導航:首頁 > 無線網路 > 高密無線網路場景

高密無線網路場景

發布時間:2023-01-18 18:03:03

⑴ 5G網路是不是可以替代wifi了

5G和Wi-Fi長期並存,未來將會形成優勢互補。
在2018年10月,Wi-Fi聯盟發布了新的Wi-Fi技術標准,即Wi-Fi 6。Wi-Fi 6最快下行速度9.6Gb/s,4倍於傳統Wi-Fi帶寬。
Wi-Fi 6優化了設備功耗和覆蓋能力,適用於智慧家庭、無線高密接入、VR交互、全物聯辦公等場景,具備更好的同時服務多設備的能力,因而Wi-Fi的應用前景並不比5G遜色,兩者盡可優勢互補,共同發展。
例如,深圳地鐵在今年攜手中國聯通、華為,採用聯通5G網路接入,通過華為Wi-Fi 6技術進行網路拓展,將深圳地鐵福田樞紐建成全國首個應用Wi-Fi 6技術的地鐵車站,實現5G與Wi-Fi 6技術的完美融合,開啟了Wi-Fi 6軌道行業應用的元年。
因此,未來5G技術和Wi-Fi 6形成優勢互補,通過家用和工業網路邊界的有效管控與觸達,可更好的服務相關應用場景,有效推動工業4.0的發展應用。

⑵ 關於WiFi 6技術,這篇說得最詳細

12 個空間流與 256-QAM 調制。
2 2 個空間流與 256-QAM 調制。
3 3 個空間流與 64-QAM 調制。

Wi-Fi 已成為當今世界無處不在的技術,為數十億設備提供連接,也是越來越多的用戶上網接入的首選方式,並且有逐步取代有線接入的趨勢。為適應新的業務應用和減小與有線網路帶寬的差距,每一代 802.11 的標准都在大幅度的提升其速率。

1997 年 IEEE 制定出第一個無線區域網標准 802.11,數據傳輸速率僅有 2Mbps,但這個標準的誕生改變了用戶的接入方式,使人們從線纜的束縛中解脫出來。

隨著人們對網路傳輸速率的要求不斷提升,在 1999 年 IEEE 發布了 802.11b 標准。802.11b 運行在 2.4 GHz 頻段,傳輸速率為 11Mbit/s,是原始標準的 5 倍。同年,IEEE 又補充發布了 802.11a 標准,採用了與原始標准相同的核心協議,工作頻率為 5GHz,最大原始數據傳輸率 54Mbit/s,達到了現實網路中等吞吐量(20Mbit/s)的要求,由於 2.4GHz 頻段已經被到處使用,採用 5GHz 頻段讓 802.11a 具有更少沖突的優點。

2003 年,作為 802.11a 標準的 OFDM 技術也被改編為在 2.4 GHz 頻段運行,從而產生了 802.11g,其載波的頻率為 2.4GHz(跟 802.11b 相同),原始傳送速度為 54Mbit/s, 凈傳輸速度約為 24.7Mbit/s(跟 802.11a 相同)。
對 Wi-Fi 影響比較重要的標準是 2009 年發布的 802.11n,這個標准對 Wi-Fi 的傳輸和接入進行了重大改進,引入了 MIMO、安全加密等新概念和基於 MIMO 的一些高級功能 (如波束成形,空間復用......),傳輸速度達到 600Mbit/s。 此外,802.11n 也是第一個同時工作在 2.4 GHz 和 5 GHz 頻段的Wi-Fi 技術。

然而,移動業務的快速發展和高密度接入對 Wi-Fi 網路的帶寬提出了更高的要求,在2013 年發布的 802.11ac 標准引入了更寬的射頻帶寬(提升至 160MHz)和更高階的調制技術(256-QAM),傳輸速度高達 1.73Gbps,進一步提升 Wi-Fi 網路吞吐量。另外,在 2015 年發布了 802.11ac wave2 標准,將波束成形和 MU-MIMO 等功能推向主流,提升 了系統接入容量。但遺憾的是 802.11ac 僅支持 5GHz 頻段的終端,削弱了 2.4GHz 頻段下的用戶體驗。

然而,隨著視頻會議、無線互動 VR、移動教學等業務應用越來越豐富,Wi-Fi 接入終端越來越多,IoT 的發展更是帶來了更多的移動終端接入無線網路,甚至以前接入終端較少的家庭 Wi-Fi 網路也將隨著越來越多的智能家居設備的接入而變得擁擠。因此 Wi-Fi 網路仍需要不斷提升速度,同時還需要考慮是否能接入更多的終端,適應不斷擴大的客戶端設備數量以及不同應用的用戶體驗需求。

下一代Wi-Fi 需要解決更多終端的接入導致整個Wi-Fi 網路效率降低的問題,早在2014 年 IEEE 802.11 工作組就已經開始著手應對這一挑戰, 預計在 2019 年正式推出的802.11ax(下個章節介紹為什麼叫 Wi-Fi 6)標准將引入上行 MU-MIMO、OFDMA 頻分復用、1024-QAM 高階編碼等技術,將從頻譜資源利用、多用戶接入等方面解決網路容量和傳輸效率問題。目標是在密集用戶環境中將用戶的平均吞吐量相比如今的 Wi-Fi 5 提高至少4 倍,並發用戶數提升 3 倍以上,因此,Wi-Fi 6(802.11ax)也被稱為高效無線(HEW)。

Wi-Fi 6 是下一代 802.11ax 標準的簡稱。隨著 Wi-Fi 標準的演進,WFA 為了便於 Wi- Fi 用戶和設備廠商輕鬆了解其設備連接或支持的 Wi-Fi 型號,選擇使用數字序號來對 Wi- Fi 重新命名。另一方面,選擇新一代命名方法也是為了更好地突出 Wi-Fi 技術的重大進步, 它提供了大量新功能,包括增加的吞吐量和更快的速度、支持更多的並發連接等。根據 WFA 的公告,現在的 Wi-Fi 命名分別對應如下 802.11 技術標准:

和以往每次發布新的 802.11 標准一樣,802.11ax 也將兼容之前的 802.11ac/n/g/a/b 標准,老的終端一樣可以無縫接入 802.11ax 網路。

4G 是移動網路高速率的代名詞,同樣,Wi-Fi 6 是無線區域網高速率的代名詞,但這個高速率是怎麼來的,由以下幾個因素決定。

1.空間流數量 空間流其實就是 AP 的天線,天線數越多,整機吞吐量也越大,就像高速公路的車道一樣,8 車道一定會比 4 車道運輸量更大。

表 2 不同 802.11 標准對應的空間流數量 2.Symbol 與 GI Symbol 就是時域上的傳輸信號,相鄰的兩個Symbol 之間需要有一定的空隙(GI),以避免 Symbol 之間的干擾。就像中國的高鐵一樣,每列車相當於一個 Symbol, 同一個車站發出的兩列車之間一定要有一個時間間隙,否則兩列車就可能會發生碰撞。不同 Wi-Fi 標准下的間隙也有不同,一般來說傳輸速度較快時 GI 需要適當增大,就像同一車道上兩列 350KM/h 時速的高鐵發車時間間隙要比時速 250KM/h 時速的高鐵發車間隙要大一些。

表 3 802.11 標准對應的 Symbol 與GI 數據
3.編碼方式 編碼方式就是調制技術,即 1 個 Symbol 裡面能承載的 bit 數量。從 Wi-Fi 1 到 Wi-Fi 6,每次調制技術的提升,都能至少給每條空間流速率帶來 20%以上的提升。

表 4 802.11 標准對應的 QAM 4.碼率 理論上應該是按照編碼方式無損傳輸,但現實沒有這么美好。傳輸時需要加入一些用於糾錯的信息碼,用冗餘換取高可靠度。碼率就是排除糾錯碼之後實際真實傳輸的數據碼占理論值的比例。

表 5 802.11 標准對應的碼率 5.有效子載波數量 載波類似於頻域上的 Symbol,一個子載波承載一個 Symbol,不同調制方式及不同頻寬下的子載波數量不一樣。

表6.802.11 標准對應的子載波數量
至此,我們可以計算一下 802.11ac 與 802.11ax 在 HT80 頻寬下的單條空間流最大速率:

Wi-Fi 6(802.11ax)繼承了Wi-Fi 5(802.11ac)的所有先進 MIMO 特性,並新增了許多針對高密部署場景的新特性。以下是Wi-Fi 6 的核心新特性:

下面詳細描述這些核心新特性。

圖 2-1 OFDM 工作模式 802.11ax 中引入了一種更高效的數據傳輸模式,叫 OFDMA(因為 802.11ax 支持上下行多用戶模式,因此也可稱為 MU-OFDMA),它通過將子載波分配給不同用戶並在OFDM 系統中添加多址的方法來實現多用戶復用信道資源。迄今為止,它已被許多無線技術採用,例如 3GPP LTE。此外,802.11ax 標准也仿效 LTE,將最小的子信道稱為「資源單位(Resource Unit,簡稱 RU)」,每個 RU 當中至少包含 26 個子載波,用戶是根據時頻資源塊 RU 區分出來的。我們首先將整個信道的資源分成一個個小的固定大小的時頻資源塊 RU。在該模式下,用戶的數據是承載在每一個 RU 上的,故從總的時頻資源上來看,每一個時間片上,有可能有多個用戶同時發送(如下圖)。

圖 2-2 OFDMA 工作模式 OFDMA 相比 OFDM 一般有三點好處:

圖 2-3 不同子載波頻域上的信道質量

因為 802.11ac 及之前的標准都是占據整個信道傳輸數據的,如果有一個 QOS 數據包需要發送,其一定要等之前的發送者釋放完整個信道才行,所以會存在較長的時延。在OFDMA 模式下,由於一個發送者只佔據整個信道的部分資源,一次可以發送多個用戶的數據,所以能夠減少 QOS 節點接入的時延。

表 7不同頻寬下的 RU 數量

圖 2-4RU 在 20MHz 中的位置示意圖 RU 數量越多,發送小包報文時多用戶處理效率越高,吞吐量也越高,下圖是模擬收益:

圖 2-5 OFDMA 與 OFDM 模式下多用戶吞吐量模擬

圖 2-6 SU-MIMO 與 MU-MIMO 吞吐量差異

圖 2-7 8x8 MU-MIMO AP 下行多用戶模式調度順序

圖 2-8 多用戶模式上行調度順序 雖然 802.11ax 標准允許OFDMA 與 MU-MIMO 同時使用,但不要 OFDMA 與 MU- MIMO 混淆。OFDMA 支持多用戶通過細分信道(子信道)來提高並發效率,MU-MIMO 支持多用戶通過使用不同的空間流來提高吞吐量。下表是 OFDMA 與 MU-MIMO 的對比:

表 8 OFDMA 與 MU-MIMO 對比

圖 2-9 256-QAM 與 1024-QAM 的星座圖對比 需要注意的是 802.11ax 中成功使用 1024-QAM 調製取決於信道條件,更密的星座點距離需要更強大的 EVM(誤差矢量幅度,用於量化無線電接收器或發射器在調制精度方面的性能)和接受靈敏度功能,並且信道質量要求高於其他調制類型。

圖 2-10 802.11 默認 CCA 門限
例如圖 12,AP1 上的 STA1 正在傳輸數據,此時,AP2 也想向 STA2 發送數據,根據Wi-Fi 射頻傳輸原理,需要先偵聽信道是否空閑,CCA 門限值默認-82dBm,發現信道已被STA1 佔用,那麼 AP2 由於無法並行傳輸而推遲發送。實際上,所有的與 AP2 相關聯的同信道客戶端都將推遲發送。引入動態 CCA 門限調整機制,當 AP2 偵聽到同頻信道被佔用時,可根據干擾強度調整 CCA 門限偵聽范圍(比如說從-82dBm 提升到-72dBm),規避干擾帶來的影響,即可實現同頻並發傳輸。

圖 2-11 動態 CCA 門限調整 由於 Wi-Fi 客戶端設備的移動性,Wi-Fi 網路中偵聽到的同頻干擾不是靜態的,它會隨著客戶端設備的移動而改變,因此引入動態 CCA 機制是很有效的。802.11ax 中引入了一種新的同頻傳輸識別機制,叫 BSS Coloring 著色機制,在 PHY 報文頭中添加 BSS color 欄位對來自不同BSS 的數據進行「染色」,為每個通道分配一種顏色,該顏色標識一組不應干擾的基本服務集(BSS),接收端可以及早識別同頻傳輸干擾信號並停止接收,避免浪費收發機時間。如果顏色相同,則認為是同一 BSS 內的干擾信號, 發送將推遲;如果顏色不同,則認為兩者之間無干擾,兩個 Wi-Fi 設備可同信道同頻並行傳輸。以這種方式設計的網路,那些具有相同顏色的信道彼此相距很遠,此時我們再利用動態CCA 機制將這種信號設置為不敏感,事實上它們之間也不太可能會相互干擾。

圖 2-12 無BSS Color 機制與有BSS Color 機制對比

圖 2-13 Long OFDM symbol 與窄帶傳輸帶來覆蓋距離提升

前面的幾大核心技術已經足夠證明 802.11ax 帶來的高效傳輸和高密容量,但802.11ax 也不是 Wi-Fi 的最終標准,這只是高效無線網路的開始,新標準的 802.11ax 依然需要兼容老標準的設備,並考慮面向未來物聯網路、綠色節能等方向的發展趨勢。以下是 802.11ax 標準的其他新特性:

下面詳細描述這些新特性。

我們都知道 2.4GHz 頻寬窄,且僅有 3 個 20MHz 的互不幹擾信道(1,6 和 11),在 802.11ac 標准中已經被拋棄,但是有一點不可否認的是 2.4GHz 仍然是一個可用的 Wi-Fi 頻段,在很多場景下依然被廣泛使用,因此,802.11ax 標准中選擇繼續支持 2.4GHz,目的就是要充分利用這一頻段特有的優勢。

無線通信系統中,頻率較高的信號比頻率較低的信號更容易穿透障礙物,而頻率越低, 波長越長,繞射能力越強,穿透能力越差,信號損失衰減越小,傳輸距離越遠。雖然 5GHz 頻段可帶來更高的傳播速度,但信號衰減也越大,所以傳輸距離比 2.4GHz 要短。因此,我們在部署高密無線網路時,2.4GHz 頻段除了用於兼容老舊設備,還有一個很大的作用就是邊緣區域覆蓋補盲。

現階段仍有數以億計的 2.4GHz 設備在線使用,就算如今成為潮流的 IoT 網路設備也使用的 2.4GHz 頻段,對有些流量不大的業務場景(如電子圍欄、資產管理等),終端設備非常多,使用成本更低的僅支持 2.4GHz 的終端是一個性價比非常高的選擇。

圖 2-14 廣播目標喚醒時間操作

為什麼要 Wi-Fi 6(802.11ax)

802.11ax 設計之初就是為了適用於高密度無線接入和高容量無線業務,比如室外大型公共場所、高密場館、室內高密無線辦公、電子教室等場景。

圖 3-1 高密高帶寬應用場景 在這些場景中,接入Wi-Fi 網路的客戶端設備將呈現巨大增長,另外,還在不斷增加的語音及視頻流量也對 Wi-Fi 網路帶來調整,根據預測,到 2020 年全球移動視頻流量將占移動數據流量的 50%以上,其中有 80%以上的移動流量將會通過 Wi-Fi 承載。我們都知道 4K 視頻流(帶寬要求 30Mbps/人)、語音流(時延小於 30ms)、VR 流(帶寬要求 50Mbps/人,時延 10~20ms)對帶寬和時延是十分敏感的,如果網路擁塞或重傳導致傳輸延時,將對用戶體驗帶來較大影響。而現有的Wi-Fi 5(802.11ac)網路雖然也能提供大帶寬能力,但是隨著接入密度的不斷上升,吞吐量性能遇到瓶頸。而Wi-Fi 6 (802.11ax)網路通過 OFDMA、UL MU-MIMO、1024-QAM 等技術使這些服務比以前更可靠,不但支持接入更多的客戶端,同時還能均衡每用戶帶寬。比如說電子教室,以前如果是 100 多位學生的大課授課形式,傳輸視頻或是上下行的交互挑戰都比較大,而802.11ax 網路將輕松應對該場景。

5G 與 Wi-Fi 6(802.11ax)的共存關系

這不是一個新穎的話題,在 1999 年~2000 年間,就有人提出 2G 將替代 Wi-Fi 的觀點;2008 年~2009 年也出現了 4G 將代替 Wi-Fi 的猜測;現在又有人開始討論 5G 代替 Wi- Fi 的話題了。可是,5G 與 Wi-Fi 的應用場景模式是不相同的。Wi-Fi 主要用於室內環境, 而 5G 則是一種廣域網技術,它在室外的應用場景更多。所以我們相信 Wi-Fi 和 5G 將長期共存下去。我們從以下幾個角度進一步分析:

假設 5G 技術取代 Wi-Fi,那麼就必須推出無限流量的套餐,否則費用會遠遠大於寬頻的使用的費用,更何況目前寬頻的價格一年比一年低,誰也不會去選擇更貴的 5G。在目前的 4G 時代無限流量的套餐就是個噱頭,三大運營商都紛紛推出過無限流量的套餐,當時流量超出套餐的流量之後,網路會自動將為 2G 模式,最高速度只有 128Kbps,這個速度看視頻不如看漫畫,因此所謂的無限流量只是個無稽之談。

5G 網路技術採用的是超高頻頻譜(5G 網路頻段: 24GHz~52GHz;4G 網路頻段:1.8GHz~2.6GHz,不包括 2.4GHz),前面已經提到,頻率越高衍射現象越弱,穿越障礙的 能力也就越弱,所以 5G 信號是很容易衰弱的。如果保持 5G 信號的覆蓋需要比 4G 建設更多的基站。而且由於信號的衰減,如果在大樓的內部,隔著幾道牆,信號衰減就更加嚴重了。 再有個極端的例子就是地下室,Wi-Fi 網路可以將路由器通過有線連接放入地下室產生信號, 但是 5G 網路是不可能覆蓋到所有大樓的地下室的,單就這一個弊端,5G 也無法取代 Wi- Fi。另外,現在幾乎所有智能設備都有 Wi-Fi 模塊,大多數物聯網設備也配備了 Wi-Fi 模塊, 出口只用一個公網 IP 地址,區域網內部佔用大量地址也沒關系,用戶在自己的 Wi-Fi 網路下管理這些設備都很方便,而用 5G 勢必會佔用更多公網的 IP 地址。

帶寬 x 頻譜效率 x 終端數量 = 總容量。

5G 的優點在於它的載波聚合技術,提升了頻譜利用率,大大提升了網路容量。在 3G/4G 時代,當用戶在人群密集的場所如地鐵、車站等地方使用手機上網時,可以明顯感覺到上網延遲變大,網速變慢。而在 5G 時代,隨著網路容量大幅提升上述現象帶來的影響明顯降低。也正是這樣的特性,讓人們覺得 5G 網路下可以無限量接入,但很多人忽視了一點,那就是隨著物聯網時代的到來,入網設備的數量也在大幅提升,如果真的所有的上網設備都直連區域內的基站,這條 5G 高速路再寬也得堵死啊!而要想降低基站塔的負擔,就必須依靠Wi-Fi 來做分流。

移動設備廠商宣傳的 5G 最重要的 3 個特徵是高速度、大容量、低時延,其實最新一代的 Wi-Fi 速率比 5G 還要快,最新的 802.11ax(Wi-Fi 6)單流峰值速率 1.2Gbps(5G 網路峰值速率 1Gbps),平均來看,Wi-Fi 每升級一代所用的時間大約只是移動網路的一半左右,所以從最新的Wi-Fi 6 開始,速率會持續領先於移動網路。

辦公、物流、商業、智能家居等各行各業都在走向無線化,首先要做的就是把設備、人員、終端等全部聯網使用。假設 5G 替代了 Wi-Fi 的存在,那麼未來的所有聯網終端都需要配備一張類似手機 SIM 卡的東西才可以上網。這一個理由也註定了目前在室內場景 5G 是不可能取代Wi-Fi 的。類似的設備還有 VR、游戲機、電子閱讀器、機頂盒等等……

大家都知道手機、pad 等移動終端都是用的電池,大家通常都認為電池的耐用性與安裝的業務,和使用頻率有關,但人們往往忽略了一點,終端的各種移動信號接入質量好與差也 與電池耗電量有關。當信號變差時,移動終端為了確保給用戶提供一個良好的體驗,會自動增加發射功率來提升信號質量,這就導致電池耗電量增加。由於 Wi-Fi 的信號源基本是在室內范圍,而 5G 信號在室外幾十公里外的基站,這樣就導致移動終端上傳數據時,Wi-Fi 的傳送距離遠遠小於 5G 信號。通常情況下 5G 的通信距離是 Wi-Fi 的幾千倍以上,這樣就需要手機的信號發射強度大大增加,這就增加了耗電量。曾經有人做過實驗,以 4G 為例,使用網路數據半小時,Wi-Fi 會比移動網路節省 5%的電量。另外,最新一代的 Wi-Fi 6 (802.11ax)支持 TWT 功能,可以在業務需要時自動喚醒,在業務不適用時自動休眠,進一步節省了電量。

因此,目前所面臨的這些問題使得 5G 還無法徹底取代 Wi-Fi,更多的是與 Wi-Fi 進行深度融合,因此使用 Wi-Fi 的企業和用戶並不用過於慌張。今天的 Wi-Fi 已不再是一個提供無線網路的設備,更多的應該被視為企業數字化轉型的必備設施或中央樞紐。例如目前絕大部分的智慧零售、智慧物流、智慧辦公等解決方案的中央樞紐就是 Wi-Fi 網路。

參考:
關於WiFi 6技術,這篇說得最詳細
不同的 Wi-Fi 協議和數據速率
HZ (物理單位

閱讀全文

與高密無線網路場景相關的資料

熱點內容
網路共享中心沒有網卡 瀏覽:521
電腦無法檢測到網路代理 瀏覽:1373
筆記本電腦一天會用多少流量 瀏覽:571
蘋果電腦整機轉移新機 瀏覽:1376
突然無法連接工作網路 瀏覽:1053
聯通網路怎麼設置才好 瀏覽:1223
小區網路電腦怎麼連接路由器 瀏覽:1029
p1108列印機網路共享 瀏覽:1211
怎麼調節台式電腦護眼 瀏覽:690
深圳天虹蘋果電腦 瀏覽:928
網路總是異常斷開 瀏覽:612
中級配置台式電腦 瀏覽:986
中國網路安全的戰士 瀏覽:630
同志網站在哪裡 瀏覽:1413
版觀看完整完結免費手機在線 瀏覽:1458
怎樣切換默認數據網路設置 瀏覽:1110
肯德基無線網無法訪問網路 瀏覽:1285
光纖貓怎麼連接不上網路 瀏覽:1470
神武3手游網路連接 瀏覽:965
局網列印機網路共享 瀏覽:1000