A. 無線區域網主要的應用領域有哪些
企業辦公,學校教學,公共場合.
B. 試說明無線網路在生活中的應用
行動電話就是無線網路系統的一部分,人們每天使用行動電話與他人通話。經由利用人造衛星及其他信號,無線網路系統使越洋消息的發送化為可能。在災難應對上,警局使用無線網路迅速地傳播重要消息;不論是在小型辦公大樓內或橫越整個地球,個人及公司都利用無線網路快速地發送或分享資料。
無線網路的其他重要應用之一,就是在基礎電信建設貧乏或缺乏資源的國家和地區提供一個便宜及快速的管道連接上互聯網,像是大部分的發展中國家。
特點
1、可移動性強,能突破時空的限制。
無線網路是通過發射無線電波來傳遞網路信號的,只要處於發射的范圍之內,人們就可以利用相應的接受設備來實現對相應網路的連接。這個極大地擺脫了空間和時間方面的限制,是傳統網路所無法做到的。
2、網路擴展性能相對較強。
與有線網路不一樣的是,無線網路突破了有線網路的限制,其可以隨時通過無線信號進行接人,其網路擴展性能相對較強,可以有效實現網路工作的擴展和配置的設置等。用戶在訪問信息時也會變得更加高效和便捷。無線網路不僅擴展了人們對使用網路的空間范圍,而且還提升了網路的使用效率。
3、設備安裝簡易、成本低廉。
通常來說,安裝有線網路的過程中是較為復雜繁瑣的,有線網路除了要布置大量的網線和網線接頭,而且其後期的維護費用非常高。而無線網路則無需布設大量的網線,安裝—個無線網路發射設備即可,同時這也為後期網路維護創造了非常便利的條件,極大地降低了網路前期安裝和後期維護的成本費用。
與有線網路相比,無線網路的主要特點是完全消除了有線網路的局限性,實現了信息的無線傳輸,使人們更自由地使用網路。
同時,網路運營商操作也非常方便,首先,線路建設成本降低,運行時間縮短,成本回報和利潤生產相對較快。這些優勢包括改進了管理員的無線信息傳輸管理,並為網路中沒有空間限制的用戶提供了更大的靈活性。
無線網路的類型
1、無線PAN
無線個域網(WPAN) 將設備連接到一個相對較小的區域內,通常在一個人的范圍內。[9]例如,藍牙無線電和不可見紅外光都提供了一個 WPAN,用於將耳機連接到筆記本電腦。ZigBee還支持 WPAN 應用程序。
隨著設備設計人員開始將 Wi-Fi 集成到各種消費電子設備中,Wi-Fi PAN 變得司空見慣(2010 年)。英特爾「我的 WiFi」和Windows 7「虛擬Wi-Fi」功能使 Wi-Fi PAN 的設置和配置更簡單、更容易。
2、無線區域網
甲無線區域網(WLAN)鏈路使用無線分發方法,通常提供通過接入點訪問網際網路連接在短距離內的兩個或更多的設備。採用擴頻或OFDM技術可以允許用戶在本地覆蓋區域內四處走動,並且仍然保持連接到網路。
3、無線自組織網路
無線自組織網路,也稱為無線網狀網路或移動自組織網路(MANET),是由以網狀拓撲結構組織的無線電節點組成的無線網路。每個節點代表其他節點轉發消息,每個節點執行路由。
4、無線城域網
無線城域網是一種連接多個無線區域網的無線網路。
移動網路是分布在陸地區域稱為小區,每個小區由至少一個固定位置的服務的無線網路收發器,被稱為小區站點或基站。在蜂窩網路中,每個小區的特點是使用來自其所有直接相鄰小區的一組不同的無線電頻率以避免任何干擾。
以上內容參考網路-無線網路
C. wifi是什麼 解析無線網路的定義和應用
無線網路的定義
3.公共場所
無線網路是指使用無線電波作為傳輸媒介的網路,它可以讓電子設備之間通過無線信號進行數據傳輸和通信。無線網路可以實現電子設備之間的互聯互通,讓人們在無線網路環境雹歲搏下實現高速上網、數據傳輸和共享等功能。
在公共場所,如咖啡廳、餐廳、機場、商場等地方雀告,WiFi技術可以為人源祥們提供免費的無線上網服務,方便人們在外出時使用電子設備進行工作或娛樂。
4.智能家居
無線網路技術的應用非常廣泛,它可以被應用於各種場所和場合,如以下幾個方面:
D. OPM是什麼意思
OPM是適機認知無線網路。
OPM技術精要是基於認知無線網路(Cognitive Networking)的概念和方法,也即適機動態地使用網路資源:包括源肆旁頻譜資源和無線站點。相比較而言,傳統的無線網路方雹橘法則一般基於網路資源可預知/可分配的假設。
安裝有線網路的過程中是較為復雜繁瑣的,有線網路除了要布置大量的網線和網線接頭,而且其後期的維護費用非常高。而無線網路則無需布設大量的網線,安裝—個無線網路發射設備即可,同時這也為後期網路維護創造了非常便利的條件,極大地降低了網路前期安裝和後期維護的成本費用。
OPM特點:
1、可移動性強,能突破時空的限制。
無線網路是通過發射無線電波來傳遞網路信號的,只要處於發射的范圍之內,人們就可以利用相應的接受設雹橡備來實現對相應網路的連接。這個極大地擺脫了空間和時間方面的限制,是傳統網路所無法做到的。
2、網路擴展性能相對較強。
與有線網路不一樣的是,無線網路突破了有線網路的限制,其可以隨時通過無線信號進行接人,其網路擴展性能相對較強,可以有效實現網路工作的擴展和配置的設置等。用戶在訪問信息時也會變得更加高效和便捷。
以上內容參考:網路-無線網路
E. 認知無線電的應用
UWB技術產生於20世紀60年代,當時主要應用於脈沖雷達(ImpulseRadar),美國軍方利用其進行安全通信中的精確定位和成像。至20世紀90年代之前,UWB主要應用於軍事領域,之後UWB技術開始應用於民用領域。UWB由於具有傳輸速率高、系統容量大、抵抗多徑能力強、功耗低、成本低等優點,被認為是下一代無線通信的革命性技術,而且是未來多媒體寬頻無線通信中最具潛力的技術。
認知無線電採用頻譜感知技術,能夠感知周圍頻譜環境的特性,通過動態頻譜感知來探測「頻譜空洞」,合理地、機會性地利用臨時可用的頻段,潛在地提高頻譜的利用率。與此同時,認知無線電技術還支持根據感知結果動態地、自適應地改變系統的傳輸參數,以保證高優先順序的授權主用戶對頻段的優先使用,改善頻譜共享,與其他系統更好地共存。 無線Mesh網路是近幾年出現的具有一種無線多跳(Multi-hop)的網路結構。在Mesh網路中,每個節點可以和一個或者多個對等節點直接通信;同時也能模擬路由器的功能,從鄰近節點接收消息並進行中繼轉發。這樣,Mesh網路通過鄰近節點之間的低功率傳輸取代了遠距離節點間的大功率傳輸,實現了低成本的隨時隨地接入。網路中所有節點之間是相互協作的,如果Mesh網路中的一條鏈路失效了,網路可以通過替代鏈路將信息路由到目的地,優化了頻譜的使用。
認知無線電和無線Mesh網路結合,正是在增大網路密度和提高服務吞吐量的發展趨勢下提出來的,適用於可能有嚴重的線路爭用情況的人口稠密城市的無線寬頻接入。認知Mesh網路通過中繼方式可以有效地擴展網路覆蓋范圍,當一個無線Mesh網的骨幹網路是由認知接入點和固定中繼點組成時,無線Mesh網的覆蓋范圍能夠大大增加。尤其是在受限於視距傳輸的微波頻段,認知Mesh網路將有利於在微波頻段實現頻譜的開放接入。 一般的多跳Ad-hoc網路在發送數據包時會預先確定通信路由。認知無線電技術能夠實時地收集信息並且自動選擇波形,並向各方通知尚未使用的頻率信息,適用於具有不可提前預測的頻譜使用模式的應用場景。因此,當認知無線電技術應用於低功耗多跳Ad-hoc網路,能夠滿足分布式認知用戶之間的通信需求。
由於認知無線電系統可根據周圍環境的變化動態地進行頻率的選擇,而頻率的改變通常需要路由協議等進行相應調整,因此,基於認知無線電技術的Ad-hoc網路需要新的支持分布式頻率共享的MAC協議和路由協議。
F. 無線通信技術在生活中的應用
無線電台、微波通信、移動通信、衛星通信、無線寬頻、航天器與地球之間的遙測、遙控及通信等等;無繩電話機也應用了無線通信技術;廣義地講,電視、空調的遙控以及廣播、電視也屬無線電通信的范疇。
無線通信(英語:Wireless communication)是指多個節點間不經由導體或纜線傳播進行的遠距離傳輸通訊,利用收音機、無線電等都可以進行無線通訊。
無線通訊包括各種固定式、移動式和攜帶型應用,例如雙向無線電、手機、個人數碼助理及無線網路。其他無線電無線通訊的例子還有GPS、車庫門遙控器、無線滑鼠等。
大部分無線通訊技術會用到無線電,包括距離只到數米的Wi-fi,也包括和航海家1號通訊、距離超過數百萬公里的深空網路。但有些無線通訊的技術不使用無線電,而是使用其他的電磁波無線技術,例如光、磁場、電場等。
電磁波頻譜:
光、顏色、AM及FM廣播以及許多電子設備都用到電波波頻譜,可用來通訊的無線電頻譜頻率中視為是公共財財產,會由國家級的機構管理,例如美國的美國聯邦通信委員會,英國的Ofcom,這些機構會定義誰可以使用哪一個頻段的頻率,以及其目的為何。
若公共頻段像個人使用的電磁波頻譜一様,沒有類似的控制或替代配置措施,可能會出現混亂,例如飛機沒有特別可以用在航管上的頻率,而業余無線電操作者的訊號干擾航管訊號,使得飛行員無法正常使飛機降落。無線通訊的頻帶由9kHz至300GHz。
G. 20分!談談對無線認知網路頻譜感知方法的研究與實現的看法
認知無線網路的頻譜感知技術
認知無線電/認知無線網路起源於Joseph Mitola攻讀博士期間的研究工作,在其博士論文中,Mitola將認知無線電定義為「the integration of model-based reasoning with software radio technologies」,認為認知無線電是智能計算和無線通信這兩個學科交叉融合的產物[1] 。隨後,美國的FCC和DARPA分別啟動了多項計劃,對認知無線電和動態頻譜接入問題進行深入研究;歐盟的端到端重配置計劃(E2R: End to End Reconfigurability Project)也啟動了對認知概念在技術和經濟領域等各方面問題的研究。Simon Hakin在2005年發表了關於認知無線電的著名文章「Cognitive radio: brain-empowered wireless communications」[2] ,主要從信號處理和自適應過程的角度對認知無線電技術的框架結構進行了較為完善的分析。此後,許多有名的大學和研究機構也展開了相關技術的研究和實驗平台的開發,認知無線電的概念也被擴展為認知無線網路,指利用認知原理來提高各種資源(頻譜、功率等)使用效率的無線網路[3] 。在頻譜管理部門的帶動下,一些標准化組織也先後開展了一系列標准制定工作以推動該技術的發展。目前涉及認知無線電/認知無線網路標准制訂的組織和行業聯盟主要是美國電氣電子工程師學會(IEEE)、國際電信聯盟(ITU)和軟體無線電論壇(SDR Forum)等。
認知無線網路中,主(授權)用戶指那些對某段頻譜的使用具有高優先順序或合法授權的用戶,次級用戶是指那些低優先順序的用戶。次級用戶對頻譜的使用不得對主用戶造成干擾,因此要求其能快速、可靠地感知主用戶使用授權頻譜的情況。次級用戶必須具備認知能力,因而稱其為認知用戶,在網路結構中則表示為認知節點。認知用戶的頻譜感知主要包括在某個頻段上檢測主用戶存在與否(主用戶信號檢測)和估計認知用戶對主用戶接收機可能造成的附加干擾(干擾溫度估計)兩個任務[4] 。更進一步的可能要求是頻譜感知還應區分主用戶信號的種類(空中介面分類)[5] 。目前大部分頻譜感知的研究都集中在最重要的主用戶信號檢測上。
1. 頻譜感知的基本方法
主用戶信號檢測的單節點頻譜感知基本方法通常分為三類:
第一類為相干檢測。如果知道主用戶信號的結構特徵(如導頻、前導或同步消息等),匹配濾波器加門限檢測的方法是最優的主用戶信號檢測方法。相干檢測可獲得精確的頻譜感知結果,但其缺點也很明顯,必須知道主用戶信號的先驗知識,而且當認知無線網路運行在很寬的頻段上時,實現許多類型的授權信號的相干檢測成本太高,幾乎不可實現。
第二類為能量檢測。在感興趣頻段上測量某段觀測時間內接收信號的總能量,如果能量低於某個設定門限則聲明該頻段為白空間。與相干檢測相比,能量檢測需要更長的感知時間以達到同樣的感知效果,但低成本、易實現的特性使其受到認知無線網路中頻譜感知技術的青睞。
以上基於信號檢測技術的兩種頻譜感知方法,有很好的理論基礎[6] ,性能分析已比較完善。
第三類為特徵檢測[7] 。能量檢測的最大缺點是它不能區分接收到的能量是來自主用戶信號還是雜訊,在低信噪比環境中的頻譜感知結果尤其不可靠。在主用戶信號的載波頻率、調制類型或循環前綴等某些特徵已知時,利用信號的期望和自相關函數呈現出來的周期性(循環平穩譜相關特性),可將信號能量與雜訊能量區分開來,突破能量檢測的瓶頸。文獻[8] 還分析實際情況下有限的數據長度對循環譜特徵檢測的影響。實現復雜度遠高於能量檢測是制約特徵檢測在頻譜感知中應用的最主要缺點。
此外,2003年底FCC頻譜政策工作組提出了干擾溫度模型[9] ,意在對無線環境中的干擾源進行量化和管理。干擾溫度限提供了特定地理位置在某一感興趣頻段上接收機能夠順利工作的最差環境的特徵描述。根據干擾溫度模型,認知用戶若能確定其對主用戶接收機造成的附加干擾量並加以限制,使主用戶接收機所受的總干擾(含雜訊)不超過干擾溫度限,則認知用戶可與主用戶運行在同一頻段上。可以看出,基於主用戶信號檢測的頻譜感知意在避開主用戶,而基於干擾溫度模型的頻譜感知則試圖與主用戶同時並存於同一個頻段,這是兩者最大的區別。文獻[10] 定義了已知和未知主用戶信號參數時干擾溫度的理想模型和一般模型,並從通信容量的角度分析了如何來最優地選擇認知系統的工作帶寬和發送功率。但干擾溫度模型存在兩個需要解決的難題:其一為在主用戶發送信號存在的情況下如何測定其接收機的雜訊水平,其二為在主用戶接收機位置未知的情況下如何估計認知用戶對它可能產生的干擾。降低問題難度的一種可能辦法是讓主用戶系統來輔助認知系統的頻譜感知,如文獻[11] 中要求主用戶接收機在工作過程中持續發送指示信號。另一個需要考慮到的是,認知用戶和主用戶共存於同一個頻段時,認知系統的通信過程中也會受到授權系統的干擾,所以認知系統能獲得的通信容量可能非常有限[10] 。
2. 協同頻譜感知
認知無線網路可通過對多節點感知信息的協同處理來提高頻譜感知的效果,這被稱為協同(協作、合作)頻譜感知。頻譜感知性能主要由感知范圍、檢測時間、檢測概率、虛警概率等幾個相互關聯的指標來衡量,協同頻譜感知可利用空間分集增益改善上述指標,解決單節點感知中難以克服的多徑深衰落、陰影衰落和隱終端等難題[4] ,同時也可減輕對單個節點感知靈敏度的要求,降低實現成本[12] 。
實現協同頻譜感知的方式有兩種,即中心式和分布式。
中心式感知:中心單元收集各認知節點的感知信息,負責識別可用頻譜,並將頻譜可用信息廣播給各認知節點或直接控制認知節點的通信參數。文獻[13] 中以AP為中心收集、處理各感知節點的硬判決(二進制)結果,通過克服信道衰落效應來提高感知性能,其檢測概率和虛警概率的計算在文獻[14] 中給出。文獻[15] 以主節點(master node)為中心節點合並各感知結果來檢測TV信道。文獻[16] 則由融合中心(fusion center)根據各認知節點能量檢測的結果最終判斷主用戶在某個頻段上的存在與否。
分布式感知:認知節點彼此之間共享感知信息,但獨立判斷各自的可用頻譜。與中心式感知相比,分布式感知的優點是不需要基礎結構網路,部署更靈活些。文獻[17] 顯示一個用戶作為另一個用戶中繼的兩用戶協同頻譜感知可帶來35%的捷變增益(所需感知時間減少35%)。文獻[18] 進一步將這種分布式感知協議推廣到多用戶環境中。
無論中心式還是分布式感知,就協同頻譜感知的研究內容而言,主要包含以下兩個方面:
1)認知節點感知信息的合並處理,即考慮信息融合(fusion)問題。
2)感知信息傳遞過程的合作,即考慮中繼傳輸問題。
H. 什麼是OPM
適機認知無線網路,即適機動態地使用網路資源。
OPM技術通過對網路資源的適機動態使用,實現了無固定拓撲和頻率分配的動態大規模組網。例如,在無線多跳傳猛鎮慧輸過程中,每個包使用動態生成的路徑,並且動態生成每個跳使用的頻率。這樣,網路資源的利用率就可以達到其瞬時最大值。
通過建立一種新的跨層協議棧設枝答計,傳統無線網路的OPM技術改造相當於有線網路(即後互聯網)中的分組交換技術對電話交換技術的改造。其可能的商業價值也類似於大大降低通信成本和改旅正進網路所實現的價值。可擴展性使基於它的廣泛應用成為實現商業價值的可能。
(8)認知無線網路應用擴展閱讀:
OPM的作用:
OPM網路不僅可以實現與通信行業現有基礎設施設備的無縫對接,還可以作為大規模無線網路的技術平台,實現物聯網感測器網路、定位網路、車輛網路、有線等多種應用。寬頻接入少,應急網路等。
與傳統的感測器網路技術(如ZigBee)相比,它解決了多級跳頻後信號會大大減弱的技術問題。基於OPM技術的實時無線通信網路更加穩定、動態、可持續。
I. 目前無線區域網主要應用在哪些方面談談未來無線網路的發展前景如何
說到有線網路,人們自然會想到那連接電腦的長長的「臍帶」。你想挪個地方上網嗎?不行!「臍帶」太短,不能斷了網線!更難堪的是,你若是個火急火燎的性子,說不定哪天被網線跘個「狗吃屎」!也許連電腦也跟著受傷住院了。 如今,有了無線網路,一切的煩惱都迎刃而解了。任何無線網路覆蓋的區域,你只要憑借自己的上網帳戶即可隨時隨地自由地遨遊在互聯網的世界裡。在宿舍、在教室、在圖書館、在食堂,甚至在汽車里、在操場上,你都可以粘在網路上。所謂空中教室、空中圖書館、空中聊天室,在無線網路的世界裡就是現實! 無線網路的發展是伴隨著計算機技術的進步走到今天的。近年來,網路技術取得了巨大的進步。一方面,速率大大提高,可達千兆級。但「接入點的固定和有限」隨著「移動辦公」日益強烈的需求,有線接入難以為繼。同時,眾多區域網的互聯,使得布線遇到重重困難。無線區域網在這種情況下應運而生,它所提供的「多點接入」、「點對點中繼」(即所謂的mesh技術)為用戶提供了一種替代有線的高速解決方案。可以說無線網路的世紀已經到來了。正是有鑒於此,國內外眾多廠家多瞄準了這一巨大商機。Aruba、Ruckus、Mortolola、 3com、Cisco、華三等知名公司一個個趨之若鶩,甚至連Microsoft最近也宣布收購一家小公司Sendit,作為無線移動訪問Internet技術的研發中心,諾基亞等也躍躍欲試在其國內推廣基於WAP的無線接入,一場無線網路大戰已經展開。 今年是無線網路迅速發展的一年。隨著802.11g/b等標準的廣泛應用,更大、更快、更廣成為新一代無線網路的發展趨勢。最受矚目的要數802.11n標准了。和802.11g標准相比,它的信號覆蓋范圍提高6倍,而傳輸速率提高了14倍。在相當長的時間內將是802.11g和802.11n並存的局面。雖然3G的沖擊力很大,但大面積應用AP組成的區域網仍將是無線網路的主流,因為3G的應用帶寬是無法超越的「瓶頸」。 對於國內ISP來說,無線接入的商機正在到來,無線網路的明天一片光明。