的首要問題。太陽能是取之不盡、用之不竭的干凈能源。除核能、地熱能和潮汐能之外,地球上的所有能源都來自太陽,建造衛星太陽能電站是解決人類能源危機的重要途徑。要將相對地球靜止的同步軌道上的電能輸送的地面,無線輸電技術將發揮至關重要的作用。從長遠來看,該技術具有潛在的廣泛應用前景。但是,每一種無線傳輸方式,都有一系列問題需要解決,如電能傳輸效率問題,電力公司如何收費和計費,能量傳輸所產生的電磁波是否對人體健康帶來危害,等等。不管怎樣,一旦這項技術能夠普及,就會給人們的生活帶來巨大的便利。

參考文獻:
[1]白明俠,黃昭.無線電力傳輸的歷史發展及應用[J].湘南學院學報,2010,31,(5):51-53.
[2]劉永軍.無線電力傳輸技術:創造未來空間神話[J].中國電子商情(基礎電子),2008,11:70-75.

2. 國內無線供電技術發展的怎麼樣

發展的還是比較快的,中惠創智,微鵝科技這兩家無線充電技術的研發公司。比亞迪,中興主要是針對汽車無線充電研究。

3. 現代無線網路的新技術是什麼

c計算機通信分兩種:有線通信和無線通信
無線通信包括衛星,微波,紅外等等

無線區域網(Wireless LAN)技術可以非常便捷地以無線方式連接網路設備,人們可隨時、隨地、隨意地訪問網路資源。在推動網路技術發展的同時,無線區域網也在改變著人們的生活方式。本文分析了無線區域網的優缺點極其理論基礎,介紹了無線區域網的協議標准,闡述了無線區域網的體系結構,探討了無線區域網的研究方向。

關鍵詞 乙太網 無線區域網 擴頻 安全性 移動IP

一、引 言

隨著無線通信技術的廣泛應用,傳統區域網絡已經越來越不能滿足人們的需求,於是無線區域網(Wireless Local Area Network,WLAN)應運而生,且發展迅速。盡管目前無線區域網還不能完全獨立於有線網路,但近年來無線區域網的產品逐漸走向成熟,正以它優越的靈活性和便捷性在網路應用中發揮日益重要的作用。

無線區域網是無線通信技術與網路技術相結合的產物。從專業角度講,無線區域網就是通過無線信道來實現網路設備之間的通信,並實現通信的移動化、個性化和寬頻化。通俗地講,無線區域網就是在不採用網線的情況下,提供乙太網互聯功能。

廣闊的應用前景、廣泛的市場需求以及技術上的可實現性,促進了無線區域網技術的完善和產業化,已經商用化的802.11b網路也正在證實這一點。隨著802.11a網路的商用和其他無線區域網技術的不斷發展,無線區域網將迎來發展的黃金時期。

二、無線區域網概述

無線網路的歷史起源可以追溯到50年前第二次世界大戰期間。當時,美國陸軍研發出了一套無線電傳輸技術,採用無線電信號進行資料的傳輸。這項技術令許多學者產生了靈感。1971年,夏威夷大學的研究員創建了第一個無線電通訊網路,稱作ALOHNET。這個網路包含7台計算機,採用雙向星型拓撲連接,橫跨夏威夷的四座島嶼,中心計算機放置在瓦胡島上。從此,無線網路正式誕生。

1.無線區域網的優點

(1)靈活性和移動性。在有線網路中,網路設備的安放位置受網路位置的限制,而無線區域網在無線信號覆蓋區域內的任何一個位置都可以接入網路。無線區域網另一個最大的優點在於其移動性,連接到無線區域網的用戶可以移動且能同時與網路保持連接。

(2)安裝便捷。無線區域網可以免去或最大程度地減少網路布線的工作量,一般只要安裝一個或多個接入點設備,就可建立覆蓋整個區域的區域網絡。

(3)易於進行網路規劃和調整。對於有線網路來說,辦公地點或網路拓撲的改變通常意味著重新建網。重新布線是一個昂貴、費時、浪費和瑣碎的過程,無線區域網可以避免或減少以上情況的發生。

(4)故障定位容易。有線網路一旦出現物理故障,尤其是由於線路連接不良而造成的網路中斷,往往很難查明,而且檢修線路需要付出很大的代價。無線網路則很容易定位故障,只需更換故障設備即可恢復網路連接

(5)易於擴展。無線區域網有多種配置方式,可以很快從只有幾個用戶的小型區域網擴展到上千用戶的大型網路,並且能夠提供節點間"漫遊"等有線網路無法實現的特性。

由於無線區域網有以上諸多優點,因此其發展十分迅速。最近幾年,無線區域網已經在企業、醫院、商店、工廠和學校等場合得到了廣泛的應用。

2.無線區域網的理論基礎

目前,無線區域網採用的傳輸媒體主要有兩種,即紅外線和無線電波。按照不同的調制方式,採用無線電波作為傳輸媒體的無線區域網又可分為擴頻方式與窄帶調制方式。

(1)紅外線(Infrared Rays,IR)區域網

採用紅外線通信方式與無線電波方式相比,可以提供極高的數據速率,有較高的安全性,且設備相對便宜而且簡單。但由於紅外線對障礙物的透射和繞射能力很差,使得傳輸距離和覆蓋范圍都受到很大限制,通常IR區域網的覆蓋范圍只限制在一間房屋內。

(2)擴頻(Spread Spectrum,SS)區域網

如果使用擴頻技術,網路可以在ISM(工業、科學和醫療)頻段內運行。其理論依據是,通過擴頻方式以寬頻傳輸信息來換取信噪比的提高。擴頻通信具有抗干擾能力和隱蔽性強、保密性好、多址通信能力強的特點。擴頻技術主要分為跳頻技術(FHSS)和直接序列擴頻(DSSS)兩種方式。

所謂直接序列擴頻,就是用高速率的擴頻序列在發射端擴展信號的頻譜,而在接收端用相同的擴頻碼序列進行解擴,把展開的擴頻信號還原成原來的信號。而跳頻技術與直序擴頻技術不同,跳頻的載頻受一個偽隨機碼的控制,其頻率按隨機規律不斷改變。接收端的頻率也按隨機規律變化,並保持與發射端的變化規律一致。跳頻的高低直接反映跳頻系統的性能,跳頻越高,抗干擾性能越好,軍用的跳頻系統可達到每秒上萬跳。

(3)窄帶微波區域網

這種區域網使用微波無線電頻帶來傳輸數據,其帶寬剛好能容納信號。但這種網路產品通常需要申請無線電頻譜執照,其它方式則可使用無需執照的ISM頻帶。

3.無線區域網的不足之處

無線區域網在能夠給網路用戶帶來便捷和實用的同時,也存在著一些缺陷。無線區域網的不足之處體現在以下幾個方面:

(1)性能。無線區域網是依靠無線電波進行傳輸的。這些電波通過無線發射裝置進行發射,而建築物、車輛、樹木和其它障礙物都可能阻礙電磁波的傳輸,所以會影響網路的性能。

(2)速率。無線信道的傳輸速率與有線信道相比要低得多。目前,無線區域網的最大傳輸速率為54Mbit/s,只適合於個人終端和小規模網路應用。

(3)安全性。本質上無線電波不要求建立物理的連接通道,無線信號是發散的。從理論上講,很容易監聽到無線電波廣播范圍內的任何信號,造成通信信息泄漏。

三、無線區域網協議標准

無線區域網技術(包括IEEE802.11、藍牙技術和HomeRF等)將是新世紀無線通信領域最有發展前景的重大技術之一。以IEEE(電氣和電子工程師協會)為代表的多個研究機構針對不同的應用場合,制定了一系列協議標准,推動了無線區域網的實用化。

1.IEEE802.11系列協議

作為全球公認的區域網權威,IEEE 802工作組建立的標准在區域網領域內得到了廣泛應用。這些協議包括802.3乙太網協議、802.5令牌環協議和802.3z100BASE-T快速乙太網協議等。IEEE於1997年發布了無線區域網領域第一個在國際上被認可的協議——802.11協議。1999年9月,IEEE提出802.11b協議,用於對802.11協議進行補充,之後又推出了802.11a、802.11g等一系列協議,從而進一步完善了無線區域網規范。IEEE802.11工作組制訂的具體協議如下:

(1)802.11a

802.11a採用正交頻分(OFDM)技術調制數據,使用5GHz的頻帶。OFDM技術將無線信道分成以低數據速率並行傳輸的分頻率,然後再將這些頻率一起放回接收端,可提供25Mbit/s的無線ATM介面和10Mbit/s的乙太網無線幀結構介面,以及TDD/TDMA的空中介面。在很大程度上可提高傳輸速度,改進信號質量,克服干擾。物理層速率可達54Mbit/s,傳輸層可達25Mbit/s,能滿足室內及室外的應用。

(2)802.11b

802.11b也被稱為Wi-Fi技術,採用補碼鍵控(CCK)調制方式,使用2.4GHz頻帶,其對無線區域網通信的最大貢獻是可以支持兩種速率--5.5Mbit/s和11Mbit/s。多速率機制的介質訪問控制可確保當工作站之間距離過長或干擾太大、信噪比低於某個門限值時,傳輸速率能夠從11Mbit/s自動降到5.5Mbit/s,或根據直序擴頻技術調整到2Mbit/s和1Mbit/s。在不違反FCC規定的前提下,採用跳頻技術無法支持更高的速率,因此需要選擇DSSS作為該標準的惟一物理層技術。

(3)802.11g

2001年11月,在802.11 IEEE會議上形成了802.11g標准草案,目的是在2.4GHz頻段實現802.11a的速率要求。該標准將於2003年初獲得批准。802.11g採用PBCC或CCK/OFDM調制方式,使用2.4GHz頻段,對現有的802.11b系統向下兼容。它既能適應傳統的802.11b標准(在2.4GHz頻率下提供的數據傳輸率為11Mbit/s),也符合802.11a標准(在5GHz頻率下提供的數據傳輸率56Mbit/s),從而解決了對已有的802.11b設備的兼容。用戶還可以配置與802.11a、802.11b以及802.11g均相互兼容的多方式無線區域網,有利於促進無線網路市場的發展。

(4)其他相關協議

IEEE802工作組今後將繼續對802.11系列協議進行探討,並計劃推出一系列用於完善無線區域網應用的協議,其中主要包括802.11e(定義服務質量和服務類型)、802.11f(AP間協議)、802.11h(歐洲5GHz規范)、802.11i(增強的安全性&認證)、802.11j(日本的4.9GHz規范)、802.11k(高層無線/網路測量規范)以及高吞吐量研究工作組的相關協議。

2.藍牙規范(Bluetooth)

藍牙規范是由SIG(特別興趣小組)制定的一個公共的、無需許可證的規范,其目的是實現短距離無線語音和數據通信。藍牙技術工作於2.4GHz的ISM頻段,基帶部分的數據速率為1Mbit/s,有效無線通信距離為10~100m,採用時分雙工傳輸方案實現全雙工傳輸。藍牙技術採用自動尋道技術和快速跳頻技術保證傳輸的可靠性,具有全向傳輸能力,但不需對連接設備進行定向。其是一種改進的無線區域網技術,但其設備尺寸更小,成本更低。在任意時間,只要藍牙技術產品進入彼此有效范圍之內,它們就會立即傳輸地址信息並組建成網,這一切工作都是設備自動完成的,無需用戶參與。

3.HomeRF標准

在美國聯邦通信委員會(FCC)正式批准HomeRF標准之前,HomeRF工作組於1998年為在家庭范圍內實現語音和數據的無線通信制訂出一個規范,即共享無線訪問協議(SWAP)。該協議主要針對家庭無線區域網,其數據通信採用簡化的IEEE802.11協議標准。之後,HomeRF工作組又制定了HomeRF標准,用於實現PC機和用戶電子設備之間的無線數字通信,是IEEE802.11與泛歐數字無繩電話標准(DECT)相結合的一種開放標准。HomeRF標准採用擴頻技術,工作在2.4GHz頻帶,可同步支持4條高質量語音信道並且具有低功耗的優點,適合用於筆記本電腦。

4.HyperLAN/2標准

2002年2月,ETI的寬頻無線接入網路(Broadband Radio Access Networks,BRAN)小組公布了HiperLAN/2標准。HiperLAN/2標准由全球論壇(H2GF)開發並制定,在5GHz的頻段上運行,並採用OFDM調制方式,物理層最高速率可達54Mbit/s,是一種高性能的區域網標准。HyperLAN/2標準定義了動態頻率選擇、無線小區切換、鏈路適配、多波束天線和功率控制等多種信令和測量方法,用來支持無線網路的功能。基於HyperRF標準的網路有其特定的應用,可以用於企業區域網的最後一部分網段,支持用戶在子網之間的IP移動性。在熱點地區,為商業人士提供遠端高速接入網際網路的服務,以及作為W-CDMA系統的補充,用於3G的接入技術,使用戶可以在兩種網路之間移動或進行業務的自動切換,而不影響通信。

5.無線區域網標準的比較

802.11系列協議是由IEEE制定的,目前居於主導地位的無線區域網標准。HomeRF主要是為家庭網路設計的,是802.11與DECT的結合。HomeRF和藍牙都工作在2.4GHz ISM頻段,並且都採用跳頻擴頻(FHSS)技術。因此,HomeRF產品和藍牙產品之間幾乎沒有相互干擾。藍牙技術適用於鬆散型的網路,可以讓設備為一個單獨的數據建立一個連接,而HomeRF技術則不像藍牙技術那樣隨意。組建HomeRF網路前,必須為各網路成員事先確定一個惟一的識別代碼,因而比藍牙技術更安全。802.11使用的是TCP/IP協議,適用於功率更大的網路,有效工作距離比藍牙技術和HomeRF要長得多。

四、無線區域網的體系架構

1.無線區域網的主要組件

(1)無線網卡。提供與有線網卡一樣豐富的系統介面,包括PCMCIA、Cardbus、PCI和USB等。在有線區域網中,網卡是網路操作系統與網線之間的介面。在無線區域網中,它們是操作系統與天線之間的介面,用來創建透明的網路連接。

(2)接入點。接入點的作用相當於區域網集線器。它在無線區域網和有線網路之間接收、緩沖存儲和傳輸數據,以支持一組無線用戶設備。接入點通常是通過標准乙太網線連接到有線網路上,並通過天線與無線設備進行通信。在有多個接入點時,用戶可以在接入點之間漫遊切換。接入點的有效范圍是20~500m。根據技術、配置和使用情況,一個接入點可以支持15~250個用戶,通過添加更多的接入點,可以比較輕松地擴充無線區域網,從而減少網路擁塞並擴大網路的覆蓋范圍。

2.無線區域網的配置方式

(1)對等模式。Ad-hoc模式。這種應用包含多個無線終端和一個伺服器,均配有無線網卡,但不連接到接入點和有線網路,而是通過無線網卡進行相互通信。它主要用來在沒有基礎設施的地方快速而輕松地建無線區域網。

(2)基礎結構模式。Infrastructure模式。該模式是目前最常見的一種架構,這種架構包含一個接入點和多個無線終端,接入點通過電纜連線與有線網路連接,通過無線電波與無線終端連接,可以實現無線終端之間的通信,以及無線終端與有線網路之間的通信。通過對這種模式進行復制,可以實現多個接入點相互連接的更大的無線網路。

五、未來的研究方向

如上所述,無線區域網技術的研究和應用方興未艾,是目前無線通信領域乃至整個通信行業的研究熱點。從無線區域網的進一步推廣應用來看,未來的研究方向主要集中在安全性、移動漫遊、網路管理以及與3G等其他移動通信系統之間的關繫上。

1.安全性問題

IEEE802.11協議標准建議使用兩種安全解決方案。一種是IEEE 802.11安全任務組(TGi)構建的安全框架--魯棒型安全網路(RSN)。這種網路用IEEE 802.1x提供基於埠的接入控制、鑒權和密鑰管理。該標准用可擴展鑒權協議(EAP)實現對用戶的鑒權。鑒權伺服器和用戶之間使用遠程鑒權撥入用戶服務協議(RADIUS)進行通信,RADIUS協議在網路接入的鑒權、授權和計費(AAA)中得到廣泛採用。由於IEE802.1x主要是針對有線區域網設計的,在無線區域網中使用IEE802.1x不可避免地存在漏洞。所以,盡管它對無線區域網的安全性能有很大改善,802.1x和802.11的結合仍然不能提供足夠的安全。

另一種方式則是目前廣泛應用於區域網絡及遠程接入等領域的虛擬專用網(VPN)安全技術。與802.11b標准所採用的安全技術不同,在IP網路中,VPN主要採用IPSec技術來保障數據傳輸的安全。對於安全性要求更高的用戶,將現有的VPN安全技術與802.11b安全技術結合起來,是目前較為理想的無線區域網絡的安全解決方案。

2.漫遊切換問題

無線區域網的漫遊問題是繼安全問題之後的一個至關重要的問題。在無線網路中,如果一邊使用無線區域網接入服務,一邊移動接入位置,那麼一旦移動終端超越子網覆蓋范圍,IP數據包就無法到達移動終端,正在進行的通信將被中斷。為此,IETF制定了擴展IP網路移動性的系列標准。所謂移動IP,就是指在IP網路上的多個子網內均可使用同一IP地址的技術。這種技術是通過使用被稱為本地代理(Home Agent)和外地代理(Foreign Agent)的特殊路由器對網路終端所處位置的網路進行管理來實現的。在移動IP系統中,可保證用戶的移動終端始終使用固定的IP地址進行網路通信,不管在怎樣的移動過程中皆可建立TCP連接並不會發生中斷。在無線區域網系統中,廣泛的應用移動IP技術可以突破網路的地域范圍限制,並可克服在跨網段時使用動態主機配置協議(DHCP)方式所造成的通信中斷、許可權變化等問題。

3.無線網路管理問題

相對於有線網路,無線區域網具有非常獨特的特性,因此必須建立相應的無線網路管理系統。除了系統結構、用戶需求和典型應用等模塊之外,一個好的無線網路管理系統還必須考慮以下因素:

(1)標準的網管通信方式。網管子系統通常與中央主機相連。網管子系統必須基於工業標準的管理協議(比如SNMP),這樣才能監視主機和子系統之間每條鏈路上的狀態信息,並可根據狀態信息快速分析和解決出現的問題。

(2)網路監視和報告。主機必須能夠監視無線網路系統中所有單元。考慮到無線網路的連接性不如有線網路那樣穩定,無線網路管理系統必須監視和報告無線信號的變化以及接入點的業務類型和負載情況,還須能自動發現進入無線網路體系結構的新設備。

(3)有效地利用帶寬。盡管隨著新技術的發展,無線網路的可用帶寬逐步增大,但還是遠遠小於有線區域網的帶寬。因此,在實際應用中必須考慮帶寬的合理使用。

4.無線區域網與3G

無線區域網不否會對第三代移動通信系統構成威脅是近年來業界關心的一個問題。實際上,無線區域網與3G採用的是截然不同的兩種技術,用於滿足不同的需要。與3G不同的是,無線區域網並不是一個完備的全網解決方案,而只用於滿足小型用戶群的需求。無線區域網與3G可以互補,因此不會對3G運營商造成威脅,運營商還可以從無線區域網和3G的共存中獲得好處。NorthStream的研究表明,無線區域網與3G和GPRS的結合可增加用戶的滿意程度和業務量,從而增加移動運營商的利潤。作為3G的一個重要補充,無線區域網可用於在諸如機場候機廳、賓館休息室和咖啡廳等地方建立無線Internet連接。

六、結束語

經過10多年的發展,無線區域網在技術上已經日漸成熟,應用日趨廣泛,無線區域網將從小范圍應用進入主流應用。預計全球無線區域網接入點的銷售量將從2000年的50萬台穩步增長到450萬台,每年的漲幅為55%。無線網卡的銷售量將從2000年的約300萬塊增加到2005年的3400萬塊,每年的漲幅為53%。今後幾年,無線區域網技術將更加成熟,產品性能將更加穩定,市場將持續不斷地增長,價錢將持續降低,大型設備提供商將進入這個市場,大多數企業和公司將採用無線區域網進行內部網路建設。

4. 無線供電技術的方法

無線供電技術其實早點很多年前就有概念,並且有不少專家希望在此有些突破,基本上無線供電技術可以採用以下方法: 電磁共振這個名詞有點陌生,據說其原理類似聲波共振的原理,兩種介質具有相同的共振頻率,就可以用來傳遞能量。WiTricity的技術就是採用了這種原理。他們稱之為非輻射性電磁共振。當然這可能並不是說該項技術沒有輻射,但的確和我們普通概念中電磁輻射有很大不同。
據美國物理學家組織網7月21日(北京時間)報道,現有多個研究小組正在設法利用無線電波為低能耗微型設備提供能源。藉助該技術,美國杜克大學已研發出一款帶有鳴音提醒功能的安全帽。

5. 無線網路的發展方向是什麼

您好,當今用戶對隨時隨地可以無線上網的需求越來越大,這也成為無線網路市場迅猛增長的推動力,但不能否認WIFI目前存有一定的缺陷,如漫遊性、計費問題、因上網門檻低而帶來的安全性等問題沒有一個最優的解決方案。但從技術的另一層面看,它是高速有線接入技術和蜂窩移動通信技術的一個輔助與補充,可以在特定的范圍與領域內,能起到對3G的重要補充作用,二者完美結合將帶來廣闊的服務與發展前景。事實上以WIFI技術為重要技術支撐的無線區域網絡在不斷普及,這也代表著大眾所接觸的WIFI技術將會越來越便捷。一旦存在於公眾場合的WIFI網路解決了運營商的漫遊性、互聯互通、高收費的問題,WIFI技術將能夠更好實現從技術向商業的轉變,同時在WIFI技術的應用和發展中要認識到WIFI技術雖然先進但卻不能替代和具有其他所有通信系統所具有的功能,所以說只有各類接入手段形成互補才能夠帶來更高的可靠性和經濟性。在未來的社會生活中,信息化進程會越來越快,人們對於WIFI技術的需求也會越來越大,因此WIFI技術必將有著巨大的應用價值和廣泛的發展前景。WIFI技術在我國有著龐大的用戶群,因此市場前景廣闊,為人們生活提供更加快捷的服務。謝謝。

6. 無線供電技術的介紹

無線供電是指通過非物理接觸的電能傳輸方式,是繼無線通訊、無線網路之後的第三次無線革命,被業界視為一項具有基礎應用性意義的前沿科技,其跨產品應用范圍廣,有望推動全國乃至世界通信、電子、物聯網、新能源等產業的突破和創新。
美國麻省理工學院的科學家正在開發一種新的供電方式,使用非輻射性的無線能量傳輸方式來驅動電器,無論是手機,筆記本電腦還是數碼相機,如果這項研究獲得成功,它們的充電器都可以退休了。
這項研究始於2007年6月,當時麻省理工學院物理系的副教授Marin Soljacic的手機電池報銷了,於是他便下決心聯合了其他幾位教師和研究生,准備給這些日常的便攜電器研發一種更簡單的供電方式。
該項技術的原理其實非常簡單,我們日常所接觸到的電磁波都承載著能量。無線電廣播在發射時,大部分的能量都四散在了空中,而這項技術就是要用一種非放射性的場來聚集這些能量。我們都知道,特定頻率的電磁波會引起物體的震動,兩個固有頻率相同的物體就可以傳遞這種震動,從而傳遞能量。我們可以讓一個諸如銅制天線的物體發射電磁波,而讓接收器來接收,轉化為能量。理論上說,所有現在使用電池的電器都可以換用這種方式供電。當然,現階段這種傳遞還僅限於幾米的短距離范圍。
關於由此產生的電磁輻射對人體的影響問題,研究者們正在進行試驗,以最終滿足FCC的標准要求。開發人員稱,現在的輻射水平大概和核磁共振儀類似,應該是在安全范圍之內。
如果試驗進行順利,這種無線供電技術將會有非常巨大的發展空間,比如可以在地下鋪設線路,隨時為我們手中的電話,甚至行進中的汽車充電。但研究者指出,該技術仍處在起步階段,這些展望都還存在在設想當中。 在百年前特斯拉就已經建立了用於無線電力傳輸的廣播塔,並想實現他於發明交流電後的另一次電力傳輸革命,但卻最終沒有實現,但當時他的無線傳輸電力的實驗已經成功了。貌似這種技術在上百年前已經出現了,並差點就能實現,但為什麼我們現在還牽著一大堆令人討厭的電線使用電器??今天是這種技術失傳了嗎?是否真的可能實現大規模的電力無線傳輸化?
特斯拉發明了的「放大發射機」,現在叫做大功率高頻傳輸線共振變壓器,用於無線輸電試驗。特斯拉把地球作為內導體,地球電離層作為外導體,通過他的放大發射機,使用這種放大發射機特有的徑向電磁波振盪模式,在地球與電離層之間建立起大約8赫茲的低頻共振,利用環繞地球的表面電磁波來傳輸能量。當沒有電力接收端的時候,發射機只與天地諧振腔交換無功能量,整個系統只有很少的有功損耗。這種方案不僅可行,而且效率極高,對生態安全,並且不會干擾無線電通信。
這種電力的傳輸沒有十分准確的定位性,也就是說,任何可能的設備都可以在半道上「橫刀奪愛」,把本來屬於別人的電力攫取走。如果實現這種電力無線傳輸,有一個前提,那就是人類產生的電力已經完全滿足了所有人的需求,否則誰會把電力白白讓人使用,就目前全球緊張的能源趨勢來講,更加難以實現。另外,政治因素也是一個很大的問題。
預言的話,個人認為,人類目前徹底擺脫能源困境惟有通過可控核聚變技術,2007年10月24日北京時間21:15,國際熱核聚變實驗堆(ITER)組織在法國卡達拉舍(Cadarache)正式成立,中國也出資該項目的10%。具體什麼時候成功,誰也說不準,但所有的科技強國均已經投入大量資金在進行研究,有望在未來的50年實現(這也是我猜的)。如果成功的話,舉個簡單的例子,海水中的水分子有百分之三為重水分子。所以一升普通的海水可以在此技術下產生三百公升汽油的能量。那時,這種能量廣播極有可能覆蓋全球,人人隨時隨地都可以無線接收電力,就像現在的手機網路似的。
據英國廣播公司報道,美國麻省理工學院的科學家在最新一期《科學》雜志上報告說,他們通過電磁感應,成功地「隔空」點亮了離電源兩米多遠處的一個60瓦燈泡。科學家將這 一技術稱為「無線電力傳輸技術」,通過利用基本物理原理,最終可以給手提電腦「隔空」充 電。
研究團隊用兩個直徑60厘米的銅線圈做實驗,一個線圈接在電源上,作為送電方,另一個作為受電方置於兩米外,連接一個燈泡。科學家利用了「共振」原理,當送電方的電源接通後,兩個線圈都以10兆赫茲的頻率振動,從而產生強大的電磁場,送電方發出的電振即可傳到受電方。兩個線圈雖未相連,仍可完成隔空供電,使燈泡發光。即使在電源與燈泡中間擺上木頭、金屬或其他電器,燈泡仍會發亮。
研究人員表示,身體對電場的反應很強,但身體對磁場的反應則幾乎沒有,因此這一系統不會影響人體健康。有研究人員說,在真正應用於生活前,還需要進一步進行試驗。
中國科學院電工研究所所長孔力認為,無線電力傳輸是一種區別於有線傳輸的特殊供電方式。電磁波可以在空間傳播,因此報道中所說的通過無線輸電點亮電燈是可以實現的。
實現無線輸電的方法大致有兩種,一種是報道中研究人員所做的兩個線圈的電磁感應方法,另一種是將電能以激光或者微波的形式,發射到遠端的接收天線,然後通過整流、調制等處理後,作用於負載。
無線電力傳輸的原理並不難理解,但一直沒有得到很好的應用。因為電磁波在自由空間傳輸,能量不太容易集中,定向性差,特別是微波,漫射在空間,使本來不多的能量衰竭得更快。因此無線傳輸難以輸送大量的能量,功率低,整體效率差,而且會對空間造成很大的電磁污染。
作為科學研究,研究無線電力傳輸技術或許可以帶動其他科技領域的發展,但該技術只適用於一些特定的場合,比如衛星之間、人造飛行器之間的能量傳輸都可以使用無線方式。
關於國內的無線電力傳輸研究,原理大家都明白,但因為效率太低,合理使用的場合太少,因此研究的人並不多。科學技術有一個合理使用的問題,無線輸電可用於一些特殊的用途,但如果作為地面長距離輸電或者家用電器的長期充電,我覺得可能不大實用。
在日本橫濱舉行的AT International 2009會展上,日本昭和飛機工業公司展出了一種非接觸式電源供應系統。這種系統基於電磁感應原理可無線傳輸電力。兩個感應線圈可以放置在左右相鄰或上下對應的位置。
該技術使用的電磁感應技術原理與中學生在課本上學習的知識並沒有太大的區別,它可以在10厘米左右的位置提供電力傳輸。但是在水平位置放置可能會流失部分電能,另外線圈自己會產生熱量。
因為專利的問題,昭和飛機工業公司沒有透露具體的實現細節。但是,該公司宣稱這種電源供應系統可以提供90%以上的傳輸效率,另外,該公司還可以實現兩線圈距離在60厘米以上的電力傳輸。
該公司展示了在60厘米距離照亮了10個100W白熾燈,並把一個金屬煎鍋放置在兩線圈之間,證明煎鍋沒有產生熱量。兩個傳輸線圈的大小為50x50厘米,厚度5厘米。
昭和飛機工業公司表示,這種系統可以為電力汽車充電,或是為有供電需求的冷藏車,在便利店停車休息時提供輔助供電。

7. 無線網路的研究進展

新技術可為月球提供寬頻連接 太空可用互聯網
2014年5月,美國麻省理工學院的研究人員,第一次驗證了通過雙向激光通信這項技術,能為宇航員或未來的太空居民們提供網路連接,速度已4800倍於以往所有射頻上行鏈路的速度,6月他們將展示其「在軌測試」結果。未來人們可以跨越空間傳輸海量數據,甚至高清視頻。
麻省理工學院(MIT)林肯實驗室的一組研究人員正在進行測試,他們通過專業激光通信設備,已把數據從地球傳輸到月球。
利用激光束從地球到月球之間進行高數據速率通信,光束需要傳播40萬公里。當穿越大氣層時更是難上加難,大氣湍流可能會使信號衰落或丟失。他們的團隊展示了中等規模雲衰減的耐受性,以及大氣湍流引起的信號功率變化與衰落,而即使只留下非常小的信號,設備也能表現為「無誤差」。
LLCD被認為是NASA構建下一代空間通信能力路線圖的首要一步,與該設計直接相關的是近地飛行任務。但團隊成員預測,其也將擴展到深空任務中的火星與外行星中去。

8. 無線通信當前的研究方向

研究方向的重點研究范圍是多域協同寬頻大容量無線通信、短距離微功率無線通信和無線電頻譜資源的相關理論與技術。其主要研究內容包括:基於多域協同逼近香農容量界的寬頻無線通信理論與技術,無線電頻譜理論與技術;通信頻譜資源規劃及其開發使用;無線電管理理論與技術;無線通信中的電磁兼容理論與技術;短距離寬頻高速無線通信理論與技術;寬頻無線接入技術;面向泛在服務的異構多域協同無線通信技術;多天線與MIMO技術;虛擬多天線理論與技術;分布式協同無線通信網路理論與技術,無線MESH技術;無線通信網路優化技術;電波傳播與電磁干擾;微波通信與衛星移動通信技術;軟體無線電技術;認知無線電技術;無線通信系統的電磁防護技術等。

9. 無線輸電的實驗進展

2001年5月16日,一位從事太空研究的工程師居伊·皮尼奧萊在非洲留尼汪島西南部的格朗巴桑大峽谷進行了一場特殊的實驗:一隻200瓦的燈泡亮了起來。在燈泡周圍,既沒有電線,也沒有插頭和插座。
居伊.皮尼奧萊的試驗就是利用微波進行長距離無線輸電。一部發電機發出的電能首先通過磁控管被轉變為電磁微波,再由微波發射器將微波束送出,40米外的接收器將微波束接收後由變流機轉換為電流,然後將電燈泡點亮。這次試驗的成功,僅是走出了無線輸電的第一步。
第二步將從2003年開始,即給整個格朗巴桑村供電。這一步的試驗室試驗階段已經完成。第一批發射器和接收器樣機已由留尼汪的企業造出。工程技術人員決定在距格朗巴桑村700米遠的山頭上建一座高壓電線塔,在山頭的峽谷邊緣修建發射器,發射器由一個小型的喇叭狀天線和一個拋物柱面反射器組成。發射器的磁控管將高壓電線塔輸來的電能轉換為電磁波束,電磁波束被谷底格朗巴桑村旁呈蜂窩狀的接收器接收。隨後,電磁波能先被轉換為高壓直流電,然後再被轉換為低壓直流電,最後被轉換為220伏的普通交流電供格朗巴桑村使用。最終,磁控管的優點是價格低廉,缺點是壽命短、工作頻率難以控制。因此,磁控管將被雷達系統上常用的速調管所取代。速調管的工作頻率極易控制,壽命也比較長,但其價格比磁控管要昂貴得多。第三種取代方案是使用半導體。
在陸地上無線輸電的好處是發射器和接收器與大自然融為一體而不破壞環境,高壓線輸電或太陽光電板則會破壞環境;無線輸電的成本比地下電纜輸電的成本要低得多,甚至比用柴油發電機組發電的成本還要低。用於無線輸電的微波束的強度僅為每平方厘米5毫瓦,比每平方厘米100毫瓦的陽光強度小得多。因此,微波無線輸電十分安全,它不會發生電離,不會使周圍生物的基因發生變異。在微波接收器下面甚至可以種植蔬菜。
研究人員下一步的計劃是在太空建一座太陽能發電站:將一些地球衛星送入距地面3.6萬公里高的同步軌道上,衛星上的光電板將太陽的光能轉換為電能,然後將電能用微波的形式傳送到地球表面。太空上的光電板平均每平方厘米可以接收140毫瓦的光能,為地球表面光能接收效率的8倍。而且,在太空,光能的接收不受晝夜、陰晴和季節變化的影響。
2015年3月8日,日本宇宙航空研究開發機構成功進行了微波無線輸電實驗。研究人員利用微波,將1.8千瓦電力(足夠用來啟動電水壺)以無線方式,精準地傳輸到55米距離外的一個接收裝置,接收裝置則將這種「無線電」轉換為直流電。
2015年3月12日,日本三菱重工也宣布,科研人員將10千瓦電力轉換成微波後輸送,其中的部分電能成功點亮了500米外接收裝置上的LED燈。這也是迄今為止日本在國內成功實驗中距離最長、電力最大的一次。三菱重工周五在一份聲明中說:「我們確信,這次實驗表明無線輸電商業化已經成為可能。」

10. 無線供電應用場合

無線供電技術,目前還主要在研究試驗階段,離實用還有距離,但已經有產品推出。
其應用場合非常廣泛,前景非常好。國外一些小功率的應用已經有產品推出,大一些功率的還在研究實驗中。
他並不是只有在不能使用有線或者電池供電的情況下才能使用的。比如:已經有的象一些小功率充電器,只要手機或者電子產品,具備無線接收裝置,就可以不使用有線充電器,而是直接將手機或電器,放到無線充電器或者靠近它就可以充電了。這樣既減少了線纜的連接,減少了資料成本,又安全可靠。大一些功率的產品如電視機等,也已經有樣品推出,國外的就不說了,國內海爾在美國的一個展覽上已經推出一個實驗產品,就可以不用有線來供電,通過無線就可以給電視供電。可以使電視擺放非常方便,而不用受有線電源的限制,還會使電視連接整齊美觀等等。可以看到,這個技術一旦成熟,應用場合將會非常廣泛。

閱讀全文

與無線供電網路最新研究方向相關的資料

熱點內容
網路共享中心沒有網卡 瀏覽:521
電腦無法檢測到網路代理 瀏覽:1373
筆記本電腦一天會用多少流量 瀏覽:574
蘋果電腦整機轉移新機 瀏覽:1376
突然無法連接工作網路 瀏覽:1057
聯通網路怎麼設置才好 瀏覽:1224
小區網路電腦怎麼連接路由器 瀏覽:1032
p1108列印機網路共享 瀏覽:1211
怎麼調節台式電腦護眼 瀏覽:694
深圳天虹蘋果電腦 瀏覽:931
網路總是異常斷開 瀏覽:612
中級配置台式電腦 瀏覽:989
中國網路安全的戰士 瀏覽:630
同志網站在哪裡 瀏覽:1413
版觀看完整完結免費手機在線 瀏覽:1459
怎樣切換默認數據網路設置 瀏覽:1110
肯德基無線網無法訪問網路 瀏覽:1286
光纖貓怎麼連接不上網路 瀏覽:1472
神武3手游網路連接 瀏覽:965
局網列印機網路共享 瀏覽:1000