1. 物聯網中的異構網路融合包括哪些
異構網路的融合和自治是物聯網的最顯著特徵之一。由於應用需求和網路技術的多樣性,在物聯網的架構下將是多種網路同時共存的局面,包括用於感知信息在內的個域網、有線和無線形式的區域網、城域網和廣域網等。這些性能特徵各異的網路是相互補充、相互促進的,如何實現它們之間的無縫融合和自治管理,更加孝兄襪有效靈活地滿足用戶需求是物聯網面臨的重要技術挑戰之一。
異構網路的融合和自治從技術上講主要包括海量地址和數據的管理,接入機制的選擇和異構資源的自治管理等方面。首先,在物聯網中,由於物體數目巨大帶來的海量地址空間的分配和管理、物體地址和標示之間的映射、海量數據的傳輸和存儲等成為異構網路首先需要解決的問題。其次,由於各種網路性能特徵各異,採用傳統的單目標決策理論很難找到真正最優的接入選擇方案。因此需要引入多目標決策理論,在有限資源和各用戶要求的多個目標之間找到平衡點,達到多目標最優化目的。最後,由於物聯網資源的異構性、網路的動態性等特點,資源的自治管理是研究的重點內容。在以自組織為主要形式的信息感測層中,關鍵是自感知與自配置的核心協議,包括時間同步協議、分布式定位協議、拓撲控制協議、自組織路由協議和能量管理協議等。在接入/網路層中,為支持用戶和節點的移動性,除了需要在同一網路內不同小區間的水平切換技術之外,還需要從一種網路到另一種網路的垂直切換技術。由於異構網路在數據速率、頻譜、QoS等方面的差異性,垂直切換所需要的精確位置測定和快速切換機制將更加復雜。同時,在異構環境中,基於上下文感知技術,進行分布式頻譜(帶寬)的自感知動態分配也是資源管理的趨勢之一。多無線電協作(MRC)是實現上述資源管理的一項關鍵技術,它是指在單一節點配備多個獨立的無線電系統,各無線電系統可以使用不同的接入技術及不同信道。由於一個節點可以同時與不同的接入系統建立連接,也可以同一時刻與一個接入系統保持多個連接,因而有助於實現快速垂直切換和動態資源分配。
(1)數據融合和信息處理
物聯網中的節點具有數目多、體積小、能量有限、數據海量等特點,因此從提高信息准確度和降低能耗角度出發,需要有效的數據融合和信息處理技術。這些技術滲透在物聯網的各個層次中。在信息感知層,可以通過移動中繼、節點分組輪流工作、選取代表性上報節點、壓縮感知等機制達到節能目的,同時又保證了信息的完整性和准確性;在接入/網路層,主要是通過匯聚處理和各種路由控制協議來進巧激行數據重組和融合,減少數據傳輸量;在應用服務層,則主要是利用分布式資料庫技術,對收到的數據進行進一步的篩選,達到數據融合的目的;同時,根據用戶和環境數據信息隨時空變化的動態特性,對其進行基於多層次融合的上下文感知處理。
(2)服務搜索和發現
和傳統的電信網、互聯網服務模式相比,物聯網服務的不同之處在於塵基強調服務的主動性提供,因此需要更高級、更復雜的服務搜索和發現技術。目前的Web服務搜索和發現技術主要有直接搜索、集中架構式搜索和分布架構式搜索三大類。直接搜索是指使用者向服務提供者直接索要服務描述的副本;集中式架構搜索是指服務提供者在一個中心目錄中注冊服務、發布服務公告及引用,供使用者檢索;分布架構式搜索是指在Web站點上存有對服務提供者提供點處的服務描述的引用,使用者通過指定檢查Web站點來獲得可用的Web服務。物聯網服務的搜索和發現需要在以上技術基礎上增加主動性環節,即根據用戶需求,自動搜索、發現和組裝合適的服務,並在動態變化的異構網路環境中實現服務的可靠傳送和主動提供。
(3)安全可靠性保障
物聯網中的安全可靠性保障主要體現在網路安全和信息安全兩方面。網路安全包括硬體平台、操作系統、應用軟體在內的系統安全和系統連續可靠正常運行、網路服務不中斷的運行安全。信息安全則是指對信息的精確性、真實性、機密性、完整性、可用性和可控性的保護。和傳統的互聯網相比,由於節點的微型化和能量能力的受限化,在物聯網中需要著重考慮的是演算法計算強度和安全強度之間的權衡問題,即如何通過更簡單的演算法和更低能耗實現盡量強大的安全性。
2. 互聯網接入技術論文(2)
互聯網接入技術論文篇二
移動互聯網接入 網路技術
摘 要:移動互聯網是當前信息技術領域的熱門話題之一,而接入網路則是移動互聯網的重要基礎設施。對目前的接入網路技術:衛星通信網路、無線城域網、無線區域網、無線個域網、蜂窩網路的特點及應用進行了分析,提出了接入網路技術未來的發展趨勢是各種網路的融合演進, 報告 了異構 無線網路 融合的特點及應用。
關鍵詞:移動互聯網 接入網路技術
中圖分類號:TN92 文獻標識碼:A 文章 編號:1672-3791(2013)03(b)-0009-02
移動通信技術和互聯網技術是信息技術領域中重要的組成部分,這兩項技術的發展直接影響著人們的生活和工作方式。移動互聯網是一個新型的融合型網路,是移動通信技術和互聯網技術充分融合的產物。在移動互聯網環境下,人們可以通過智能手機、PDA、車載終端等設備通過移動網訪問互聯網,隨時隨地的享受互聯網提供的服務。
2011年中國工業和信息化部電信研究院在《移動互聯網白皮書》中指出:“移動互聯網是以移動網路作為接入網路的互聯網及服務,包括三個要素:移動終端、移動網路和應用服務[1]。”簡而言之,移動終端是移動互聯網的前提,接入網路是移動互聯網的基礎,而應用服務則成為移動互聯網的核心。本文詳細描述了接入網路技術的現狀及發展趨勢。
1 接入網路技術現狀
現有的無線接入網路主要有五類:衛星通信網路、無線城域網(WMAN)、無線區域網(WLAN)、無線個域網(WPAN)、蜂窩網路(2G網路、3G網路等)[2]。它們在帶寬、覆蓋、移動性支持能力和部署成本等方面各有利弊。
1.1 衛星通信網路
1.1.1 概述
簡單來講,衛星通信就是把衛星作為中繼站,在地球上(包括地面和低層大氣中)的通信站點間進行通信。衛星和地球站就是衛星通信系統的重要組成部分。衛星通信新技術主要包括VSAT系統,即甚小口徑終端;中低軌道的移動衛星通信系統等。
1.1.2 特點及應用
衛星通信具有通信區域大、距離遠、頻段寬、容量大的特點,即只要是在衛星發射電波覆蓋范圍內的任意兩點間,都可以互相通信。其次,衛星通信的可靠性高、質量好、雜訊小、可移動性強,即不容易受自然災害的影響;但是,衛星通信存在傳輸時延大、回聲大、費用高的問題[3]。
目前,衛星通信主要用於電視廣播、遠距離的越洋電話、軍事通信、應急通信等。衛星通信作為一種特殊的通信技術,其基本定位必然是地面系統的有效支持、補充與延伸[4],對於農村及偏遠地區的通信發揮重要的作用,使實現全球通信海陸空一體化的無縫覆蓋成為可能。衛星通信的廣播與多播等技術優勢,結合現代Internet技術,在地面互聯網路擁塞的狀態下,可充分發揮以IP為基礎的多媒體遠距離傳送與高速連接,將寬頻高速數據業務進行有效地傳送。伴隨著移動互聯網的發展,衛星通信與3G、4G技術的相互融合將成為衛星通信發展的必然趨勢。
1.2 無線城域網(WMAN)
1.2.1 概述
無線城域網主要用於解決整個城市區域的接入問題,以微波等無線傳輸為介質,以無線方式為主要接入手段,提供同城數據高速傳輸,以及 其它 如圖像、視頻等多媒體通信業務和Internet接入服務[5]。而WiMax是受到較多關注的無線城域網通信技術。WiMax(World Interoperability for Microwave Access)即全球微波互聯接入,是一項基於IEEE 802.16標準的無線接入技術[6],它採用有線方式為企業、家庭提供“最後一英里”的無線接入。覆蓋范圍大於無線區域網,可以覆蓋幾千米到幾十千米的范圍。
1.2.2 特點及應用
WiMax具有傳輸距離遠、覆蓋面積大、接入速度快等特點。WiMax所能實現的50 km的無線信號傳輸距離是無線區域網所不能比擬的,網路覆蓋面積是3G發射塔的10倍[7],最高接入速度70M是3G所能提供的寬頻速度的30倍。此外,WiMax具有高效、靈活、經濟的組網方式,以及較為完備的Qos機制。支持移動和固定寬頻無線接入的特點,使它集成了無線接入技術的移動性與靈活性以及DSL等傳統寬頻接入技術的高帶寬特性,為用戶提供了優良的最後一公里網路接入服務及廣泛的多媒體通信服務。但是,WiMax技術目前無法支持用戶在移動過程中無縫切換。性能與3G的主流標准相比,仍存在差距。
基於WiMax特點,它可以被用於遠程醫療衛生、遠程 教育 、物流、金融、交通等行業,提供一定條件下的高速數據通信服務。從業務應用來看,WiMax在逐步實現寬頻業務的移動化,而3G實現的是移動業務的寬頻化。越來越多的多媒體通信服務大量消耗現有的3G網路資源,使網路的建設投資遠遠超過了收入的增加。WiMAX可以在保證服務質量的基礎上,有效降低運營成本。WiMax不可能完全取代3G,但是WiMax在以IP為主的高速數據應用方面的優勢使它成為了3G網路的補充手段,兩種網路的融合程度會越來越高。
1.3 無線區域網(WLAN)
1.3.1 概述
無線區域網(Wireless Local Area Networks,WLAN)是工作於2.5 GHz或5 GHz頻段,以無線、或無線與有線相結合的方式構成的區域網。它利用射頻技術及簡單的存取架構取代傳統電纜線,以提供傳統有線區域網的功能,是非常便利的數據傳輸系統。簡而言之,無線區域網仍然是以有線區域網為基礎的,它只是在有線區域網的基礎上通過無線HUB、無線訪問節點(AP)、無線網橋、無線網卡等設備構建了無線通信網路[8],是有線區域網的擴展和替換。
1.3.2 特點及應用
無線區域網具有布網便捷,網路規劃調整可操作性強,網路易於擴展的特點。只需要一個或多個接入點設備,就可以搭建覆蓋整個區域的網路,搭建網路所需的基礎設施也不需要隱藏在地下或牆里,便於網路優化配置、改造和維護。只要在無線信號能夠覆蓋的范圍內,用戶都可以在任意位置接入網路,並隨時改變位置,具有較強的靈活性和移動性。由於無線區域網多採用無線電波作為傳輸介質以及其工作在S頻段的特點,使其具備良好的抗干擾性和保密性,不會對人體造成輻射傷害。但是任何障礙物都會成為電磁傳播的阻礙,任何外部其他電信號都會成為區域網的干擾源。所以,無線區域網在性能、速率、安全性方面還有一定的不足之處。 無線區域網的最大傳輸速率為54 Mbit/s[9],較適合應用於有限空間、小規模網路等,如機場貴賓廳、股票大廳。其次,對於難以進行有線網路布線的環境、需要暫時使用網路的環境、實時通信要求很高的特殊場合,如人跡罕至的邊關、港口等都有較好的應用。無線區域網並不能作為一個完備的全網解決方案,但是隨著無線區域網技術的成熟應用,它可以與廣域網結合為用戶提供移動互聯網應用,成為3G網路有益的補充。
1.4 無線個域網(WPAN)
1.4.1 概述
無線個域網(Wireless Personal Area Network,WPAN)是面向特定群體活動半徑小、業務種類豐富、無縫連接的新興無線通信技術,相對於無線廣域網、無線城域網、無線區域網,它的覆蓋范圍更小,進而有效全面解決“最後幾米電纜”的問題。目前,藍牙(Bluetooth)是WPAN應用的主流技術,其它的還有家庭射頻(HomeRF)、紅外技術(IrDA)、射頻識別(RFID)、超帶寬(UWB)等。
1.4.2 特點及應用
無線個域網具有低功耗、低成本、體積小等特點。設備與組網都簡單方便、易於操作,且支持點對點、點對多點的應用。WPAN所覆蓋的范圍一般在10 m半徑以內,是短距離、個人專用的無線網路。具有代表性的Bluetooth技術,在全球范圍內的可操作性都很強,因為其使用了2.4 GHz頻段在全球都是可以自由使用的有效頻段。通過鑒權、加密等 措施 確保設備識別碼在全球的唯一性和設備的安全性。但是WPAN的技術標准多樣,都需要不斷的完善和創新。
WPAN主要應用於個人、家庭和辦公設備的無線通信,它可以在小范圍內將各種移動通信設備、固定通信設備、計算機及其終端設備、各種數字數據系統(例如數字照相機、數字攝像機等)甚至各種家用電器,使用一種廉價的無線 方法 建立它們之間的信息傳輸[10]。WPAN可以使用戶隨時隨地的進行設備間的無縫通訊,可以通過移動網路、區域網、城域網方便快捷的接入到互聯網Internet。未來,WPAN和WLAN一起為用戶提供完備的短距離無線通信環境。
1.5 蜂窩網路
1.5.1 概述
蜂窩網路是把行動電話的服務區分為一個個正六邊形的小區,每個小區設置一個基站,這樣的結構酷似一個個“蜂窩”。 蜂窩技術是移動通信的基礎,所以把這種移動通信方式稱為蜂窩移動通信。蜂窩移動通信系統由移動站、基站子系統、網路子系統組成,採用蜂窩網路作為無線組網方式,通過無線信道將移動終端和網路設備進行連接,使用戶在移動中進行語音、數據通信業務。
1.5.2 特點及應用
宏蜂窩、微蜂窩是蜂窩移動通信系統應用較多的蜂窩技術,宏蜂窩覆蓋半徑大,多在1~25 km,但是存在盲區,小區半徑縮小時會產生干擾。微蜂窩相對於宏蜂窩覆蓋范圍小,一般覆蓋半徑為30~300 m,傳輸功率低、安裝方便靈活,主要用於提高覆蓋率和容量,作為宏蜂窩的補充和延伸,為用戶提供更好的網路覆蓋。它的主要特徵是終端的可移動性,並具有成熟的切換和漫遊方案,頻率復用技術、多址技術、移動性管理技術促進了移動通信業務的發展。伴隨著網路的發展,蜂窩網路從第一代蜂窩移動通信系統發展到現在的第三代蜂窩移動通信系統(3rd Generation,3G),成為實現網路融合和業務融合的統一平台,也是公認的下一代網路的核心網架構。3G網路把語音通信和多媒體通信巧妙結合,能支持更多的用戶,提供更高的數據傳輸速率。如HSPA的速率已經達到7.2 Mbit/s。但高成本、低帶寬的問題越發凸顯。
蜂窩系統或許是當今社會最重要的通信媒體。目前,3G網路可以為用戶提供豐富的應用服務,除電信業務、承載業務在內的基本業務外,還可以提供如呼叫前轉、呼叫等待、多方通話等補充業務。支持的增值服務應用包括網頁瀏覽、圖像、音樂、移動游戲、移動沖浪、視頻會議、視頻點播、各類信息服務等。
2 接入網路技術發展趨勢
目前的接入網路技術能為用戶提供豐富的通信接入手段以及無處不在的接入網路服務,但是各有利弊。例如,蜂窩網路覆蓋的范圍大,移動性管理技術成熟,但帶寬低、建設成本高;相反,WLAN高帶寬、低成本,但其覆蓋范圍有限。為解決此問題,需要充分利用不同網路技術的互補性,網路的融合將成為促進移動互聯網未來發展的關鍵要素,接入網路正在經歷一個動態的轉型過程,異構無線網路融合應運而生。
2.1 定義
異構網路是一種網路的類型,是不同的計算機、手持終端等網路設備及相關系統組成,運行在不同的協議上,支持不同的功能和應用。異構無線網路融合是將現有的多種無線接入技術有機的進行結合,符合下一代無線通信網路(4G網路)中多系統融合演進的設計思路和發展方向。
2.2 特點及應用
異構無線網路融合技術具有成本低、風險低的優點,它是現有接入技術的融合,可以充分利用現有網路資源,降低建設運營成本。其次可以增加網路的覆蓋范圍,利用不同接入技術的特點使網路進行有效地延伸。對於用戶來說,可以享受更加全面、豐富、便捷的移動互聯網服務,是下一代網路發展的必然趨勢。
近年來,業界和學術界不斷的在進行異構無線網路融合的應用研究,BARWAN計劃提出並實現了多模移動終端在無線區域網和無線廣域網之間的垂直切換方案。ETSI和3GPP對3G網路與WLAN之間的互連互通進行了深入的應用研究[2]。MOBYDICK對IPv6網路中WLAN和移動網路的融合應用進行了探討。國內各運營商為緩解大量數據業務對3G網路的沖擊,也開始進行網路的改造,主要是把3G+WLAN方式應用到網路中,例如將WLAN作為3G網路的一個無線接入網,通過網關連接到3G核心網[2],共享核心網路提供的計費認證功能及信令協議,實現WLAN和3G網路的互聯互通,以促進移動互聯網的發展。但是,異構無線網路融合還存在很多需要解決的問題,比如各種接入網路的互聯互通問題、無縫切換等移動性管理問題,網路中各個功能實體的位置及網路架構也直接決定了網路的融合程度及實際應用效果。 3 結語
移動互聯網可以提供除傳統互聯網迷你主頁之外的幾乎所有業務,在韓國、日本等應用較好的國家,移動互聯網的ARPU值可以達到10美元[11]。截至2012年6月底,中國手機網民規模達到3.88億,相比台式電腦上網的3.80億,手機首次超越台式電腦成為第一大上網終端。手機視頻用戶規模激增,已經超過一億人。手機微博用戶漲幅明顯,使用率提升5.3個百分點至43.8%[12]。種種數據表明,“無處不在的網路、無所不能的業務”已深入人心。
伴隨著用戶規模的快速增長,移動互聯網產業將飛躍式的發展,必將推進接入網路技術的融合演進,各種無線網路接入形式和應用成為研究和開發的 熱點 。相信未來各種獨立的無線網路將與整個有線Internet相互聯,為用戶提供覆蓋范圍更廣,應用更豐富,服務更完善的下一代移動互聯網服務。
參考文獻
[1]移動互聯網白皮書[R].北京:工業和信息化部電信研究院,2011.
[2]羅軍舟,吳文甲,楊明.移動互聯網:終端、網路與服務[J].計算機學報,2011(11):30-51.
[3]張更新.VSAT衛星通信[J].電信科學,1996(7):54-61.
[4]陳如明.衛星通信存在的問題、進展與發展前景[J].世界電信,2001(11):3-7.
[5]王驪波.寬頻無線城域網的設計[J].西安郵電學院學報,2000(9):26-29.
[6]曾春亮,張寧,王旭瑩.WiMAX/802.16原理與應用[M].北京:機械工業出版社,2007.
[7]孫哲.無線城域網通信技術IEEE802.16協議架構及技術特點[J].計算機光碟軟體與應用,2011(22):9-10.
[8]陳錦山.無線區域網的現狀及前景展望[J].電子商務,2007(5):53-55.
[9]李妍.無線區域網技術探討[J].電大理工,2011(6):36-37.
[10]蔡駿.無線個域網(WPAN)協議概述[J].廣東通信技術,2002(12):21-23.
[11]楊慶廣.3G催熟移動互聯網 商業模式 需創新[J].中國電子報,2007(10):5-7.
[12]第30次中國互聯網路發展狀況統計報告[R].北京:中國互聯網路信息中心,2012(7).
看了“互聯網接入技術論文”的人還看:
1. 光纖接入技術論文
2. 淺談網路技術的論文3篇
3. 淺議互聯網的相關形勢與政策論文
4. 關於網路資訊理論文
5. 關於網路技術方面的論文
3. cpc是什麼的縮寫
cpc是cognitive pilot channel的縮寫。
CPC為認知導頻信道(cognitive pilot channel)的簡扮空稱,是通過公共廣播信道,向終端用戶傳送有關認知無線網路的必要信息,輔助終端實現對網路環境的初始感知,網路的發現和自主的網路接納選擇等。
研究現狀:
認知導頻信道CPC技術最早由歐盟IST FP6資助的端到端重配置E2R項目所提出,通過在異構網路環境下支持異構網路信息的有效傳輸,來輔助終端進行網路的感知、網路的選擇和動態實時的軟體下載。
隨後在2008年初由歐盟ICT FP7資助的端到端效能E3項目啟動,重點考慮在現有異構的B3G(Beyond3G)無線網路架構中整合認知無線電系統,使之發展為具有統一融合的、可擴展的、高效管理的B3G認知無線電系統。
並對認知無線電系統中支持異構網路信息傳輸的CPC技術展開了深入的研究,使得CPC可以輔助終端進行認知無線網路中的環境感知、網路發現和自主網路接納選擇功能等,實現認知無線網路信息的有效傳輸和高效利用。
認知導頻信道技術是支持異構融合的認知無線廳答瞎網路不可或缺的關鍵技術之一,並逐漸得到業內專家的高度關舉孝注和廣泛認可。
4. 通信與信息系統研究方向
通信與信息系統專業研究方向 (一)《移動通信與無線技術》 針對3G、B3G及無線接入網、協同通信系統、UWB、認知無線電系統和無線自組織網路(ad hoc)等,研究MIMO、OFDM、自適應技術、協同技術、認知理論與技術、現代編碼、新型調制技術、信道建模與信道估計技術、多用戶檢測和干擾消除技術、同步和捕獲技術、跨層聯散穗咐合優化理論和設計等。
(二)《無線數據與移動計算網路》 研究無線數據通信廣域網、無線區域網和個人區域網中的無線數字傳輸、媒質接入控制、無線資源管理、移動性管理、移動多媒體接入、無線接入Internet、移動IP、無線IP、移動計算網路等理論、協議、技術、實現以及基於移族雹動計算網路的各種應用。
(三)《下一代通信網路技術》研究下一代通信網的協議和控制技術、IP網路可靠傳送技術、智能業務和應用技術、QoS和流量工程技術、軟交換和IMS技術、SIP協議及應用技術、VoIP系統和終端技術、多媒體通信技術、移動IP技術、固定和移動網路融合技術、通信和計算機網融合技術、異構網路接入和互通技術、沖純自組織網路技術、網路和用戶管理技術。
(四)《網路與應用技術》 研究寬頻通信網的結構、介面、協議、網路模擬和設計技術;網路管理的管理模型、介面標准、網管系統的設計和開發;可編程網路的體系、軟體和系統開發;可編程網路的體系、軟體和系統開發;TCP/IP網路技術、嵌入式系統設計及應用開發等。
(五)《衛星通信技術》 衛星通信是實現遠程通信、軍事通信、應急通信、海上通信等的重要手段之一。本方向主要致力於:寬頻IP衛星通信技術、CDMA體制衛星通信技術、衛星通信高速調制解調技術、衛星抗干擾技術、攜帶型與車載式應急衛星通信系統、船載、車載、機載衛星通信系統、衛星通信相控陣技術以及新型農村衛星電話技術等方面的研究。
(六) 《光纖通信技術》主要研究高速、密集波分復用光纖傳輸系統的關鍵技術和應用,包括新型光纖,碼型與調制,寬頻光放大和色散調節等技術;新型光纖通信技術和應用,包括光時分復用技術和光碼分復用技術等;光網路技術和應用,包括自動交換光網路,光互聯網技術和寬頻光接入技術。
(七) 《現代通信理論》研究現代通信系統中的信源與信道最佳編解碼、數字調制解調、信號復用與多址、傳輸過程中信號加解密、輸過程中的抗干擾、軟體無線電等理論與技術;同時研究這些技術在現代通信系統中的實現和典型應用。專業:01移動通信與無線技術02無線數據與移動計算03下一代通信網路技術04網路與應用技術05衛星通信技術06光纖通信技術07現代通信理論 其中個人認為網路系統與信息安全更陽光一些。
5. 浙江工業大學(081200)計算機科學與技術一級學科碩士學位點簡介
一、學位點簡介
浙江工業大學計算機科學與技術學院計算機科學與技術學科列入浙江省一流學科A類和浙江碧答省重點高校重點學科建設計劃,擁有浙江省可視媒體智能處理技術研究重點實驗室等科研平台,與英國工程技術學會(IET)建立教育合作夥伴關系,與英國拉夫堡大學、新加坡國立大學、加拿大達爾豪斯大學等國際知名大學合作培養人才,在(浙江)國家數字娛樂產業示範基地、杭州國家軟體產業基地、杭州國家動畫基地等高新技術開發區建有研究生培養平台。
二、研究方向
01.計算機系統結構(01.嵌入式軟體與系統;02.嵌入式系統設計與應用;03.並行分布計算;04.計算機網路與通信)02.計算機軟體與理論(01.多媒體技術與虛擬現實;02.計算機智能攜慧喊系統;03.製造業與服務業信息化;04.信息管理與信辯野息系統;05.網路與信息安全;06.資料庫與知識工程)03.計算機應用技術(01.網路技術及其應用系統;02.計算機控制與智能自動化系統;03.計算機異構網路集成與遠程監控系統;04.無線網路與移動計算;05.電子商務與電子政務;06.網路編碼及其應用;07.模式識別與智能系統;08.智慧城市綜合研究和設計)04.物聯網技術(01.RFID與智能識別技術;02.智能物體互聯互通技術;03.無線感測器網路;04.無源感知網路;05.物聯網應用技術)05.數字媒體技術(01.計算機視覺與應用;02.圖象、音視頻處理與識別;03.數字媒體技術與計算機動畫;04.數字媒體中的人工智慧技術)
6. 異構網路的網路選擇演算法的研究
異構網路中無線資源管理的一個重要研究方向就是網路選擇演算法,網路選擇演算法的研究很廣泛,這里給出了幾個典型的無線網路選擇演算法的類別。 預切換可以有效的減少不必要的切換,並為是否需要執行切換做好准備。通常情況下可以通過當前接收信號強度來預測將來接收信號強度的變化趨勢,來判斷是否需要執行切換。
文獻 中利用多項式回歸演算法對接收信號的強度進行預測,這種方法的計算復雜度較大。文獻 中,利用模糊神經網路來對接收信號強度進行預測,模糊神經網路的演算法最大的問題,收斂較慢,而且計算的復雜度高。文獻 中,利用的是最小二乘演算法(LMS)來預測接收的信號強度,通過迭代的方法,能夠達到快收斂,得到較好的預測。還有在文獻 中,直接採用接收信號強度的斜率來預測接收信號強度,用來估計終端在該網路中的生存時間,但是這種方法太簡單,精度不是很高。 在垂直切換的過程中,對於相同的切換場景,通常會出現現在的已出現過的切換條件,對於其垂直切換的結果,可以應用到當前條件下,這樣可以有效避免的重新執行切換決策所帶來的時延。
文獻[33]中,提出利用用戶連接信息(User Connection Profile,UCP)資料庫用來存儲以前的網路選擇事件。在終端需要執行垂直切換時,首先檢查資料庫中是否存在相同的網路選擇記錄,如果存在可以直接接入最合適的網路。在文獻[34]中,提出了將切換到該網路的持續服務時間和距離該網路的最後一次阻塞時間間隔作為歷史信息記錄下來,根據這些信息,選擇是否有必要進行切換。 由於用戶對網路參數的判斷往往是模糊的,而不是確切的概念,所以通常採用模糊邏輯對參數進行定量分析,將其應用到網路選擇中顯得更加合理。模糊系統組成通常有3個部分組成,分別是模糊化、模糊推理和去模糊化。對於去模糊化的方法通常採用中心平均去模糊化,最後得到網路性能的評價值,根據模糊系統所輸出的結果,選擇最適合的網路。
通常情況下,模糊邏輯與神經網路是相互結合起來應用的,通過模糊邏輯系統的推理規則,對神經網路進行訓練,得到訓練好的神經網路。在垂直切換的判決的時候,利用訓練好的神經網路,輸入相應網路的屬性參數,選擇最適合的網路接入。
基於模糊邏輯和神經網路的策略,可以對多種因素(尤其動態因素)進行動態地控制,並做出自適應的決策,可以有效提高網路選擇的合理性,但該策略最大的缺點是,演算法的實現較為復雜,在電池容量和處理能力均受限的移動設備上是不合適的。 在異構網路選擇中,博弈論是一個重要的研究方向。在博弈論的模型中,博弈中的參與者在追求自身利益最大化的同時,保證自身付出的代價盡量小。參與者的這兩種策略可以通過效用函數和代價函數來衡量。因此通過最大化效用函數和最小化代價函數,來追求利益的最大化。
文獻[36]中提出一種基於博弈論的定價策略和網路選擇方案,該方案中服務提供商(Service Providers,SPs)為了提高自己的利潤需要面臨競爭,它是通過用戶間的合作或者非合作博弈來獲得,在實際的異構網路場景下,用戶和服務提供商SPs之間可以利用博弈模型來表示。Dusit Niyato在文獻[37]中,通過競價機制來進行異構網路資源的管理,這里將業務分成兩種類型,一種是基本業務,另一種類似高質量業務,基本業務的價格是固定的,而高質量業務的價格是動態變化的,它是隨著服務提供商的競爭和合作而變化的。因此這里從合作博弈和非合作博弈兩方面來討論定價機制。Dusit Niyato在文獻[38]中基於進化博弈理論,來解決在帶寬受限情況下,用戶如何在重疊區域進行網路選擇。 網路選擇的目標通常是通過合理分配無線資源來最大化系統的吞吐量,或者最小化接入阻塞概率等,這樣就會涉及網路優化問題。
網路選擇演算法往往是一種多目標決策,用戶希望得到好的服務質量、價格便宜的網路、低的電池功率消耗等。對於多目標決策演算法,通常是不可能使得每個目標同時達到最優,通常的有三種做法:其一,把一些目標函數轉化為限制條件,從而減少目標函數數目;其二,將不同的目標函數規范化後,將規范化後的目標函數相加,得到一個目標函數,這樣就可以利用最優化的方法,得到最優問題的解;其三,將兩者結合起來使用。例如文獻[39]中,採用的是讓系統的帶寬受限,最大化網路內的所有用戶的手機使用時間,即將部分目標函數轉化為限制條件。文獻[40]中,採用的是讓用戶的使用的費用受限,最大化用戶的利益和最小化用戶的代價,這里採用的是上面介紹的第三種方法。 基於策略的網路選擇指的是按照預先規定好的策略進行相應的網路操作。在網路選擇中,通常需要考慮網路負荷、終端的移動性和業務特性等因素。如對於車載用戶通常選擇覆蓋范圍大的無線網路,如WCDMA、WiMAX等;對於實時性要求不高的業務,並且非車載用戶通常選擇WLAN接入。這些均是通過策略來進行網路選擇。
文獻[41, 42]提出了基於業務類型的網路選擇演算法,根據用戶的業務類型為用戶選擇合適的網路。文獻[35]提出基於負載均衡的網路選擇演算法,用戶選擇接入或切換到最小負載因子的網路。[43]提出了一種考慮用戶移動性和業務類型的網路選擇演算法。 多屬性判決策略(Multiple Attribute Decision Making,MADM)是目前垂直切換方面研究最多的領域。多屬性判決策略主要分為基於代價函數的方法和其他方法。
基於代價函數的方法
代價函數一般有兩種構造形式,一種是多屬性參數值的線性組合,如(2.1)式所示;另一種是多屬性參數值的權重指數乘積或者是屬性參數值的對數線性組合,如(2.2)式所示。
(2.1)
(2.2)
其中代表規范化的第個網路的第個屬性值,代表第個屬性的權值。對於屬性的規范化,首先對屬性進行分類,分為效益型、成本型等,然後根據不同的類型的,對參數進行歸一化,採用最多的是線性規范化、極差規范化和向量變換法。關於權值的確定可以分為簡單賦權法(Simple Additive Weighting,SAW)、層次分析法(Analytic Hierarchy Process,AHP)、熵權法、基於方差和均值賦權法。
(1) SAW:用戶根據自己的偏好,確定每個屬性的重要性,通常給出每個參數取值的具體參數值。
(2) AHP:首先分析評價系統中各要素之間關系,建立遞階層次結構;其次對同一層次的各要素之間的重要性進行兩兩比較,構造判斷矩陣;接著由每層判斷矩陣計算相對權重;最後計算系統總目標的合成總權重。
(3) 熵權法:通過求解候選網路中的同一屬性的熵值,熵值的大小表明網路同一屬性的參數值的差異,差別越大,說明該屬性對決策影響越大,相應權值的取值就越大。
(4) 基於方差和均值賦權法:通過求解候選網路中同一屬性參數的均值和方差,結合這兩個參數確定該屬性的重要性程度值,然後再對其進行歸一化,得到每個屬性的參數值。
其他方法
(1) 基於方差和均值賦權法:通過求解候選網路中同一屬性參數的均值和方差,結合這兩個參數確定該屬性的重要性程度值,然後再對其進行歸一化,得到每個屬性的參數值。
(2) 逼近理想解排序法(TOPSIS):首先對參數進行歸一化,從網路的每組屬性參數值里選擇最好的參數組成最優的一組屬性參數,同樣也可以得到最差的一組屬性參數。將每個網路與這兩組參數比較,距離最優參數組越近,並且與最差組越遠,該網路為最合適的網路。
(3) 灰度關聯分析法(GRA):首先對參數進行歸一化,再利用GRA方法,求得每個網路的每個屬性的關聯系數,然後求出每個網路總的關聯系數。根據每個網路總的關聯系數,選擇最適合的網路。
(4) 消去和選擇轉換法(ELECTRE):首先對參數進行歸一化,構造加權的規范化矩陣,確定屬性一致集和不一致集。然後計算一致指數矩陣和劣勢矩陣,最後得到一致指數矩陣和不一致指數矩陣。根據這兩個矩陣,確定網路的優劣關系,選擇最適合的網路。
VIKOR:首先對參數進行歸一化,首先確定最優和最差屬性參數組,然後計算得到每個網路屬性的加權和屬性中最大的參數值,然後利用極差規范化對網路的加權和以及最大屬性值進行歸一化,最後利用歸一化的參數進行加權求和,依據這個值,選擇最合適的網路。
7. 什麼是異構網路,什麼是同構網路具體的概述
異構網路環境,是由不同製造商生產的計算機,網路設備和系統組成的,這些計算機系統運行不同的操作系統和通信協議,想統一其計算機資源的機構通常會面臨集成異種機系統的任務。
同構網路則是指的某一環境下的區域網絡.採用互相兼容操作的各個子系統.
8. 異構網路的異構網路的背景介紹
圖1.1中給出了移動通信技術的發展過程,可以看出隨著技術的改進,數據傳輸速率有著顯著的提高,為用戶提供大數據量的多媒體通信業務提供了堅實基礎。到目前為止,移動通信系統已經發展到第四代,下面將簡單介紹這四代移動通信的發展歷程。
第一代模擬蜂窩系統(1G)開始於上個世紀80年代被用於大規模民用,主要用於提供模擬語音業務,採用的是模擬語音調制技術和頻分多址技術(Frequency Division Multiple Access,FDMA),數據傳輸速率約為2.4kbps。其中代表性的系統有北美的高級行動電話業務(Advanced Mobile Phone Service,AMPS)、英國的全入網通信系統技術(Total Access Communications System,TACS)和北歐的行動電話(Nordic Mobile Telephone,NMT)等等。由於受到傳輸帶寬的限制,不能進行長途漫遊,僅是一種區域性的移動通信系統。另外第一代的通信系統的缺點還包括制式太多而且互不兼容、容量有限、保密性差和通信質量不高等。因此促使了第二代數字移動通信系統(2G)的發展。
第二代數字移動通信系統完成了從模擬到數字的轉變,從而為用戶提供數字語音業務。第二代移動通信技術可以分成兩種,第一種是基於時分多址接入(Time Division Multiple Access,TDMA)的全球數字移動通信系統(Global System for Mobile,GSM)和基於碼分多址接入(Code Division Multiple Access,CDMA)的IS-95系統(例如CDMA one)。
第三代移動通信系統(3G)是由日益成熟的第二代移動通信系統發展而來,其目的是提供高速數據蜂窩移動通信技術。主要的3G技術標准有四個:歐洲電信標准協會(European Telecommunications Standard Institute,ETSI)提出的WCDMA(Wideband CDMA)、北美提出的從CDMA one演進而來的CDMA2000、具有中國知識產權的時分同步的碼分多址技術(Time Division-Synchronous Code Division Multiple Access,TD-SCDMA),和在2007年國際電信聯盟(International Telecommunication Union,ITU)會議上通過的全球微波互聯接入(Worldwide Interoperability for Microwave Access,WiMAX)。第三代移動通信的最高數據傳輸速率可以達到2Mbps,因此可以提供相當高速的數據傳輸業務,例如多媒體、視頻和數據等。
長期演進(Long Term Evolution,LTE)項目是3G的演進,採用的主要技術是正交頻分復用(Orthogonal Frequency Division Multiplexing,OFDM)和MIMO(Multiple-Input Multiple-Out-put),能夠在20MHz的帶寬下提供上行50Mbps和下行100Mbps的峰值速率。LTE又被成為3.9G移動通信技術。LTE-Advanced是LTE的升級版,它被稱為4G的標准,它有兩種制式,一種是TDD,TD-SCDMA可以演化成TDD制式,並且HSPA+(High Speed Packet Access)直接進入LTE,另一種是FDD制式,WCDMA可以演進成FDD制式。
第四代移動通信系統(4G)除了要提供更高的帶寬外,還要保證任何人在任何時間、任何地點以任何方式與任何人進行通信,用戶無需考慮網路傳輸的實現細節。從GSM到第四代,所有的技術不可能一夜間都實現,這些技術將會同時存在為用戶提供服務。為了實現第四代移動通信的目標,就需要將這些不同的無線通信系統融合在一起,形成一個異構無線網路(Heterogeneous Wireless Networks,HWNs)通信系統,從而為用戶提供無縫切換和服務質量(Quality of Service,QoS)保證。因此下一代移動通信網路將是異構網路,異構網路的融合是下一代網路研究的熱點,也是本文研究的主要內容。
寬頻無線接入技術(Broadband Wireless Access,BWA)是繼1990年攜帶型無線電話和2000年Wi-Fi(Wireless Fidelity)出現之後的第三次無線革命,寬頻無線接入技術是在廣域上提供高速無線互聯網接入或者計算機網路接入的技術。寬頻無線接入技術的數據速率大致相當於一些有線網路,如非對稱數字用戶環路(Asymmetric Digital Subscriber Line,ADSL)或者電纜數據機,因此它通常是有線接入網路的重要補充。幾種重要的寬頻無線接入技術包括WLAN(Wireless Local Area Network)、WiMAX技術和WiBro(Wireless Broadband)等。WLAN通過擴頻或者OFDM等技術,來連接兩個或多個終端設備,並通過接入點來連接到寬頻互聯網上,大部分的WLAN技術是基於IEEE802.11標准。WLAN的優勢包括其費用很低和傳輸速度快。由於WLAN工作在非授權頻段,因此WLAN的發射功率很小,它覆蓋范圍也只有百米左右,能提供用戶在小范圍內移動時可以連接到網路上。而WiMAX可以在大范圍內提供高速數據業務,傳輸速率達到30至40兆比特每秒,2011年提高到了1Gbit/s,覆蓋的半徑最大可以達到50km。另外WiMAX可以支持一些低速移動的用戶,而且能夠提供多種多樣的服務,其資費也較WLAN高。由於BWA具有建網快、運營成本低、維護方便等優勢,因此它的發展速度非常迅速,為推動無處不在的互聯網接入和加強公共服務奠定重要的基礎。 表1.1給出了三種寬頻無線接入技術的主要參數,即WLAN、WiMAX和WiBro ;表1.2給出了三種3G技術的主要參數,即UMTS(Universal Mobile Telecommunications System)、EV-DO(Evolution dataOnly)以及HSDPA(High Speed Dlink Packet Access) 。比較這兩張表可以看出BWA與3G技術差別很大,例如BWA支持的數據傳輸速率幾十兆比特每秒,而3G只有幾兆比特每秒;從覆蓋范圍可以看出,3G網路的覆蓋范圍要大於BWA網路;從移動性還可以看出3G網路支持高速移動的用戶。因此可以看出每個網路都有它的優點和缺陷。
表1.1寬頻無線接入技術的主要參數 WLAN WiMAX WiBro 峰值速率 802.11a, g=54 Mbps DL:70 Mbps DL:18.4 Mbps 802.11b=11Mbps UL:70 Mbps UL:6.1 Mbps 帶寬 20MHz 5-6GHz 9MHz 多址方式 CSMA/CA OFDM/OFDMA OFDMA 雙工方式 TDD TDD TDD 移動性 低 低 低 覆蓋區域 小 中等 大 協議標准 IEEE802.11x 802.16 TTA&802.16e 目標市場 家庭/企業 家庭/企業 家庭/企業 表1.2 3G技術的主要參數 UMTS EV-DO HSDPA 峰值速率 DL:2 Mbps DL:3.1 Mbps DL:14 Mbps UL:2 Mbps UL:1.2 Mbps UL:2 Mbps 帶寬 5MHz 1.25GHz 5MHz 多址方式 CDMA CDMA CDMA 雙工方式 FDD FDD FDD 移動性 高 高 高 覆蓋區域 大 大 大 協議標准 3GPP 3GPP 3GPP 目標市場 公共 公共 公共 下一代無線網路是異構無線網路融合的重要原因是:基於異構網路融合,可以根據用戶的特點(例如車載用戶)、業務特點(例如實時性要求高)和網路的特點,來為用戶選擇合適的網路,提供更好的QoS。一般來說,廣域網覆蓋范圍大,但是數據傳輸速率低,而區域網正好相反。因此在實際應用中,多模終端可以根據自身的業務特點和移動性,來選擇合適的網路接入。與以往的同構網路不同,在異構網路環境下,用戶可以選擇服務代價小,同時又能滿足自身需求的網路進行接入。這是由於這些異構網路之間具有互補的特點,才使異構網路的融合顯得非常重要。因此一些組織提出了不同的網路融合標准,這些組織有3GPP(The 3rd Generation Partnership Project)、MIH(The IEEE 802.21 Media Independent Handover working group)和ETSI(The European Telecommunications Standards Institute)。
無線資源管理(Radio Resource Management,RRM)是異構網路中的一個重要研究課題,RRM的目標是高效利用受限的無線頻譜、傳輸功率以及無線網路的基礎設施。RRM技術包括呼叫接入控制(Call Admission Control,CAC)、水平或者垂直切換、負載均衡、信道分配和功率控制等。3GPP提出一種協同無線資源管理技術(Common Radio Resource Management,CRRM),它是通過利用CRRM伺服器對不同接入網路信息進行監測,合理的調度異構網路中的無線資源。除了協同無線資源管理演算法外,還有聯合無線資源管理演算法(Joint Radio Resource Management,JRRM)。這些技術實際上都是為異構網路提供統一的管理平台,以達到合理利用無線資源的目的。
網路選擇演算法是無線資源管理中一個研究熱點,網路選擇演算法通常可以分為呼叫接入網路選擇演算法和垂直網路切換選擇演算法。同構網路的接入和切換主要考慮接收信號的強度,而在異構網路中需要考慮不同接入網路之間的差異,因此需要考慮的因素很多,接收信號的強度只是其中的一個影響因素,其他因素如數據傳輸速率、價格、覆蓋范圍、實時性和用戶的移動性等。這些都是從用戶角度考慮的,如果從網路端考慮,就會涉及到提高系統的吞吐量,降低阻塞率以及均衡負載。因此網路選擇對於異構網路的融合起到了至關重要的影響。本文接下來部分將主要討論異構網路系統模型、無線資源管理、網路性能優化以及網路選擇演算法。
9. 異構網路的異構網路模型
圖2.1給出了一種異構網路模型。不同類型的網路,通過網關連接到核心網,最後連接到Internet網路上,最終融合成為一個整體。異構網路融合的一個重要問題是這些網路以何種方式來進行互連,為異構無線網路資源提供統一的管理平台。為了說明異構網路的融合結構,這里給出一種特定的異構網路場景,它是由無線廣域網(Wireless Wide Area Network,WWAN)(例如CDMA2000)和WLAN(例如IEEE802.11)組成的異構網路系統,如圖2.2所示。
一個CDMA2000網路可以分成無線接入網(Radio Access Network,RAN)和核心網路(Core Network,CN)兩部分。RAN包括一些無線技術實體,如基站控制器(Base Station Controller,BSC)和基站收發設備(Base Transceiver Station,BTS),來負責無線資源的管理。CN通常包括移動交換中心(Mobile Switching Center,MSC)來實現電路交換方式、分組數據服務節點(Packet Data Serving Node,PDSN)來實現包交換方式和網路交互功能(Inter-working Function,IWF)來為包交換和電路交換提供連接。CN負責呼叫管理和建立連接。在WLAN中,移動終端(Mobile Terminals,MTs)和接入點(Access Point,AP)之間進行通信。AP在WLAN中實現物理和數據鏈路層的功能,也充當無線路由器來執行網路層的功能,為WLAN與其他網路提供連接。
在如圖2.2中異構網路的融合結構中,通常有三種類型的融合方案,分別是松耦合結構、緊耦合結構、超緊耦合結構。接下來分別介紹這三種耦合結構。
超緊耦合是通過連接到相同的BSC上與不同的無線接入技術(Radio Access Technology,RAT)進行融合。網路的狀態信息是局部的,不需要通過額外的請求來獲得信息,可以應用在當網路之間是重疊覆蓋的情況下。與其他的耦合方案相比,超緊耦合方案的切換時延很短,因為中間涉及到的網路實體少。但是由於這兩種RAT完全不同,因此實現超緊耦合方式就需要對應用在BSC上的處理過程進行很多修改。
在緊耦合結構中,不同的RATs通過CN進行融合,耦合結點可以是MSC或者PDSN。在圖2.2中,MSC或者PDSN都是負責WWAN和WLAN的連接管理、認證和定價,因此WLAN路由器需要實現相關的WWAN協議。與超緊耦合相比,這個系統僅需要對現有接入網路進行很小的修改,因此它非常容易實現。與超緊耦合相比,在切換過程中,由於涉及到很多網路的實體,因此這種方案的VHO時延增加了。
在松耦合的異構網路中,MSC與WLAN都經過通用介面與公共的Internet進行交互信息,來保持服務的連續性。但是由於每個網路需要執行網路的連接和會話的激活過程,因此這種方案執行切換時會導致時延很大。
對於超緊耦合和緊耦合方式的異構網路融合結構中,網路選擇演算法通常可以安排在耦合節點上,即分別是BSC和CN。但是對於松耦合方式,網路選擇演算法可以應用在移動終端。