導航:首頁 > 無線網路 > 容錯性無線感測器網路

容錯性無線感測器網路

發布時間:2023-05-11 03:08:27

『壹』 無線感測器網路中edge weights是什麼意思

無線感測器網路中edge weights的意思是邊的權重。

無線感測器網路的含義:線感測器網路就是由部署在監測區域內大量的廉價微型感測器節點組成,通過無線通信方式形成的一個多跳的自組織的網路系統,其目的是協作地感知、採集和處理網路覆蓋區域中被感知對象的信息,並發送給觀察者。感測器、感知對象和觀察者構成了無線感測器網路的三個要素。

無線感測器網路的特點:

  1. 大規模。無感測器網路的大規模性具有如下優點:通過不同空間視角獲得的信息具有更大的信價比;通過分布式處理大量的採集信息能夠提高監測的精確度,降低對單個節點感測器的精度要求;大量冗餘節點的存在,使得系統具有很強的容錯性能;大量節點能夠增大覆蓋的監測區域,減少洞穴或者盲區。

  2. 自組織。感測器節點具有自組織的能力,能夠自動進行配置和管理,通過拓撲控制機制和網路協議自動形成轉發監測數據的多跳無線網路系統。

  3. 動態性。感測器網路的拓撲結構可能因為下列因素而改變:①環境因素或電能耗盡造成的感測器節點故障或失效;②環境條件變化可能造成無線通信鏈路帶寬變化,甚至時斷時通;③感測器網路的感測器、感知對象和觀察者這三要素都可能具有移動性;④新節點的加入。這就要求感測器網路系統要能夠適應這種變化,具有動態的系統可重構性。

  4. 可靠性。感測器網路的通信保密性和安全性也十分重要,要防止監測數據被盜取和獲取偽造的監測信息。因此,感測器網路的軟硬體必須具有魯棒性和容錯性。

  5. 集成化。感測器節點的功耗低,體積小,價格便宜,實現了集成化。其中,微機電系統技術的快速發展為無線感測器網路接點實現上述功能提供了相應的技術條件,在未來,類似「灰塵」的感測器節點也將會被研發出來。

  6. 具有密集的節點布置。在安置感測器節點的監測區域內,布置有數量龐大的感測器節點。通過這種布置方式可以對空間抽樣信息或者多維信息進行捕獲,通過相應的分布式處理,即可實現高精度的目標檢測和識別。

『貳』 無線感測器網路的特點與應用

無線感測器網路的特點與應用

無線感測器網路簡稱WSN,它綜合了現代無線網路通信技術、感測器技術、計算機技術等,其應用十分廣泛。下面是我為大家搜索整理的關於無線感測器網路的特點與應用,歡迎參考閱讀,希望對大家有所幫助!想了解更多相關信息請持續關注我們應屆畢業生培訓網!

無線感測器網路是一種新型的感測器網路,其主要是由大量的感測器節點組成,利用無線網路組成一個自動配置的網路系統,並將感知和收集到的信息發給管理部門。目前無線感測器網路在軍事、生態環境、醫療和家居方面都有一定應用,未來無線感測器網路的發展前景將是不可估量的。

一、無線感測器網路的特點

(一)節點數量多

在監測區通常都會安置許多感測器節點,並通過分布式處理信息,這樣就能夠提高監測的准確性,有效獲取更加精確的信息,並降低對節點感測器的精度要求。此外,由於節點數量多,因此存在許多冗餘節點,這樣就能使系統的容錯能力較強,並且節點數量多還能夠覆蓋到更廣闊的監測區域,有效減少監測盲區。

(二)動態拓撲

無線感測器網路屬於動態網路,其節點並非固定的。當某個節電出現故障或是耗盡電池後,將會退出網路,此外,還可能由於需要而被轉移添加到其他的網路當中。

(三)自組織網路

無線感測器的節點位置並不能進行精確預先設定。節點之間的相互位置也無法預知,例如通過使用飛機播散節點或隨意放置在無人或危險的區域內。在這種情況下,就要求感測器節點自身能夠具有一定的組織能力,能夠自動進行相關管理和配置。

(四)多跳路由

無線感測網路中,節點之間的距離通常都在幾十到幾百米,因此節點只能與其相鄰的節點進行直接通信。如果需要與范圍外的節點進行通信,就需要經過中間節點進行路由。無線感測網路中的多跳路由並不是專門的路由設備,所有傳輸工作都是由普通的節點完成的。

(五)以數據為中心

無線感測網路中的節點均利用編號標識。由於節點是隨機分布的,因此節點的編號和位置之間並沒有聯系。用戶在查詢事件時,只需要將事件報告給網路,並不需要告知節點編號。因此這是一種以數據為中心進行查詢、傳輸的方式。

(六)電源能力局限性

通常都是用電池對節點進行供電,而每個節點的能源都是有限的,因此一旦電池的能量消耗完,就是造成節點無法再進行正常工作。

二、無線感測器網路的應用

(一)環境監測應用

無線感測器可以用於進行氣象研究、檢測洪水和火災等,在生態環境監測中具有明顯優勢。隨著我國市場經濟的不斷發展,生態環境污染問題也越來越嚴重。我國是一個幅員遼闊、資源豐富的農業大國,因此在進行農業生產時利用無線感測器進行對生產環境變化進行監測能夠為農業生產帶來許多好處,這對我國市場經濟的不斷發展有著重要意義。

(二)醫療護理應用

無線感測器網路通過使用互聯網路將收集到的信息傳送到接受埠,例如一些病人身上會有一些用於監測心率、血壓等的感測器節點,這樣醫生就可以隨時了解病人的`病情,一旦病人出現問題就能夠及時進行臨時處理和救治。在醫療領域內感測器已經有了一些成功案例,例如芬蘭的技術人員設計出了一種可以穿在身上的無線感測器系統,還有SSIM(Smart Sensors and Integrated Microsystems)等。

(三)智能家居建築應用

文物保護單位的一個重要工作就是要對具有意義的古老建築實行保護措施。利用無線感測器網路的節點對古老建築內的溫度是、濕度、關照等進行監測,這樣就能夠對建築物進行長期有效的監控。對於一些珍貴文物的保存,對保護地的位置、溫度和濕度等提前進行檢測,可以提高展覽品或文物的保存品質。例如,英國一個博物館基於無線感測器網路設計了一個警報系統,利用放在溫度底部的節點檢測燈光、振動等信息,以此來保障文物的安全[5]。

目前我國基礎建設處在高速發展期,建設單位對各種建設工程的安全施工監測越來越關注。利用無線感測器網路使建築能夠檢測到自身狀況並將檢測數據發送給管理部門,這樣管理部門就能夠及時掌握建築狀況並根據優先等級來處理建築修復工作。

另外,在傢具或家電匯中設置無線感測器節點,利用無線網路與互聯網路,將家居環境打造成一個更加舒適方便的空間,為人們提供更加人性化和智能化的生活環境。通過實時監測屋內溫度、濕度、光照等,對房間內的細微變化進行監測和感知,進而對空調、門窗等進行智能控制,這樣就能夠為人們提供一個更加舒適的生活環境。

(四)軍事應用

無線感測器網路具有低能耗、小體積、高抗毀等特性,且其具有高隱蔽性和高度的自組織能力,這為軍事偵察提供有效手段。美國在20世紀90年代就開始在軍事研究中應用無線感測器網路。無線感測器網路在惡劣的戰場內能夠實時監控區域內敵軍的裝備,並對戰場上的狀況進行監控,對攻擊目標進行定位並能夠檢測生化武器。

目前無線感測器網路在全球許多國家的軍事、研究、工業部門都得到了廣泛的關注,尤其受到美國國防部和軍事部門的重視,美國基於C4ISR又提出了C4KISR的計劃,對戰場情報的感知和信息綜合能力又提出新的要求,並開設了如NSOF系統等的一系列軍事無線感測器網路研究。

總之,隨著無線感測器網路的研究不斷深入和擴展,人們對無線感測器的認識也越來越清晰,然而目前無線感測器網路的在技術上還存在一定問題需要解決,例如存儲能力、傳輸能力、覆蓋率等。盡管無線感測器網路還有許多技術問題待解決使得現在無法廣泛推廣和運用,但相信其未來發展前景不可估量。

;

『叄』 wsn是什麼意思

1、WSN的全稱是無線感測器網路,無線感測器網路是一種分布式感測網路,它的末梢是一種感測器,WSN中的感測器可以通過無線方式通信,因此網路設置靈活、設備位置也可以隨時更改;

無線感測器網路所具有的眾多類型的感測器,可探測包括地震、電磁、溫度、濕度、雜訊、光強度、壓力、土壤成分、移動物體的大小、速度和方向等周邊環境中多種多樣的現象。潛在的應用領域可以歸納為:軍事、航空、防爆、救災、環境、醫療、保健、家居、工業、商業等領域。感測器網路的大規模性具有如下優點:通過不同空間視角獲得的信息具有更大的信噪比;通過分布式處理大量的採集信息能夠提高監測的精確度,降低對單個節點感測器的精度要求;大量冗餘節點的存在,使得系統具有很強的容錯性能;大量節點能夠增大覆蓋的監測區域,減少洞穴或者盲區。

『肆』 多跳通信的優缺點

1、網路規模大(節點數量多)

例如:對森林、草原進行防火監控、野生動物活動情況監測、壞境監測往往要布置大量的無線感測

器節點,布設范圍也遠遠超過一般的區域網范圍。(工控)

布置大量的無線感測器節點的優點:

(1)提高整體監測的精確度

(2)降低對單個節點的精確要求

(3)大量冗餘節點的存在使得系統有較強的容錯性。

2、 自組織網路

與局部網的布設不同,無線感測器節點額位置布設前不能事先確定(飛機撒布、人員隨機布設),節點之間的互相鄰居關系也不能事先確定。

要求無線感測器節點具有自組織能力,能夠自動進行配置管理。實現的方法是通過拓撲控制機制和網路路由協議自動形成能夠轉發數據的多跳無線網路系統。

3、動態性網路

無線感測器網路的拓撲結構經常改變。原因:

(1)被動改變:感測器節點電能耗盡;環境變化造成通信故障;感測器節點本身出現故障。

(2)主動改變:增加新節點;根據路由演算法的優化做出的改變。

4、可靠性強

(1)感測器節點本身硬體結構可靠

布設時:可能通過飛機撒模猛敗布,人員隨機撒布

工作時:風吹、日曬、雨林、嚴寒、酷暑。

維護性 :維護十分困難(幾乎不可能)。

(2)網路結構可靠(電容的作用)

自組織網、動態性保證基本的信息傳輸正常。

(3)軟體可靠

(4)信息保密性強

5、以數據為中心

在互聯網中終端、主機、路由器、伺服器等設備都有自己的IP地址。想訪問互聯網中資源,必須先知道存放資旦顫源的伺服器的IP地址。所以互聯網是一個以地址為中心的網路。而無線感測器網路是任務型網路。

在WSN中,節點雖然也有編號。但是編號是否在整個WSN中知伏統一取決於具體需要。另外節點編號與節點位置之間也沒有必然聯系。用戶使用WSN查詢事件時,將關心的事件報告給整個網路而不是某個節點。許多時候只關心結果數據如何,而不關心是哪個節點發出的數據。

WSN採用微型感測器節點採集信息,各節點間具有自組織和協同工作的能力,網路內部採用無線多跳通信方式,與傳統的SN相比具有以下優勢:

1、精確高:實現單一的感測器無法實現的密集空間采樣及近距離監測。

2、靈活性強:一經部署無需人為干預。

3、可靠性高:可以避免單點失效問題

4、性價比高:降低有線傳輸成本,隨著技術的發展,感測器成本低。

『伍』 有關無線感測器網路中時間同步機制有哪些方法和策略

1  時間同步技術的重要性 
感測器節點的時鍾並不完美,會在時間上發生漂移,所以觀察到的時間對於網路中的節點來說是不同的。但很多網路協議的應用,都需要一個共同的時間以使得網路中的節點全部或部分在瞬間是同步的。 
第一,感測器節點需要彼此之間並行操作和協作去完成復雜的感測任務。如果在收集信息過程中,感測器節點缺乏統一的時間戳(即沒有同步),估計將是不準確的。 
第二,許多節能方案是利用時間同步來實現的。例如,感測器可以在適當的時候休眠(通過關閉感測器和收發器進入節能模式),在需要的時候再喚醒。在應用這種節能模式的時候,節點應該在同等的時間休眠和喚醒,也就是說當數據到來時,節點的接收器可以接收,這個需要感測器節點間精確的定時。 
2  時間同步技術所關注的主要性能參數 
時間同步技術的根本目的是為網路中節點的本地時鍾提供共同的時間戳。對無線感測器
網路WSN(Wireless Sensor Networks)[1]
的時間同步應主要應考慮以下幾個方面的問題: 
(1)能量效率。同步的時間越長,消耗的能量越多,效率就越低。設計WSN的時間同步演算法需以考慮感測器節點有效的能量資源為前提。 
(2) 可擴展性和健壯性。時間同步機制應該支持網路中節點的數目或者密度的有效擴展,並保障一旦有節點失效時,餘下網路有效且功能健全。 
(3)精確度。針對不同的應用和目的,精確度的需求有所不用。 
(4)同步期限。節點需要保持時間同步的時間長度可以是瞬時的,也可以和網路的壽命一樣長。 
(5)有效同步范圍。可以給網路內所有節點提供時間,也可以給局部區域的節點提供時間。 
(6)成本和尺寸。同步可能需要特定的硬體,另外,體積的大小也影響同步機制的實現。 (7)最大誤差。一組感測器節點之間的最大時間差,或相對外部標准時間的最大差。 3  現有主要時間同步方法研究 
時間同步技術是研究WSN的重要問題,許多具體應用都需要感測器節點本地時鍾的同步,要求各種程度的同步精度。WSN具有自組織性、多跳性、動態拓撲性和資源受限性,尤其是節點的能量資源、計算能力、通信帶寬、存儲容量有限等特點,使時間同步方案有其特
殊的需求,也使得傳統的時間同步演算法不適合於這些網路[2]
。因此越來越多的研究集中在設
計適合WSN的時間同步演算法[3]
。針對WSN,目前已經從不同角度提出了許多新的時間同步演算法[4]
。 
3.1  成對(pair-wise)同步的雙向同步模式 
代表演算法是感測器網路時間同步協議TPSN(Timing-Sync Protocol for Sensor 
Networks)[5~6]
。目的是提供WSN整個網路范圍內節點間的時間同步。 
該演算法分兩步:分級和同步。第一步的目的是建立分級的拓撲網路,每個節點有個級別。只有一個節點與外界通信獲取外界時間,將其定為零級,叫做根節點,作為整個網路系統的時間源。在第二步,每個i級節點與i-1(上一級)級節點同步,最終所有的節點都與根節點同步,從而達到整個網路的時間同步。詳細的時間同步過程如圖 1 所示。 
 

圖1  TPSN 同步過程 
 
設R為上層節點,S為下層節點,傳播時間為d,兩節點的時間偏差為θ。同步過程由節點R廣播開始同步信息,節點S接收到信息以後,就開始准備時間同步過程。在T1時刻,節點S發送同步信息包,包含信息(T1),節點R在T2接收到同步信息,並記錄下接收時間T2,這里滿足關系:21TTd 
節點R在T3時刻發送回復信息包,包含信息(T1,T2,T3)。在T4時刻S接收到同步信息包,滿足關系:43TTd 
最後,節點S利用上述2個時間表達式可計算出的值:(21)(43)2
TTTT 
TPSN由於採用了在MAC層給同步包標記時間戳的方式,降低了發送端的不確定性,消除了訪問時間帶來的時間同步誤差,使得同步效果更加有效。並且,TPSN演算法對任意節點的同步誤差取決於它距離根節點的跳數,而與網路中節點總數無關,使TPSN同步精度不會隨節點數目增加而降級,從而使TPSN具有較好的擴展性。TPSN演算法的缺點是一旦根節點失效,就要重新選擇根節點,並重新進行分級和同步階段的處理,增加了計算和能量開銷,並隨著跳數的增加,同步誤差呈線性增長,准確性較低。另外,TPSN演算法沒有對時鍾的頻差進行估計,這使得它需要頻繁同步,完成一次同步能量消耗較大。 
3.2  接收方-接收方(Receiver-Receiver)模式 
代表演算法是參考廣播時間同步協議RBS(Reference Broadcast Synchronization)[7]
。RBS是典型的基於接收方-接收方的同步演算法,是Elson等人以「第三節點」實現同步的思想而提出的。該演算法中,利用無線數據鏈路層的廣播信道特性,基本思想為:節點(作為發
送者)通過物理層廣播周期性地向其鄰居節點(作為接收者)發送信標消息[10]
,鄰居節點記錄下廣播信標達到的時間,並把這個時間作為參考點與時鍾的讀數相比較。為了計算時鍾偏移,要交換對等鄰居節點間的時間戳,確定它們之間的時間偏移量,然後其中一個根據接收
到的時間差值來修改其本地的時間,從而實現時間同步[11]
。 
假如該演算法在網路中有n個接收節點m個參考廣播包,則任意一個節點接收到m個參考包後,會拿這些參考包到達的時間與其它n-1個接收節點接收到的參考包到達的時間進行比較,然後進行信息交換。圖2為RBS演算法的關鍵路徑示意圖。 
網路介面卡
關鍵路徑
接收者1
發送者
接收者2
 
圖2  RBS演算法的關鍵路徑示意圖 
 
其計算公式如下: 
,,1
1,:[,]()m
jkikkinjnoffsetijTTm
 其中n表示接收者的數量,m表示參考包的數量,,rbT表示接收節點r接收到參考包b時的時鍾。 

此演算法並不是同步發送者和接收者,而是使接收者彼此同步,有效避免了發送訪問時間對同步的影響,將發送方延遲的不確定性從關鍵路徑中排除,誤差的來源主要是傳輸時間和接收時間的不確定性,從而獲得了比利用節點間雙向信息交換實現同步的方法更高的精確度。這種方法的最大弊端是信息的交換次數太多,發送節點和接收節點之間、接收節點彼此之間,都要經過消息交換後才能達到同步。計算復雜度較高,網路流量開銷和能耗太大,不適合能量供應有限的場合。 
3.3  發送方-接收方(Sender-Receiver)模式 
基於發送方-接收方機制的時間同步演算法的基本原理是:發送節點發送包含本地時間戳的時間同步消息,接收節點記錄本地接收時間,並將其與同步消息中的時間戳進行比較,調整本地時鍾。基於這種方法提出的時間同步演算法有以下兩種。 
3.3.1  FTSP 演算法[8]
 
泛洪時間同步協議FTSP(Flooding Time Synchronization Protocol)由Vanderbilt大學Branislav Kusy等提出,目標是實現整個網路的時間同步且誤差控制在微秒級。該演算法用單個廣播消息實現發送節點與接收節點之間的時間同步。 
其特點為:(1)通過對收發過程的分析,把時延細分為發送中斷處理時延、編碼時延、傳播時延、解碼時延、位元組對齊時延、接收中斷處理時延,進一步降低時延的不確定度;(2)通過發射多個信令包,使得接收節點可以利用最小方差線性擬合技術估算自己和發送節點的頻率差和初相位差;(3)設計一套根節點選舉機制,針對節點失效、新節點加入、拓撲變化
等情況進行優化,適合於惡劣環境[12]
。 
FTSP演算法對時鍾漂移進行了線性回歸分析。此演算法考慮到在特定時間范圍內節點時鍾晶振頻率是穩定的,因此節點間時鍾偏移量與時間成線性關系,通過發送節點周期性廣播時間同步消息,接收節點取得多個數據對,構造最佳擬合直線,通過回歸直線,在誤差允許的時間間隔內,節點可直接通過它來計算某一時間節點間的時鍾偏移量而不必發送時間同步消息進行計算,從而減少了消息的發送次數並降低了系統能量開銷。 
FTSP結合TPSN和RBS的優點,不僅排除了發送方延遲的影響,而且對報文傳輸中接收方的不確定延遲(如中斷處理時間、位元組對齊時間、硬體編解碼時間等)做了有效的估計。多跳的FTSP協議採用層次結構,根節點為同步源,可以適應大量感測器節點,對網路拓撲結構的變化和根節點的失效有健壯性,精確度較好。該演算法通過採用MAC層時間戳和線性回歸偏差補償彌補相關的錯誤源,通過對一個數據包打多個時戳,進而取平均和濾除抖動較大的時戳,大大降低了中斷和解碼時間的影響。FTSP 採用洪泛的方式向遠方節點傳遞時間基準節點的時間信息,洪泛的時間信息可由中轉節點生成,因此誤差累積不可避免。另外,FTSP的功耗和帶寬的開銷巨大。 
3.3.2  DMTS 演算法[9]
 
延遲測量時間同步DMTS (delay measurement time synchronization) 演算法的同步機制是基於發送方-接收方的同步機制。DMTS 演算法的實現策略是犧牲部分時間同步精度換取較低的計算復雜度和能耗,是一種能量消耗輕的時間同步演算法。 
DMTS演算法的基本原理為:選擇一個節點作為時間主節點廣播同步時間,所有接收節點通過精確地測量從發送節點到接收節點的單向時間廣播消息的延遲並結合發送節點時間戳,計算出時間調整值,接收節點設置它的時間為接收到消息攜帶的時間加上廣播消息的傳輸延遲,調整自己的邏輯時鍾值以和基準點達成同步,這樣所有得到廣播消息的節點都與主節點進行時間同步。發送節點和接收節點的時間延遲dt可由21()dtnttt得出。其中,nt為發送前導碼和起始字元所需的時間,n為發送的信息位個數,t為發送一位所需時間;1t為接收節點在消息到達時的本地時間;2t為接收節點在調整自己的時鍾之前的那一時刻記錄的本地時間,21()tt是接收處理延遲。 

DMTS 演算法的優點是結合鏈路層打時間戳和時延估計等技術,消除了發送時延和訪問時延的影響,演算法簡單,通信開銷小。但DMTS演算法沒有估計時鍾的頻率偏差,時鍾保持同步的時間較短,沒有對位偏移產生的時間延遲進行估計,也沒有消除時鍾計時精度對同步精度的影響,因此其同步精度比FTSP略有下降,不適用於定位等要求高精度同步的應用。 
基於發送方-接收方單向同步機制的演算法在上述三類方法中需要發送的時間同步消息數目最少。發送節點只要發送一次同步消息,因而具有較低的網路流量開銷和復雜度,減少了系統能耗。 
4  結論 
文章介紹了WSN時間同步演算法的類型以及各自具有代表性的演算法,分析了各演算法的設計原理和優缺點。這些協議解決了WSN中時間同步所遇到的主要問題,但對於大型網路,已有的方法或多或少存在著一些問題:擴展性差、穩定性不高、收斂速度變慢、網路通信沖突、能耗增大。今後的研究熱點將集中在節能和時間同步的安全性方面。這將對演算法的容錯性、有效范圍和可擴展性提出更高的要求。 

『陸』 定位技術的評價標准

無線感測器網路定位性能的評價標准主要分為7 種, 下面分別進行介紹。
1) 定位精度。定位技術首要的評價指標就是定位精確度, 其又分為絕對精度和相對精度。絕對精度是測量的坐標與真實坐標的偏差, 一般用長度計量單位表示。相對誤差一般用誤差值與節點無線射程的比例表示, 定位誤差越小定位精確度越高。
2) 規模。不同的定位系統或演算法也許可以在一棟樓房、一層建築物或僅僅是一個房間內實現定位。
另外, 給定一定數量的基礎設施或一段時間, 一種技術可以定位多少目標也是一個重要的評價指標。
3) 錨節點密度。錨節點定位通常依賴人工部署或使用GPS 實現。人工部署錨節點的方式不僅受網路部署環境的限制, 還嚴重製約了網路和應用的可擴展性。而使用GPS 定位, 錨節點的費用會比普通節點高兩個數量級, 這意味著即使僅有10%的節點是錨節點, 整個網路的價格也將增加10 倍, 另外, 定位精度隨錨節點密度的增加而提高的范圍有限, 當到達一定程度後不會再提高。因此, 錨節點密度也是評價定位系統和演算法性能的重要指標之一。
4) 節點密度。節點密度通常以網路的平均連通度來表示, 許多定位演算法的精度受節點密度的影響。
在無線感測器網路中, 節點密度增大不僅意味著網路部署費用的增加, 而且會因為節點間的通信沖突問題帶來有限帶寬的阻塞。
5) 容錯性和自適應性。定位系統和演算法都需要比較理想的無線通信環境和可靠的網路節點設備。
而真實環境往往比較復雜, 且會出現節點失效或節點硬體受精度限制而造成距離或角度測量誤差過大等問題, 此時, 物理地維護或替換節點或使用其他高精度的測量手段常常是困難或不可行的。因此, 定位系統和演算法必須有很強的容錯性和自適應性, 能夠通過自動調整或重構糾正錯誤, 對無線感測器網路進行故障管理, 減小各種誤差的影響。
6) 功耗。功耗是對無線感測器網路的設計和實現影響最大的因素之一。由於感測器節點的電池能量有限, 因此在保證定位精確度的前提下, 與功耗密切相關的定位所需的計算量、通信開銷、存儲開銷、時間復雜性是一組關鍵性指標。
7) 代價。定位系統或演算法的代價可從不同的方面來評價。時間代價包括一個系統的安裝時間、配置時間、定位所需時間; 空間代價包括一個定位系統或演算法所需的基礎設施和網路節點的數量、硬體尺寸等; 資金代價則包括實現一種定位系統或演算法的基礎設施、節點設備的總費用。
上述7 個性能指標不僅是評價無線感測器網路自身定位系統和演算法的標准, 也是其設計和實現的優化目標。為了實現這些目標的優化, 有大量的研究工作需要完成。同時, 這些性能指標相互關聯, 必須根據應用的具體需求做出權衡以設計合適的定位技術。

『柒』 試分析epc 信息物理系統,無線感測網和m2m的不同點

搜索詞條

無線感測技術
中文名:無線感測技術
定義:傳遞信息
別稱:感測器
起源時間:上世紀70年代
應用領域:電子信息等
意義:上世紀70年代
分享
發展概述

早在上世紀70年代,就出現了將傳統感測器採用點對點傳輸、連接感測控制器而構成感測網路雛形,我們把它歸之為第一代感測器網路。隨著相關學科的不斷發展和進步,感測器網路同時還具有了獲取多種信息信號的綜合處理能力,並通過與感測控制的相聯,組成了有信息綜合和處理能力的感測器網路,這是第二代感測器網路。而從上世紀末開始,現場匯流排技術開始應用於感測器網路,人們用其組建智能化感測器尺嘩網路,大量多功能感測器被運用,並使用無線技術連接,無純度感測器網路逐漸形成。

無線感測器網路是新一代的感測器網路,具有非常上世紀70年代,其發展和應用,將會給人類的生活和生產的各個領域帶來深遠影響。

定義

無線感測器網路可以看成是由數據獲取網路、數據頒布網路和控制管理中心三部分組成的。其主要組成部分是集成有感測器、處理單元和通信模塊的節點,各節點通過協議自組成一個分布式網路,再將采寬檔集來的數據通過優化後經無線電波傳輸給信息處理中心。

特點

1、硬體資源有限。WSN節點採用嵌入式處理器和存儲器,計算能力和存儲能力十分有限。所以,需要解決如何在有限計算能力的條件下進行協作頒布式信息處理的難題。

2、電源容量有限。為了測量真實世界的具體值,各個節點會密集地分布於待測區域內,人工補充能量的方法已經不再適用。

3、無中心。在無線感測器網路中,所有節點的地位都是平等的,沒有預先指定的中心,陵巧行是一個對等式網路。各節點通過頒布式演算法來相互協調,在無人值守的情況下,節點就能自動組織起一個測量網路。

4、自組織。網路的布設和展開無需依賴於任何預設的網路設施,節點通過分層協議和份布式演算法協調各自的行為,節點開機後就可以快速、自動地組成一個獨立的網路。

5、多跳路由。WSN節點通信能力有限,覆蓋范圍只有幾十到幾百米,節點只能與它的鄰居直接通信。

6、動態拓撲。WSP是一個動態的網路,節點可以隨處移動;一個節點可能會因為電池能量耗盡或其他故障,退出網路運行;也可能由於工作的需要而被添加到網路中。

7、節點數量眾多,分布密集。WSN節點數量大、分布范圍廣,難於維護甚至不可維護。所以需要解決如何提高感測器網路的軟、硬體健壯和容錯性。

8、傳輸能力的有限性。無線感測器網路通過無線電源進行數據傳輸,雖然省去了布線的煩惱,但是相對於有線網路,低帶寬則成為它的天生缺陷。同時,信號之間還存在相互干擾,信號自身也在不斷地衰減,諸如此類。

9、安全性問題。無線信道、有限的能量,分布式控制都使得無線感測器網路更容易受到攻擊。被動竊聽、主動入侵、拒絕服務則是這些攻擊的常見方式。因此,安全性在網路中至關重要。

『捌』 無線感測器網路的特點及關鍵技術

無線感測器網路的特點及關鍵技術

無線感測器網路被普遍認為是二十一世紀最重要的技術之一,是目前計算機網路、無線通信和微電子技術等領域的研究熱點。下面我為大家搜索整理了關於無線感測器網路的特點及關鍵技術,歡迎參考閱讀!

一、無線感測器網路的特點

與其他類型的無線網路相比,感測器網路有著鮮明的特徵。其主要特點可以歸納如下:

(一)感測器節點能量有限。當前感測器通常由內置的電池提供能量,由於體積受限,因而其攜帶的能量非常有限。如何使感測器節點有限的能量得到高效的利用,延長網路生存周期,這是感測器網路面臨的首要挑戰。

(二)通信能力有限。無線通信消耗的能量與通信距離的關系為E=kdn。其中,參數n的取值為2≤n≤4,n的取值與許多因素有關。但是不管n具體的取值,n的取值范圍一旦確定,就表明,無線通信的能耗是隨著距離的增加而更加急劇地增加的。因此,在滿足網路連通性的要求下,應盡量採用多跳通信,減少單跳通信的距離。通常,感測器節點的通信范圍在100m內。

(三)計算、存儲和有限。一方面為了滿足部署的要求,感測器節點往往體積小;另一方面出於成本控制的目的`,節點的價格低廉。這些因素限制了節點的硬體資源,從而影響到它的計算、存儲和通信能力。

(四)節點數量多,密度高,覆蓋面積廣。為了能夠全面准確的監測目標,往往會將成千上萬的感測器節點部署在地理面積很大的區域內,而且節點密度會比較大,甚至在一些小范圍內採用密集部署的方式。這樣的部署方式,可以讓網路獲得全面的數據,提高信息的可靠性和准確性。

(五)自組織。感測器網路部署的區域往往沒有基礎設施,需要依靠感測器節點協同工作,以自組織的方式進行網路的配置和管理。

(六)拓撲結構動態變化。感測器網路的拓撲結構通常是動態變化的,例如部分節點故障或電量耗盡退出網路,有新的節點被部署並加入網路,為節約能量節點在工作和休眠狀態間進行切換,周圍環境的改變造成了無線通信鏈路的變化,以及感測器節點的移動等都會導致感測器網路拓撲結構發生變化。

(七)感知數據量巨大。感測器網路節點部署范圍大、數量多,且網路中的每個感測器通常都產生較大的流式數據並具有實時性,因此網路中往往存在數量巨大的實時數據流。受感測器節點計算、存儲和帶寬等資源的限制,需要有效的分布式數據流管理、查詢、分析和挖掘方法來對這些數據流進行處理。

(八)以數據為中心。對於感測器網路的用戶而言,他們感興趣的是獲取關於特定監測目標的真實可靠的數據。在使用感測器網路時,用戶直接使用其關注的事件作為任務提交給網路,而不是去訪問具有某個或某些地址標識的節點。感測器網路中的查詢、感知、傳輸都是以數據為中心展開的。

(九)感測器節點容易失效。由於感測器網路應用環境的特殊性以及能量等資源受限的原因,感測器節點失效(如電池能量耗盡等)的概率遠大於傳統無線網路節點。因此,需要研究如何提高數據的生存能力、增強網路的健壯性和容錯性以保證部分感測器節點的損壞不會影響到全局任務的完成。此外,對於部署在事故和自然災害易發區域的無線感測器網路,還需要進一步研究當事故和災害導致大部分感測器節點失效時如何最大限度地將網路中的數據保存下來,以提供給災害救援和事故原因分析等使用。

二、關鍵技術

無線感測器網路作為當今信息領域的研究熱點,設計多學科交叉的研究領域,有非常多的關鍵技術有待研究和發現,下面列舉若干。

(一)網路拓撲控制。通過拓撲控制自動生成良好的拓撲結構,能夠提高路由協議和MAC協議的效率,可為數據融合、時間同步和目標定位等多方面奠定基礎,有利於節省能量,延長網路生存周期。所以拓撲控制是無線感測器網路研究的核心技術之一。目前,拓撲控制主要研究的問題是在滿足網路連通度的前提下,通過功率控制或骨幹網節點的選擇,剔除節點之間不必要的通信鏈路,生成一個高效的數據轉發網路拓撲結構。

(二)介質訪問控制(MAC)協議。在無線感測器網路中,MAC協議決定無線信道的使用方式,在感測器節點之間分配有限的無線通信資源,用來構建感測器網路系統的底層基礎結構。MAC協議處於感測器網路協議的底層部分,對感測器網路的性能有較大影響,是保證無線感測器網路高效通信的關鍵網路協議之一。感測器網路的強大功能是由眾多節點協作實現的。多點通信在局部范圍需要MAC協議協調其間的無線信道分配,在整個網路范圍內需要路由協議選擇通信路徑。

在設計MAC協議時,需要著重考慮以下幾個方面:

(1)節省能量。感測器網路的節點一般是以干電池、紐扣電池等提供能量,能量有限。

(2)可擴展性。無線感測器網路的拓撲結構具有動態性。所以MAC協議也應具有可擴展性,以適應這種動態變化的拓撲結構。

(3)網路效率。網路效率包括網路的公平性、實時性、網路吞吐量以及帶寬利用率等。

(三)路由協議。感測器網路路由協議的主要任務是在感測器節點和Sink節點之間建立路由以可靠地傳遞數據。由於感測器網路與具體應用之間存在較高的相關性,要設計一種通用的、能滿足各種應用需求的路由協議是困難的,因而人們研究並提出了許多路由方案。

(四)定位技術。位置信息是感測器節點採集數據中不可或缺的一部分,沒有位置信息的監測消息可能毫無意義。節點定位是確定感測器的每個節點的相對位置或絕對位置。節點定位分為集中定位方式和分布定位方式。定位機制也必須要滿足自組織性,魯棒性,能量高效和分布式計算等要求。

(五)數據融合。感測器網路為了有效的節省能量,可以在感測器節點收集數據的過程中,利用本地計算和存儲能力將數據進行融合,取出冗餘信息,從而達到節省能量的目的。

(六)安全技術。安全問題是無線感測器網路的重要問題。由於採用的是無線傳輸信道,網路存在偷聽、惡意路由、消息篡改等安全問題。同時,網路的有限能量和有限處理、存儲能力兩個特點使安全問題的解決更加復雜化了。

;

『玖』 zigbee協議最低的硬體要求是什麼

zigbee協議最低的硬體要求是需要8位處理器,如80c51;軟體需要32 kB的ROM,最小軟體需要4 kB的ROM;網路主節點需要更多的RAM以容納網路內所有節點的設備信息、數據包轉發表、設備關聯表、與安全有關的密鑰存儲等。

ZigBee協議適應無線感測器的低花費、低能量、高容巧衫清錯性等的要求。ZigBee是基於IEEE802.15.4標準的低功耗區域網協議。但IEEE僅處理低級MAC層和物理層協議,因此Zigbee聯盟擴展了IEEE,對其網路層協議和API進行了標准化。

Zigbee是一種新興的短距離、低速率的無線網路技術。主要用於近距離無線連接。它有自己的協議標准,孝前在數千個微小的感測器之間相互協調實現通信。

概念

無線感測器網路節點要進行相互的數據交流就要有相應的無線網路協議(包括MAC層、路由、網路層、應用層等),傳統的無線協議很難適應無線塌棗感測器的低花費、低能量、高容錯性等的要求,這種情況下,ZigBee協議應運而生。

Zigbee是一個由可多到65000個無線數傳模塊組成的一個無線數傳網路平台,十分類似現有的移動通信的CDMA網或GSM網,每一個Zigbee網路數傳模塊類似移動網路的一個基站,在整個網路范圍內,它們之間可以進行相互通信。

每個網路節點間的距離可以從標準的75米,到擴展後的幾百米,甚至幾公里;另外整個Zigbee網路還可以與現有的其它的各種網路連接。通常,符合如下條件之一的應用,就可以考慮採用Zigbee技術做無線傳輸:需要數據採集或監控的網點多。

現有移動網路的覆蓋盲區;使用現存移動網路進行低數據量傳輸的遙測遙控系統;使用GPS效果差,或成本太高的局部區域移動目標的定位應用。值得注意的是,在已經發布的ZIGBEE V1.0中並沒有規定具體的路由協議,具體協議由協議棧實現。

『拾』 工業自動化領域中的無線技術

工業自動化領域中的無線技術

導語:一定條件下,在工業自動化方面,其要求對數據進行精確的定位。在測量方面,特別是在底下探測方面,具有十分廣闊的發展前景。以下是我為大家整理的工業自動化領域中的無線技術論文範文,希望大家喜歡,更多內容請瀏覽(www.oh100.com/bylw)。

【摘要】筆者概述了工業自動化領域中的無線技術方法及特徵,並探討了UWB無線通信技術在工業自動化領域中的運用效果及發展的新趨勢,對指導工業自動化領域中的無線技術具有一定的參與價值。

【關鍵詞】工業自動化,領域,無線技術

一、前言

幾年來,我國工業自動化領域中的無線技術取得了飛速發展,但依然存在一些問題和不足需要改進,筆者對工業自動化領域中的無線技術存在的主要問題進行分析,對工業自動化領域中的無線技術創新策略進行研究,對加快工業自動化推進的步伐,具有十分重要的意義。

二、Z igbee技術特徵

Z igbee是一項近距離、低復雜度、低功耗、低數據速率、低成本的雙向無線通信技術, 在一定情況下,主要適用於自動控制與遠程式控制制領域, 是為滿足小型廉價設備的無線聯網與控制而制定的。Z igbee是 IEEE 802.15. 4技術的商業名子。與此同時,這項技術的核心協議由 2005年 12月成立的 IEEE 802. 15. 4工作組研究制定的, 但是,高層應用、互聯互通測試與市場推廣由 Zigbee聯盟負責。接著研究的問題是Z igbee聯盟成立時間是 2001年 9月, 現在包括英國Invensys公司、日本三菱電氣公司、美國摩托羅拉公司等在內的百餘家知名企業。在一定程度上,Z igbee的協議主要是由物理層、數據鏈路層、網路/安全層、應用框架及高層應用規范組成。其中IEEE 802. 15. 4負責物理層與數據鏈路層標准; 據此開始研究Zig-bee聯盟負責網路層與應用層的研發。 Z igbee協議棧如圖 1所示。

Z igbee技術的主要特徵如下:一是功耗低。在低耗電待機條件下, 兩節普通5號干電池才可使用 6 個月以上, 這是 Zigbee支持者所特定的優勢。二是數據傳輸過程中速率低。只有 10~ 250 kb/s,專注於低傳輸應用。三是成本比較低。 Z igbee 數據傳輸速率比較低, 而且協議簡單, 很大程度上降低了成本。為此,預算今年年底一個 Zigbee晶元價格可能降到 3美元。四是網路容量比較大。統計顯示,網路可容納 65536個節點。五是有效范圍比較小。有效覆蓋范圍在10~ 75 m之間, 在一定情況下,要具體根據實際發射功率大小與各種不同的.應用模式確定。六是工作頻段很靈活。在一定程度上,應用的頻段分別為2. 4GH z(全球)、868MH z( 歐洲 ) 與 915 MH z(美國 ) , 都是免執照頻段。七是安全適用。 Z igBee提供了數據完整性檢查與鑒權功能, 採取 AES- 128加密演算法。八是誠信可靠。採用了碰撞預防辦法, 並且,為需要固定帶寬的通信業務預留了專用時隙, 防止發送數據的競爭和沖突。九是時延短。 Z igbee 通信時延與從休眠狀態激活的時延都很短, 設備搜索時間典型值為 30 ms,設備激活時間典型值是 15 m s, 活動設備接入時間是 15ms。在此基礎之上,Z igbee主要應用於數據傳輸速率不高的諸多電子設備之間, 比如:醫療護理 與工控等。其中最典型的應用是自動抄表系統。為此,當前 GPRS/CDMA無線抄表系統成本相對較高, 並且還要向電信運營商支付一定額度的費用, 另一種電力線聯網 ( PLC)技術運行則不夠穩定。據此,比較而言, 運用Z igbee網路的抄表系統由電力局自行建網, 在一定程度下,不需要交納額外的費用, 另外,Z igbee網路超大的容量一般可以滿足覆蓋的需求,因此 Z igbee在無線自動抄表領域具有廣闊的發展前景。與此同時,在井下無線監控、工業環境的溫濕度監測、污水監測、氣體監測上 Zigbee也具有很大的優勢。在特殊條件下,由於感測器與通信技術的發展, 無線感測器網路 (W ireless sensor networks, WSN)的概念已深入人心。 Zigbee在無線感測器網路的運用上有著無法比喻的優勢。在一定程度上,無線感測器網路也是由部署在監測區域內大量的廉價微型感測器節點構成、經過無線通信方式,並且形成的一個多跳的自組織的網路系統, 為此,具有監測高精度、高容錯性、大覆蓋區域、可遠程監控等諸多優點。WSN 可應用於工業自動化系統、設備故障診斷、惡劣環境下生產過程監控等。同時,無線感測器網路設計的首要目標是能源的高效利用, 也就是說, 在保證正常的監測功能的條件下, 盡可能較少的消耗節點的能量, 同時,延長網路的生命周期。基於這一點, 它和 Z ig-bee的設計目標相符。其次。感測器網路嚴格要求每個節點的成本要盡可能達到最低,並且要求很嚴格。只有這樣, 一個網路才可以擁有較多的節點, 在個別節點無效的條件下,可以迅速的重新規劃確定路由, 從而,不致於使網路癱瘓。第三,Z igbee網路可以同時容納 6.5萬多個節點, 足能保證多源數據的採集。在一定條件下,一個感測器網路通常包涵感測器節點、匯聚節點與管理節點。同時,感測器節點一般由感測器模塊、處理器模塊、無線通信模塊與能量供應模塊四部分組成, 是一個微型的嵌入式系統, 它兼顧傳統網路節點的終端與路由器雙重功能。感測器網路的體系結構見圖 2。

匯聚節點連接感測器網路與外部網路, 達到兩種協議棧之間的通信協議轉換, 在此基礎上,發布管理節點的監測任務, 還要把收集到的數據轉發到外部網路上。為此,用戶通過管理節點對感測器網路實施配置與管理, 發布監測指令以及收集監測數據。同時,針對感測器網路的組成結構, 可以應用 Zigbee節點作整個網路的感測器節點, 並且,在整個監測區域內,組成一個 Zigbee網路, 每個感測器節點內嵌 Zigbee協議棧, 實現基本的 Zigbee網路功能,與此同時,把採集到的數據傳輸給匯聚節點, 還要接受匯聚節點對其下達的任務與命令。在一定程度下,利用一個微處理器 + GPRS模塊作為匯聚節點, 據此,用來連接感測器網路和 GPRS網路, 實現 TCP/UD P等協議, 把數據打包封裝成幀, 在一定條件下,通過 GPRS網路傳遞給主控制室, 並把主控端的命令解封裝, 然後,傳達給感測器節點。在用戶端接一個 GPRS模塊與 PC機伺服器做硬體平台, 軟體包含資料庫等,在這一過程中,對收到的數據進行認真分析, 同時對整個網路進行管理。在特定情況下,Z igbee自身的特點決定了它只能應用在短距低速的條件下, 在工業監測中, 必須注意工作流程,有很多時間需要的是實時的圖像, 這就必須有高速的數據傳輸率, 因而, 在這一點上, Zigbee有著致命的缺點。UWB技術的出現使這種運用需求成為了可能。

三、UWB無線通信技術在工業自動化領域中的運用效果

1. UWB無線通信技術分析。

在特定條件下,UWB無線通信技術是一項採取時間間隔極短的脈,而不用載波的通信方法。同時,具備以下優勢:一是具有很強的抗干擾能力,這主要是這一技術的自身特徵,在一定情況下,此技術的所有頻段和當前我國通信系統,所採取頻段之間各自安好且互不幹擾。在特定情況下,一旦發射信號,它發射的無線電脈沖信號不但很微弱,並且所輸出的功率也相對比較低;二是具有傳輸速率高、能耗低的特徵,和Zigbee相比較,一定情況下,它的傳輸速率比Zigbee要高得多,最高時可能高達幾百兆位元組每秒,並且能耗很低,這主要是由於其發射時不能採用載波,同時,只在脈沖發射時消耗很低的能量;三是具有較高的安全功能,就有線技術相對比而言,不論是安全性或者是穩定性都大於有線通信技術。在一定程度下,基於此技術中融入了跳時擴頻技術方法,因而信息數據接收設備,只有在知道發送端擴頻碼的前提條件下,對發射的數據進行接收,同時,發射功率譜密度較低,通常的信數據接收設備是不會接收的,為此,顯現其安全功能;四是定位優點比較,這主要是由於這樣系統本身具備的良好定位優點,一定條件下,穿透性能很強。因此其具備比較精確的定位性能,精準度能高達10米左右,為此,這也是別的通信技術無法可比的優勢。五是具有較強的多徑分辨功能,和一般無線通信技術比較,一定程度下,它的多徑傳播效應的通信質量與數據的傳輸速度很大程度的增強。

2. UWB無線通信技術在工業自動化領域中的運用。

從UWB無線通信技術用途的起源進行分析,剛開始時主要用在軍事方面的雷達領域,一定條件下,用來開發軍事雷達科技。從2005年3月開始,UWB技術被美國批准可以在非軍事領域運用,從此UWB技術才得到了新的突破,通過科學發明,得到越來越廣泛的應用。從UWB技術進行分析,一定條件下,它說具有的傳輸速率很高,為此,在工業自動化方面具有明顯的優點,得到了廣泛的應用。一定條件下,在工業自動化方面,其要求對數據進行精確的定位。在測量方面,特別是在底下探測方面,具有十分廣闊的發展前景。在一定條件下,這種技術能夠實現實時圖像與聲音的傳輸,這么高精度的數據量傳輸,在當前現有的無線技術中是難以實現的。為此,在這一通信技術的實際運用過程中,要在攝像頭端安裝微型處理器,一定程度下,經過簡單壓縮並處理實時傳輸的圖像數據,就能使數據傳輸速率降到幾十兆位元組每秒,從而,最後利用UWB無線通信技術,將圖像數據傳送到數米開外的中心控制室。

四、結束語

通過對新時期下,通過對Z igbee技術存在的問題分析,進一步明確了Z igbee技術與UWB技術是時下無線通信市場的最流行的技術之一, 是無線網路重要的組成部分,為無線網路管理系統的優化完善奠定了堅實基礎,無線技術具有廣闊的應用發展前景。其有助於提高企業的競爭力和效益。

參考文獻:

[1] Z igbee Spec ifica tion[ OL ]. http: / /www. z igbee. org. 2010.12

[2]周怡頲 凌志浩 吳勤勤 Z igbee無線通信技術及其應用探討 自動化儀表2011.05

[3]顧瑞紅 張宏科 基於 Z igbee 的無線網路技術及其應用 電子技術應用 2012.09

[4]李麗娟 國內聚氨酯密封膠研究進展 中國膠粘劑 2012.07

[5]夏春蕾 姜志國 高剪切強度聚氨酯密封膠用底塗劑 化工新材料 2013.03

;
閱讀全文

與容錯性無線感測器網路相關的資料

熱點內容
網路共享中心沒有網卡 瀏覽:515
電腦無法檢測到網路代理 瀏覽:1366
筆記本電腦一天會用多少流量 瀏覽:556
蘋果電腦整機轉移新機 瀏覽:1371
突然無法連接工作網路 瀏覽:1040
聯通網路怎麼設置才好 瀏覽:1215
小區網路電腦怎麼連接路由器 瀏覽:1014
p1108列印機網路共享 瀏覽:1205
怎麼調節台式電腦護眼 瀏覽:676
深圳天虹蘋果電腦 瀏覽:915
網路總是異常斷開 瀏覽:605
中級配置台式電腦 瀏覽:971
中國網路安全的戰士 瀏覽:626
同志網站在哪裡 瀏覽:1408
版觀看完整完結免費手機在線 瀏覽:1451
怎樣切換默認數據網路設置 瀏覽:1102
肯德基無線網無法訪問網路 瀏覽:1278
光纖貓怎麼連接不上網路 瀏覽:1454
神武3手游網路連接 瀏覽:959
局網列印機網路共享 瀏覽:994