導航:首頁 > 無線網路 > 無線感測器網路時鍾漂移是什麼

無線感測器網路時鍾漂移是什麼

發布時間:2023-05-19 05:28:40

① 什麼是無線感測器網路

本教程操作環境:windows10系統、Dell G3電腦。
什麼是無線感測器網路無線感測器網路(Wireless Sensor Networks, WSN)是一種分布式感測網路,它的末梢是可以感知和檢查外部世界的感測器。WSN中的感測器通過無線方式通信,因此網路設置靈活,設備位置可李戚以隨時更改,還可以跟互聯網進行有線或無線方式的連接。通過無線通信方式形成的一個多跳自組織網路。
基本信息

無線感測器網路是一項通過無線通信技術把數以萬計的感測器節點以自由式進行組織與結合進而形成的網路形式。
構成感測器節點的單元分別為:數據採集單元、數據傳輸單元、數據處理單元以及能量供應單元。
其中數據採集單元通常都是採集監測區域內的信息並加以轉換,比如光強度跟大氣壓力與濕度等;數據傳輸單元則主要以無線通信和交流信息以及緩扒發送接收那些採集進來的數據信息為主;數據處理單元通常處理的是全部節點的路由協議和管理任務以及定位裝置等;能量供應單元為縮減感測器節點占據的面積,會選擇微型電池的構成形式。
無線感測器網路當中的節點分為兩種,一個是匯聚節點,一個是感測器節點。
匯聚節點主要指的是網關能夠在感測器節點當中將錯誤的報告數據剔除,並與相關的報告相結合將數據加以融合,對發生的事件進行判斷。
匯聚節點與用戶節點連接可藉助廣域網路或者衛星直接通信,並對收集到的數據進行處理。
相較於傳統式的網路和其他感測器相比,無線感測器網路有以下特點:
(1)組建方式自由。無線網路感測器的組建不受任何外界條件的限制,組建者無論在何時何地,都可以快速地組建起一個功能完善的無線網路感測器網路,組建成功之後的維護管理工作也完全在網路內部進行。
(2)網路拓撲結構的不確定性。從網路層次的方向來看,無線感測器的網路拓撲結構是變化不定的,哪哪陵例如構成網路拓撲結構的感測器節點可以隨時增加或者減少,網路拓撲結構圖可以隨時被分開或者合並。
(3)控制方式不集中。雖然無線感測器網路把基站和感測器的節點集中控制了起來,但是各個感測器節點之間的控制方式還是分散式的,路由和主機的功能由網路的終端實現各個主機獨立運行,互不幹涉,因此無線感測器網路的強度很高,很難被破壞。
(4)安全性不高。無線感測器網路採用無線方式傳遞信息,因此感測器節點在傳遞信息的過程中很容易被外界入侵,從而導致信息的泄露和無線感測器網路的損壞,大部分無線感測器網路的節點都是暴露在外的,這大大降低了無線感測器網路的安全性。
組成結構:

無線感測器網路主要由三大部分組成,包括節點、感測網路和用戶這3部分。其中,節點一般是通過一定方式將節點覆蓋在一定的范圍,整個范圍按照一定要求能夠滿足監測的范圍;感測網路是最主要的部分,它是將所有的節點信息通過固定的渠道進行收集,然後對這些節點信息進行一定的分析計算,將分析後的結果匯總到一個基站,最後通過衛星通信傳輸到指定的用戶端,從而實現無線感測的要求。

② 無線感測器網路

無線感測器網路所具有的眾多類型的感測器,可探測包括地震、電磁、溫度、濕度、雜訊、光強度、壓力、土壤成分、移動物體的大小、速度和方向等周邊環境中多種多樣的現象。基於MEMS的微感測技術和無線聯網技術為無線感測器網路賦予了廣闊的應用前景。

③ 5、無線感測器網路的睡眠調度目的

一 無線感測器網路簡介

短距離無線通信特點:通信距離短,覆蓋距離一般為10~200m。無線發射器的發射功率較低,發射功率一般小於100mW。工作頻率多為免付費、免申請的全球通用的工業、科學、醫療頻段。
短距離無線通信技術的概念:指集信息採集、信息傳輸、信息處理於一體的綜合型智能信息系統,並且其傳輸距離限制在一個較短的范圍內。
低成本、低功耗和對等通信是短距離無線通信技術的三個重要特徵和優勢。
常見的無線通信技術有IrDA技術、藍牙技術、WIFI技術、RFID技術、UWB技術、Zigbee技術。
以數據傳輸為主要功能的無線網路技術稱為無線數據網路。
ALOHA協議是一種使用無線廣播技術的分組交換計算機網路協議,也是最早最基本的無線數據通信協議。
ALOHA協議分為純ALOHA和時隙ALOHA兩種。
ALOHA技術的特點:原理非常簡單,特別便於無線設備實現。
無線區域網是在各工作站和設備之間,不再使用通信電纜,而採用無線的通信方式連接的區域網。
無線區域網的傳輸媒體主要有兩種:無線電波和紅外線。
根據調制的方式不同,無線電波方式可分為擴展頻譜方式和窄帶調制方式。
擴展頻譜方式是指用來傳輸信息的射頻帶寬遠大於信息本身帶寬的一種通信方式,它雖然犧牲了頻帶帶寬,卻提高了通信系統的抗干擾能力和安全性。
窄帶調制方式是指數據基帶信號的頻譜不做任何擴展即被直接搬移到射頻發射出去,與擴展頻譜方式相比,窄帶調制方式佔用頻帶少,頻帶利用率高,但是通信可靠性較差。
紅外線方式最大的有限是不受無線電干擾,且紅外線的使用不受國家無線電管理委員會限制,但是紅外線對非透明物體的透過性較差,傳輸距離受限。
無線個域網是一種與無線廣域網、無線城域網、無線區域網並列但覆蓋范圍較小的無線網路,是為了實現活動半徑小、業務類型豐富困肢肢、面向特定群體、無線無縫的連接而提出的新興無線通信網路技術。
無線自組織網路是一個由幾十到上百個節點組成的、採用無線通信方式的、動態組的多跳的移動性對等網路。其目的是通過動態路由和移動管理技術傳輸具有服務質量要求的多媒體信息流。
無線感測器網路的主要組成部分是集成有感測器、數據處理單元和通信模塊的節點,各節點汪世通過協議自組成一個分布式網路,再將採集來的數據通過優化後經無線電波傳輸給信息處理中心。
感測器網路的特點:
大規模網路
自組織網路
多跳路由
動態性網路
以數據為中心的網路
兼容性應用的網路
感測器節點的限制
電源能量有限
通信能量有限
計算和存儲能力有限
拓撲控制是無線感測器網路研究的核心技術之一。
感測器網路中的拓撲控制按照研究方向可分為:節點功率控制和層次型拓撲結構組織。飢睜
無線感測器網路最基本的安全機制:機密性、點到點的消息認證、完整性鑒別、新鮮性、認證廣播和安全管理。
時間同步是需要協同工作的感測器網路系統的一個關鍵機制。
三個基本的時間同步機制:RBS、TINY/MINI-SYNC和TPSN。
RBS機制是基於接收者-接收者的時鍾同步一個節點廣播時鍾參考分組,廣播域內的兩個節點分別採用本地時鍾記錄參考分組的到達時間,通過交換記錄時間來實現它們之間的時鍾同步。
TINY/MINI-SYNC是簡單的輕量級的同步機制:假設節點的時鍾漂移遵循線性變化,那麼兩個節點之間的時間偏移也是線性的,可通過減緩時標分組來估計兩個節點之間最優匹配偏移量。

④ 什麼是無線感測器網路

無線感測器的無線傳輸功能,常見的無線傳輸網路有RFID、ZigBee、紅外、藍牙、GPRS、4G、2G、Wi-Fi、NB-IoT。
與傳統有線網路相比,無線感測器網路技術具有很明顯的優勢特點,主要的要求有: 低能耗、低成本、通用性、網路拓撲、安全、實時性、以數據為中心等。

⑤ 無線感測器網路

無線感測器網路:是一種分布式感測網路,它的末梢是可以感知和檢查外部世界的感測器。無線感測器網路中的感測器通過無線方式通信,因此網路設置老寬早靈活,設備位置可以隨時更改,還可以跟互聯網進行有線或無線方式的連接。通過無線通信方式形成的一個多巧卜跳自組織網路。

無線感測器網路的發展得益於微機電系統、片上系統侍雀、無線通信和低功耗嵌入式技術的飛速發展。無線感測器網路廣泛應用於軍事、智能交通、環境監控、醫療衛生等多個領域。

⑥ 無線感測器網路

無線感測器網路(wirelesssensornetwork,WSN)是綜合了感測器技術、嵌入式計算機技術、分布式信息處理技術和無線通信技術,能夠協作地實時監測、感知和採集網路分布區域內的各種環境或監測對象的信息,並對這些數據進行處理,獲得詳盡而准確的信息。傳送到需要這些信息的用戶。它是由部署在監測區域內大量的廉價微型感測器節點組成,通過無線通信方式形成一個多跳的自組織的網路系統。感測器、感知對象和觀察者構成了感測器網路的三要素。
無線感測器網路作為當今信息領域新的研究熱點,涉及到許多學科交叉的研究領域,要解決的關鍵技術很多,比如:網路拓撲控制、網路協議、網路安全、時間同步、定位技術、數據融合、數據管理、無線通信技術等方面,同時還要考慮感測器的電源和節能等問題。
所謂部署問題,就是在一定的區域內,通過適當的策略布置感測器節點以滿足某種特定的需求。優化節點數目和節點分布形式,高效利用有限的感測器網路資源,最大程度地降低網路能耗,均是節點部署時應注意的問題。
目前的研究主要集中在網路的覆蓋問題、連通問題和能耗問題3個方面。
基於節點部署方式的覆蓋:1)確定性覆蓋2)自組織覆蓋
基於網格的覆蓋:1)方形網格2)菱形網格
被監測目標狀態的覆蓋:1)靜態目標覆蓋2)動態目標覆蓋
連通問題可描述為在感測器節點能量有限,感知、通信和計算能力受限的情況下,採用一定的策略(通常設計有效的演算法)在目標區域中部署感測器節點,使得網路中的各個活躍節點之間能夠通過一跳或多跳方式進行通信。連通問題涉及到節點通信距離和通信范圍的概念。連通問題分為兩類:純連通與路由連通。
覆蓋中的節能對於覆蓋問題,通常採用節點集輪換機制來調度節點的活躍/休眠時間。連通中的節能針對連通問題,也可採用節點集輪換機制與調整節點通信距離的方法。而文獻中涉及最多的主要是從節約網路能量和平衡節點剩餘能量的角度進行路由協議的研究。

⑦ 什麼是無線感測網路

無線感測器孝叢旦網路是一種分布式感測網路,它的末梢是可以感知和檢查外部世界的感測器。WSN中的感測器通過無線方式通信,由大量的靜止或移動的感測器以自組織和多跳的方式構成的無線網路,以協作地感知、採集、處理和傳輸網路覆蓋地理區域內被感知對象的信息,並最終把這些信息發送給網路所有者的。鄭碼因此網路設置靈活,設備位置可以隨時更改,還可以跟互聯網進行有線或無線方式的連接,通過無線通信方式形成的一個多跳自組織的網路。

無線感測器網路所具有的眾多類型的感測器,可探測包括地震、電磁、溫度、濕度、巧擾雜訊、光強度、壓力、土壤成分、移動物體的大小、速度和方向等周邊環境中多種多樣的現象。潛在的應用領域可以歸納為: 軍事、航空、防爆、救災、環境、醫療、保健、家居、工業、商業等領域。

⑧ 無線感測器知識大全,看完請收藏!

物聯網是在現有互聯網的基礎上發展起來的,物聯網除了融合網路、信息技術、RFID技術之外,還引入了無線感測器技術,使得物聯網有了更深的發展,而且無線感測器技術還與嵌入式系統技術、現代網路以及無線通信技術進行結合,所以無線感測器本身也是一個炙手可熱的研究領域。

感測器技術

    無線感測器網路結構介紹

    無線感測器網路系統通常包括匯聚節點(Sinknode)、感測器節點(Sensornode)與管理節點。

    大量感測器節點隨機部署在監測區域附近或者內部,感測器節點檢測的數據沿著其他的感測器節點逐條地進行傳輸,在傳輸的過程中檢測數據可能會被多個節點進行處理,經過跳後路由到匯聚的節點,然後通過衛星或者互聯網傳輸到達管理節點,而用戶通過對節點的管理對感測器網路進行管理、發布監測數據和管理。

感測器整體部署

    無線感測器網路特點介紹

    規模大

    為了能夠獲取精確信息,在監測區域通常部署大量感測器節點,一般情況下會達到上萬個甚至更多,感測器網路的大規模性主要包括了兩個方面的含義:一方面是感測器節點的部署非常密集,在面積狹小的空間內密集的部署了大量的感測器節點。另一方面,是感測器節點分布在區域很大的范圍內,比如在原始的大森林中採用感測器網路進行森林防火的安全環境監測,這種在區域寬廣的范圍內需要部署大量的感測器節點。

    可靠性

    無線感測器節點非常適合部署在自然環境惡劣或者人類不宜居住的區域,這些節點可能工作在環境較惡劣的地方,遭受風吹、雨淋、日曬,還甚至遭到人或者動物的破壞,而這些感測器節點往往採用隨機進行部署,部署的方式是利用飛機散播,或炮彈發射到指定的區域進行部署,所以這些節點要非常堅固,不容易被損壞,可靠性很強。

    自組織

    在感測器網路應用中,通常情況下感測器節點會被放置在沒有基礎結構的地方,其實感測器節點的相隔距離、精確位置不能預先確定。你可以想像,通過飛機散播或者炮彈發射大量感測器節點到面積廣闊的森林、山谷之中,這樣就必須要求感測器節點本身具有自組織的能力,能夠進行自我管理和配置,通過清逗網路協議和拓撲控制機制自動形成轉發監測數據的多跳無線網路系統。

    動態性

    感測器網路的拓撲結構有可能會因為下列因素而發生改變:①環境的變化可能會造成無線通信鏈路帶寬產生變化,有時甚至會時斷時通;②電力資源出現故障或耗盡導致的感測器節點故障或者失效;③感測器網路的感知對象、感測器與觀察者這三要素都可能具有移動性;④有新節點加入,通常這種情況就必須要求感測器網路系統要能適應這種變化,具有動態系統可重構性。

    無線感測器網路有哪些安全問題

    安全路由

    一般在無線感測器網路中,大量的感測器節點都密集分布在一個區域內,信息傳輸可能要經過很多節點才能到達目的地,而且感測器網路具有多跳結構和動態性,因此,需要去每個節點都應具備路由功能,

    由於每個虛猜節點都是潛在的路由節點,因此更易受到攻擊,這樣就可能使網路不怎麼安全,安全的路由演算法會直接影響無線感測器的可用性和安全性,安全路由協議一般是採用認證和鏈路層差正型加密,身份認證、多路徑路由、雙向連接認證和認證廣播等機制,非常有效的提高了網路抵禦外部攻擊的能力,從而增強路由的安全性。

⑨ 有關無線感測器網路中時間同步機制有哪些方法和策略

1  時間同步技術的重要性 
感測器節點的時鍾並不完美,會在時間上發生漂移,所以觀察到的時間對於網路中的節點來說是不同的。但很多網路協議的應用,都需要一個共同的時間以使得網路中的節點全部或部分在瞬間是同步的。 
第一,感測器節點需要彼此之間並行操作和協作去完成復雜的感測任務。如果在收集信息過程中,感測器節點缺乏統一的時間戳(即沒有同步),估計將是不準確的。 
第二,許多節能方案是利用時間同步來實現的。例如,感測器可以在適當的時候休眠(通過關閉感測器和收發器進入節能模式),在需要的時候再喚醒。在應用這種節能模式的時候,節點應該在同等的時間休眠和喚醒,也就是說當數據到來時,節點的接收器可以接收,這個需要感測器節點間精確的定時。 
2  時間同步技術所關注的主要性能參數 
時間同步技術的根本目的是為網路中節點的本地時鍾提供共同的時間戳。對無線感測器
網路WSN(Wireless Sensor Networks)[1]
的時間同步應主要應考慮以下幾個方面的問題: 
(1)能量效率。同步的時間越長,消耗的能量越多,效率就越低。設計WSN的時間同步演算法需以考慮感測器節點有效的能量資源為前提。 
(2) 可擴展性和健壯性。時間同步機制應該支持網路中節點的數目或者密度的有效擴展,並保障一旦有節點失效時,餘下網路有效且功能健全。 
(3)精確度。針對不同的應用和目的,精確度的需求有所不用。 
(4)同步期限。節點需要保持時間同步的時間長度可以是瞬時的,也可以和網路的壽命一樣長。 
(5)有效同步范圍。可以給網路內所有節點提供時間,也可以給局部區域的節點提供時間。 
(6)成本和尺寸。同步可能需要特定的硬體,另外,體積的大小也影響同步機制的實現。 (7)最大誤差。一組感測器節點之間的最大時間差,或相對外部標准時間的最大差。 3  現有主要時間同步方法研究 
時間同步技術是研究WSN的重要問題,許多具體應用都需要感測器節點本地時鍾的同步,要求各種程度的同步精度。WSN具有自組織性、多跳性、動態拓撲性和資源受限性,尤其是節點的能量資源、計算能力、通信帶寬、存儲容量有限等特點,使時間同步方案有其特
殊的需求,也使得傳統的時間同步演算法不適合於這些網路[2]
。因此越來越多的研究集中在設
計適合WSN的時間同步演算法[3]
。針對WSN,目前已經從不同角度提出了許多新的時間同步演算法[4]
。 
3.1  成對(pair-wise)同步的雙向同步模式 
代表演算法是感測器網路時間同步協議TPSN(Timing-Sync Protocol for Sensor 
Networks)[5~6]
。目的是提供WSN整個網路范圍內節點間的時間同步。 
該演算法分兩步:分級和同步。第一步的目的是建立分級的拓撲網路,每個節點有個級別。只有一個節點與外界通信獲取外界時間,將其定為零級,叫做根節點,作為整個網路系統的時間源。在第二步,每個i級節點與i-1(上一級)級節點同步,最終所有的節點都與根節點同步,從而達到整個網路的時間同步。詳細的時間同步過程如圖 1 所示。 
 

圖1  TPSN 同步過程 
 
設R為上層節點,S為下層節點,傳播時間為d,兩節點的時間偏差為θ。同步過程由節點R廣播開始同步信息,節點S接收到信息以後,就開始准備時間同步過程。在T1時刻,節點S發送同步信息包,包含信息(T1),節點R在T2接收到同步信息,並記錄下接收時間T2,這里滿足關系:21TTd 
節點R在T3時刻發送回復信息包,包含信息(T1,T2,T3)。在T4時刻S接收到同步信息包,滿足關系:43TTd 
最後,節點S利用上述2個時間表達式可計算出的值:(21)(43)2
TTTT 
TPSN由於採用了在MAC層給同步包標記時間戳的方式,降低了發送端的不確定性,消除了訪問時間帶來的時間同步誤差,使得同步效果更加有效。並且,TPSN演算法對任意節點的同步誤差取決於它距離根節點的跳數,而與網路中節點總數無關,使TPSN同步精度不會隨節點數目增加而降級,從而使TPSN具有較好的擴展性。TPSN演算法的缺點是一旦根節點失效,就要重新選擇根節點,並重新進行分級和同步階段的處理,增加了計算和能量開銷,並隨著跳數的增加,同步誤差呈線性增長,准確性較低。另外,TPSN演算法沒有對時鍾的頻差進行估計,這使得它需要頻繁同步,完成一次同步能量消耗較大。 
3.2  接收方-接收方(Receiver-Receiver)模式 
代表演算法是參考廣播時間同步協議RBS(Reference Broadcast Synchronization)[7]
。RBS是典型的基於接收方-接收方的同步演算法,是Elson等人以「第三節點」實現同步的思想而提出的。該演算法中,利用無線數據鏈路層的廣播信道特性,基本思想為:節點(作為發
送者)通過物理層廣播周期性地向其鄰居節點(作為接收者)發送信標消息[10]
,鄰居節點記錄下廣播信標達到的時間,並把這個時間作為參考點與時鍾的讀數相比較。為了計算時鍾偏移,要交換對等鄰居節點間的時間戳,確定它們之間的時間偏移量,然後其中一個根據接收
到的時間差值來修改其本地的時間,從而實現時間同步[11]
。 
假如該演算法在網路中有n個接收節點m個參考廣播包,則任意一個節點接收到m個參考包後,會拿這些參考包到達的時間與其它n-1個接收節點接收到的參考包到達的時間進行比較,然後進行信息交換。圖2為RBS演算法的關鍵路徑示意圖。 
網路介面卡
關鍵路徑
接收者1
發送者
接收者2
 
圖2  RBS演算法的關鍵路徑示意圖 
 
其計算公式如下: 
,,1
1,:[,]()m
jkikkinjnoffsetijTTm
 其中n表示接收者的數量,m表示參考包的數量,,rbT表示接收節點r接收到參考包b時的時鍾。 

此演算法並不是同步發送者和接收者,而是使接收者彼此同步,有效避免了發送訪問時間對同步的影響,將發送方延遲的不確定性從關鍵路徑中排除,誤差的來源主要是傳輸時間和接收時間的不確定性,從而獲得了比利用節點間雙向信息交換實現同步的方法更高的精確度。這種方法的最大弊端是信息的交換次數太多,發送節點和接收節點之間、接收節點彼此之間,都要經過消息交換後才能達到同步。計算復雜度較高,網路流量開銷和能耗太大,不適合能量供應有限的場合。 
3.3  發送方-接收方(Sender-Receiver)模式 
基於發送方-接收方機制的時間同步演算法的基本原理是:發送節點發送包含本地時間戳的時間同步消息,接收節點記錄本地接收時間,並將其與同步消息中的時間戳進行比較,調整本地時鍾。基於這種方法提出的時間同步演算法有以下兩種。 
3.3.1  FTSP 演算法[8]
 
泛洪時間同步協議FTSP(Flooding Time Synchronization Protocol)由Vanderbilt大學Branislav Kusy等提出,目標是實現整個網路的時間同步且誤差控制在微秒級。該演算法用單個廣播消息實現發送節點與接收節點之間的時間同步。 
其特點為:(1)通過對收發過程的分析,把時延細分為發送中斷處理時延、編碼時延、傳播時延、解碼時延、位元組對齊時延、接收中斷處理時延,進一步降低時延的不確定度;(2)通過發射多個信令包,使得接收節點可以利用最小方差線性擬合技術估算自己和發送節點的頻率差和初相位差;(3)設計一套根節點選舉機制,針對節點失效、新節點加入、拓撲變化
等情況進行優化,適合於惡劣環境[12]
。 
FTSP演算法對時鍾漂移進行了線性回歸分析。此演算法考慮到在特定時間范圍內節點時鍾晶振頻率是穩定的,因此節點間時鍾偏移量與時間成線性關系,通過發送節點周期性廣播時間同步消息,接收節點取得多個數據對,構造最佳擬合直線,通過回歸直線,在誤差允許的時間間隔內,節點可直接通過它來計算某一時間節點間的時鍾偏移量而不必發送時間同步消息進行計算,從而減少了消息的發送次數並降低了系統能量開銷。 
FTSP結合TPSN和RBS的優點,不僅排除了發送方延遲的影響,而且對報文傳輸中接收方的不確定延遲(如中斷處理時間、位元組對齊時間、硬體編解碼時間等)做了有效的估計。多跳的FTSP協議採用層次結構,根節點為同步源,可以適應大量感測器節點,對網路拓撲結構的變化和根節點的失效有健壯性,精確度較好。該演算法通過採用MAC層時間戳和線性回歸偏差補償彌補相關的錯誤源,通過對一個數據包打多個時戳,進而取平均和濾除抖動較大的時戳,大大降低了中斷和解碼時間的影響。FTSP 採用洪泛的方式向遠方節點傳遞時間基準節點的時間信息,洪泛的時間信息可由中轉節點生成,因此誤差累積不可避免。另外,FTSP的功耗和帶寬的開銷巨大。 
3.3.2  DMTS 演算法[9]
 
延遲測量時間同步DMTS (delay measurement time synchronization) 演算法的同步機制是基於發送方-接收方的同步機制。DMTS 演算法的實現策略是犧牲部分時間同步精度換取較低的計算復雜度和能耗,是一種能量消耗輕的時間同步演算法。 
DMTS演算法的基本原理為:選擇一個節點作為時間主節點廣播同步時間,所有接收節點通過精確地測量從發送節點到接收節點的單向時間廣播消息的延遲並結合發送節點時間戳,計算出時間調整值,接收節點設置它的時間為接收到消息攜帶的時間加上廣播消息的傳輸延遲,調整自己的邏輯時鍾值以和基準點達成同步,這樣所有得到廣播消息的節點都與主節點進行時間同步。發送節點和接收節點的時間延遲dt可由21()dtnttt得出。其中,nt為發送前導碼和起始字元所需的時間,n為發送的信息位個數,t為發送一位所需時間;1t為接收節點在消息到達時的本地時間;2t為接收節點在調整自己的時鍾之前的那一時刻記錄的本地時間,21()tt是接收處理延遲。 

DMTS 演算法的優點是結合鏈路層打時間戳和時延估計等技術,消除了發送時延和訪問時延的影響,演算法簡單,通信開銷小。但DMTS演算法沒有估計時鍾的頻率偏差,時鍾保持同步的時間較短,沒有對位偏移產生的時間延遲進行估計,也沒有消除時鍾計時精度對同步精度的影響,因此其同步精度比FTSP略有下降,不適用於定位等要求高精度同步的應用。 
基於發送方-接收方單向同步機制的演算法在上述三類方法中需要發送的時間同步消息數目最少。發送節點只要發送一次同步消息,因而具有較低的網路流量開銷和復雜度,減少了系統能耗。 
4  結論 
文章介紹了WSN時間同步演算法的類型以及各自具有代表性的演算法,分析了各演算法的設計原理和優缺點。這些協議解決了WSN中時間同步所遇到的主要問題,但對於大型網路,已有的方法或多或少存在著一些問題:擴展性差、穩定性不高、收斂速度變慢、網路通信沖突、能耗增大。今後的研究熱點將集中在節能和時間同步的安全性方面。這將對演算法的容錯性、有效范圍和可擴展性提出更高的要求。 

閱讀全文

與無線感測器網路時鍾漂移是什麼相關的資料

熱點內容
網路共享中心沒有網卡 瀏覽:513
電腦無法檢測到網路代理 瀏覽:1364
筆記本電腦一天會用多少流量 瀏覽:551
蘋果電腦整機轉移新機 瀏覽:1368
突然無法連接工作網路 瀏覽:1033
聯通網路怎麼設置才好 瀏覽:1213
小區網路電腦怎麼連接路由器 瀏覽:1010
p1108列印機網路共享 瀏覽:1203
怎麼調節台式電腦護眼 瀏覽:670
深圳天虹蘋果電腦 瀏覽:909
網路總是異常斷開 瀏覽:603
中級配置台式電腦 瀏覽:967
中國網路安全的戰士 瀏覽:623
同志網站在哪裡 瀏覽:1404
版觀看完整完結免費手機在線 瀏覽:1449
怎樣切換默認數據網路設置 瀏覽:1099
肯德基無線網無法訪問網路 瀏覽:1275
光纖貓怎麼連接不上網路 瀏覽:1449
神武3手游網路連接 瀏覽:956
局網列印機網路共享 瀏覽:991