㈠ 計算機網路有哪些常用的性能指標
速率、帶寬、吞吐量、時延、時延帶寬積、往返時間RTT、利用率等。
計算機網路是指將地理位置不同的具有獨立功能的多台計算機及其外部設備,通過通信線路連接起來,在網路操作系統,網路管理軟體及網路通信協議的管理和協調下,實現資源共享和信息傳遞的計算機系統。
關於計算機網路的最簡單定義是:一些相互連接的、以共享資源為目的的、自治的計算機的集合。若按此定義,則早期的面向終端的網路都不能算是計算機網路,而只能稱為聯機系統(因為那時的許多終端不能算是自治的計算機)。
但隨著硬體價格的下降,許多終端都具有一定的智能,因而「終端」和「自治的計算機」逐漸失去了嚴格的界限。若用微型計算機作為終端使用,按上述定義,則早期的那種面向終端的網路也可稱為計算機網路。
相關信息
數據通信是計算機網路的最主要的功能之一。數據通信是依照一定的通信協議,利用數據傳輸技術在兩個終端之間傳遞數據信息的一種通信方式和通信業務。它可實現計算機和計算機、計算機和終端以及終端與終端之間的數據信息傳遞。
是繼電報、電話業務之後的第三種最大的通信業務。數據通信中傳遞的信息均以二進制數據形式來表現,數據通信的另一個特點是總是與遠程信息處理相聯系,是包括科學計算、過程式控制制、信息檢索等內容的廣義的信息處理。
㈡ 無線網路的無線電類型802.11n與802.11g分別代表什麼有什麼不同
IEEE 802.11g2003年7月,通過了第三種調變標准。其載波的頻率為2.4GHz(跟802.11b相同),原始傳送速度為54Mbit/s,凈傳輸速度約為24.7Mbit/s(跟802.11a相同)。802.11g的設備與802.11b兼容。802.11g是為了提高更高的傳輸速率而制定的標准,它採用2.4GHz頻段,使用CCK技術與802.11b(Wi-Fi)後向兼容,同時它又通過採用OFDM技術支持高達54Mbit/s的數據流,所提供的帶寬是802.11a的1.5倍。從802.11b到802.11g,可發現WLAN標准不斷發展的軌跡:802.11b是所有WLAN標准演進的基石,未來許多的系統大都需要與802.11b向後向兼容,802.11a是一個非全球性的標准,與802.11b後向不兼容,但採用OFDM技術,支持的數據流高達54Mbit/s,提供幾倍於802.11b/g的高速信道,如802.11b/g提供3個非重疊信道可達8-12個;可以看出,在802.11g和802.11a之間存在與Wi-Fi兼容性上的差距,為此出現了一種橋接此差距的雙頻技術——雙模(al band)802.11a+g(=b),它較好地融合了802.11a/g技術,工作在2.4GHz和5GHz兩個頻段,服從802.11b/g/a等標准,與802.11b後向兼容,使用戶簡單連接到現有或未來的802.11網路成為可能。
IEEE 802.11n
IEEE 802.11n,2004年1月IEEE宣布組成一個新的單位來發展新的802.11標准。資料傳輸速度估計將達540Mbit/s(需要在物理層產生更高速度的傳輸率),此項新標准應該要比802.11b快上50倍,而比802.11g快上10倍左右。802.11n也將會比目前的無線網路傳送到更遠的距離。
目前在802.11n有兩個提議在互相競爭中:
WWiSE (World-Wide Spectrum Efficiency) 以Broadcom為首的一些廠商支持。
TGn Sync 由Intel與Philips所支持。
802.11n增加了對於MIMO (multiple-input multiple-output)的標准. MIMO 使用多個發射和接收天線來允許更高的資料傳輸率。MIMO並使用了Alamouti coding coding schemes 來增加傳輸范圍。
㈢ 無線區域網的性能指標
全面解析802.11無線技術
作者:中關村在… 文章來源:CNET中國·ZOL 點擊數:111 更新時間:2006-10-26 21:16:21
一、1997年版無線網路標准
1997年版IEEE802.11無線網路標准規定了三種物理層介質性能。其中兩種物理層介質工作在2400--2483.5 GHz無線射頻頻段(根據各國當地法規規定),另一種光波段作為其物理層,也就是利用紅外線光波傳輸數據流。而直序列擴頻技術(DSSS)則可提供 1Mb/S及2Mb/S工作速率,而跳頻擴頻(FHSS)技術及紅外線技術的無線網路則可提供1Mb/S傳輸速率(2Mb/S作為可選速率,未作必須要求),受包括這一因素在內的多種因素影響,多數FHSS技術廠家僅能提供1Mb/S的產品,而符合IEEE802.11無線網路標准並使用DSSS直序列擴頻技術廠家的產品則全部可以提供2Mb/S的速率,因此DSSS技術在無線網路產品中得到了廣泛應用。
1.介質接入控制層功能
無線網路(WLAN)可以無縫連接標準的乙太網絡。標準的無線網路使用的是(CSMA/CA)介質控制信息而有線網路則使用載體監聽訪問/沖突檢測(CSMA/CA),使用兩種不同的方法均是為了避免通信信號沖突。
2.漫遊功能
IEEE802.11無線網路標准允許無線網路用戶可以在不同的無線網橋網段中使用相同的信道,或在不同的信道之間互相漫遊,如Lucent的 WavePOINT II無線網橋每隔100 ms發射一個烽火信號,烽火信號包括同步時鍾、網路傳輸拓撲結構圖、傳輸速度指示及其他參數值,漫遊用戶利用該烽火信號來衡量網路信道信號質量,如果質量不好,該用戶會自動試圖連接到其他新的網路接入點。
3.自動速率選擇功能
IEEE802.11無線網路標准能使移動用戶(Mobile Client)設置在自動速率選擇(ARS)模式下,ARS功能會根據信號的質量及與網橋接入點的距離自動為每個傳輸路徑選擇最佳的傳輸速率,該功能還可以根據用戶的不同應用環境設置成不同的固定應用速率。
4.電源消耗管理功能
IEEE802.11 還定義了MAC層的信令方式,通過電源管理軟體的控制,使得移動用戶能具有最長的電池壽命。電源管理會在無數據傳輸時使網路處於休眠(低電源或斷電)狀態,這樣就可能會丟失數據包。為解決這一問題,IEEE802.11規定了AP接入點應具有緩沖區去儲存信息,處於休眠的移動用戶會定期醒來恢復該信息。
5.保密功能
僅僅靠普通的直序列擴頻編碼調制技術不夠可靠,如使用無線寬頻掃描儀,其信息又容易被竊取。最新的WLAN標准採用了一種載入保密位元組的方法,使得無線網路具有同有線乙太網相同等級的保密性。此密碼編碼技術早期應用於美國軍方無線電機密通信中,無線網路設備的另一端必須使用同樣的密碼編碼方式才可以互相通信,當無線用戶利用AP接入點連入有線網路時還必須通過AP接入點的安全認證。該技術不但可以防止空中竊聽,而且也是無線網路認證有效移動用戶的一種方法。
二、1999版無線網路標准
該版本於1999年8月頒布。除原IEEE802.11的內容之外,增加了基於SNMP協議的管理信息庫(MIB),以取代原OSI協議的管理信息庫。另外還增加了高速網路內容:
1.IEEE802.11a
規定的頻點為5GHz,用正交頻分復用技術(OFDM)來調制數據流。OFDM技術的最大的優勢是其無與倫比的多途徑回聲反射,因此特別適合於室內及移動環境。
2.IEEE802.11b
工作於2.4GHz頻點,採用補償碼鍵控CCK調制技術。當工作站之間的距離過長或干擾過大,信噪比低於某個門限值時,其傳輸速率可從11Mb/s自動降至5.5Mb/s,或者再降至直序列擴頻技術的2Mb/s及1Mb/s速率。
三、無線網路 前途無量
建設符合IEEE802.11標準的無線網路,不僅可以滿足目前的需要,而且日後網路還可以平滑升級,可以有效地保護投資。目前IEEE802.11工作小組已成立了新的研究小組,對大信息流量及多工作組同時工作、流量控制及更安全的保密編碼、安全認證等技術問題進行研究,隨著無線網路成本的不斷下調、配套技術的不斷完善、覆蓋范圍的不斷增大,無線網路的應用將會成為未來網路的技術主流。
·802.11協議的重要技術指標
由於無線區域網傳輸介質(微波、紅外線)非「有限」的有線,客觀上存在一些全新的技術難題,為此IEEE802.11協議規定了一些至關重要的技術機制。
1.CSMA/CA協議
我們知道匯流排型區域網在MAC層的標准協議是CSMA/CD,即載波偵聽多路存取/沖突檢測(Carrier Sense Multiple Access with Collision Detection)。但由於無線產品的適配器不易檢測信道是否存在沖突,因此802.11全新定義了一種新的協議,即載波偵聽多路存取/沖突避免 CSMA/CA(with Collision Avoidance)。一方面,載波偵聽--查看介質是否空閑;另一方面,沖突避免--通過隨機的時間等待,使信號沖突發生的概率減到最小,當介質被偵聽到空閑時,優先發送。不僅如此,為了系統更加穩固,IEEE802.11還提供了帶確認幀ACK的CSMA/CA。在一旦遭受其他雜訊干擾,或者由於偵聽失敗時,信號沖突就有可能發生,而這種工作於MAC層的ACK此時能夠提供快速的恢復能力。
2.RTS/CTS協議
RTS/CTS協議即請求發送/允許發送協議,相當於一種握手協議,主要用來解決「隱藏終端」問題。「隱藏終端」(Hidden Stations)是指,基站A向基站B發送信息,基站C未偵測到A也向B發送,故A和C同時將信號發送至B,引起信號沖突,最終導致發送至B的信號都丟失了。「隱藏終端」多發生在大型單元中(一般在室外環境),這將帶來效率損失,並且需要錯誤恢復機制。當需要傳送大容量文件時,尤其需要杜絕「隱藏終端」 現象的發生。WaveLAN802.11提供了如下解決方案。在參數配置中,若使用RTS/CTS協議,同時設置傳送上限位元組數--一旦待傳送的數據大於此上限值時,即啟動RTS/CTS握手協議:首先,A向B發送RTS信號,表明A要向B發送若干數據,B收到RTS後,向所有基站發出CTS信號,表明已准備就緒,A可以發送,其餘基站暫時「按兵不動」,然後,A向B發送數據,最後,B接收完數據後,即向所有基站廣播ACK確認幀,這樣,所有基站又重新可以平等偵聽、競爭信道了。
3.信道重整
當傳送幀受到嚴重干擾時,必定要重傳。因此若一個信包越大時,所需重傳的耗費(時間、控制信號、恢復機制)也就越大;這時,若減小幀尺寸--把大信息包分割為若干小信包,即使重傳,也只是重傳一個小信包,耗費相對小得多。這樣就能大大提高WirelessLAN產品在雜訊干擾地區的抗干擾能力。當然,作為一個可選項,用戶若在一個「干凈」地區,也可以關閉這項功能。
4.多信道漫遊
人類是無限追求自由的,隨著移動計算設備的日益普及,我們希望出現一種真正無所羈絆的網路接入設備。WaveLAN802.11就是這樣的一種設備。傳輸頻帶是在接入設備AP(Access Point)上設置的,而基站不須設置固定頻帶,並且基站具有自動識別功能,基站動態調頻到AP設定的頻帶,這個過程稱之為掃描(Scan)。 IEEE802.11定義了兩種模式:被動掃描和主動掃描。被動掃描是指,基站偵聽AP發出的指示信號,並切換到給定的頻帶;主動掃描是指,基站提出一個探視請求,接入點AP回送一個包含頻帶信息的響應,基站就切換到給定的頻帶。WaveLAN802.11採用的是主動掃描,並且能結合天線接收靈敏度,以信號最佳的信道確定為當前傳輸信道。這樣,當原來位於接入點AP(A)覆蓋范圍內的基站漫遊到接入點AP(B)時,基站能自適應,重新以AP(B)為當前接入點。
5.可靠的安全性能
WaveLAN本身的發射功率很小,小於35mV,而且還被擴展到 22MHz帶寬。一方面,平均能量很低(15dBm),另一方面,不存在頻率單一的載波,因此很難被掃描跟蹤,這也是次項技術一直用於軍事上的原因。這些是物理上的安全機制,在軟體上,還採用了域名控制、訪問許可權控制和協議過濾等多重安全機制;並且在有線同等保密(WEP)方面,對於特殊用戶,可選以下附件:基於RC4加密(1988RSA運演算法則)和密碼(40位加密鑰匙)。
·802.11協議的重要技術指標
由於無線區域網傳輸介質(微波、紅外線)非「有限」的有線,客觀上存在一些全新的技術難題,為此IEEE802.11協議規定了一些至關重要的技術機制。
1.CSMA/CA協議
我們知道匯流排型區域網在MAC層的標准協議是CSMA/CD,即載波偵聽多路存取/沖突檢測(Carrier Sense Multiple Access with Collision Detection)。但由於無線產品的適配器不易檢測信道是否存在沖突,因此802.11全新定義了一種新的協議,即載波偵聽多路存取/沖突避免 CSMA/CA(with Collision Avoidance)。一方面,載波偵聽--查看介質是否空閑;另一方面,沖突避免--通過隨機的時間等待,使信號沖突發生的概率減到最小,當介質被偵聽到空閑時,優先發送。不僅如此,為了系統更加穩固,IEEE802.11還提供了帶確認幀ACK的CSMA/CA。在一旦遭受其他雜訊干擾,或者由於偵聽失敗時,信號沖突就有可能發生,而這種工作於MAC層的ACK此時能夠提供快速的恢復能力。
2.RTS/CTS協議
RTS/CTS協議即請求發送/允許發送協議,相當於一種握手協議,主要用來解決「隱藏終端」問題。「隱藏終端」(Hidden Stations)是指,基站A向基站B發送信息,基站C未偵測到A也向B發送,故A和C同時將信號發送至B,引起信號沖突,最終導致發送至B的信號都丟失了。「隱藏終端」多發生在大型單元中(一般在室外環境),這將帶來效率損失,並且需要錯誤恢復機制。當需要傳送大容量文件時,尤其需要杜絕「隱藏終端」 現象的發生。WaveLAN802.11提供了如下解決方案。在參數配置中,若使用RTS/CTS協議,同時設置傳送上限位元組數--一旦待傳送的數據大於此上限值時,即啟動RTS/CTS握手協議:首先,A向B發送RTS信號,表明A要向B發送若干數據,B收到RTS後,向所有基站發出CTS信號,表明已准備就緒,A可以發送,其餘基站暫時「按兵不動」,然後,A向B發送數據,最後,B接收完數據後,即向所有基站廣播ACK確認幀,這樣,所有基站又重新可以平等偵聽、競爭信道了。
3.信道重整
當傳送幀受到嚴重干擾時,必定要重傳。因此若一個信包越大時,所需重傳的耗費(時間、控制信號、恢復機制)也就越大;這時,若減小幀尺寸--把大信息包分割為若干小信包,即使重傳,也只是重傳一個小信包,耗費相對小得多。這樣就能大大提高WirelessLAN產品在雜訊干擾地區的抗干擾能力。當然,作為一個可選項,用戶若在一個「干凈」地區,也可以關閉這項功能。
4.多信道漫遊
人類是無限追求自由的,隨著移動計算設備的日益普及,我們希望出現一種真正無所羈絆的網路接入設備。WaveLAN802.11就是這樣的一種設備。傳輸頻帶是在接入設備AP(Access Point)上設置的,而基站不須設置固定頻帶,並且基站具有自動識別功能,基站動態調頻到AP設定的頻帶,這個過程稱之為掃描(Scan)。 IEEE802.11定義了兩種模式:被動掃描和主動掃描。被動掃描是指,基站偵聽AP發出的指示信號,並切換到給定的頻帶;主動掃描是指,基站提出一個探視請求,接入點AP回送一個包含頻帶信息的響應,基站就切換到給定的頻帶。WaveLAN802.11採用的是主動掃描,並且能結合天線接收靈敏度,以信號最佳的信道確定為當前傳輸信道。這樣,當原來位於接入點AP(A)覆蓋范圍內的基站漫遊到接入點AP(B)時,基站能自適應,重新以AP(B)為當前接入點。
5.可靠的安全性能
WaveLAN本身的發射功率很小,小於35mV,而且還被擴展到 22MHz帶寬。一方面,平均能量很低(15dBm),另一方面,不存在頻率單一的載波,因此很難被掃描跟蹤,這也是次項技術一直用於軍事上的原因。這些是物理上的安全機制,在軟體上,還採用了域名控制、訪問許可權控制和協議過濾等多重安全機制;並且在有線同等保密(WEP)方面,對於特殊用戶,可選以下附件:基於RC4加密(1988RSA運演算法則)和密碼(40位加密鑰匙)。
新一代Wi-Fi標准
由Airgo、Bermai、Broadcom (博科通訊)、Conexant (科勝訊)、STMicroelectronics (意法半導體)及Texas Instruments (德州儀器)等業界大廠組成的WWiSE聯盟日前宣布將把一份完整的共同建議案提交給IEEE 802.11 Task Group N (TGn),其目標是發展新一代Wi-Fi標准,並使它擁有100 Mbps以上的持續數據產出能力,MIMO-OFDM將是這種新技術的基礎。IEEE 802.11n將成為無線網路市場上特別重要的標准,因為它會運用和擴大這些功能,使其支持目前正在享受Wi-Fi連接技術優點的眾多使用者。
WWiSE代表全球頻譜效率,它是提交給Task Group N所有建議案的重要元素,就這方面而言,WWiSE建議案的發展是以全球布署能力和向後兼容於所有其它Wi-Fi標准為主要的宗旨和強制要求,其它考量還包括數據速率必須符合重要區域市場的全球電信法規要求,例如日本。這個建議案還包含由WWiSE廠商提供的免權利金授權選項,主要目標是協助推動 802.11n技術在世界各地的布署應用。
WWiSE建議案是以目前獲得全球採用的20 MHz通道格式為基礎,世界各地已有超過數千萬部Wi-Fi裝置正在使用此格式,這種方法不但確保現有Wi-Fi產品獲得支持,還可以改善Wi-Fi網路在指定頻帶內的工作效能。除此之外,聯盟廠商也代表了組成Wi-Fi市場的半導體供應和消費領域重要交集,這將在發展廠商和最終產品製造商之間建立起堅強的合作關系。
就技術層面而言,WWiSE建議案標示著802.11實作功能的重大進步,主要特點包括:
•強制使用已經核准、現已存在且全球適用的20MHz Wi-Fi通道寬度,確保它在任何電信法規要求下都能立即使用和布署。
•更強的MIMO-OFDM技術,它是在2×2組態配置和一個20 MHz通道的最低要求下達到135 Mbps最大數據速率、進而降低實作成本的關鍵。這種技術還能大幅改善簡單的天線延伸或信道匯整技術。
•利用4×4 MIMO架構和40 MHz通道寬度(只要主管單位允許)實現的540 Mbps最高數據速率,它能替未來的裝置和應用提供持續發展的藍圖。
•強制模式提供與5 GHz和2.4 GHz頻帶內現有Wi-Fi裝置的向後兼容性與互用性,確保已安裝的設備仍能獲得強大支持。
•先進的FEC編碼功能幫助實現最大覆蓋率和聯機距離,它適用於所有的MIMO組態和通道帶寬。
新無線標准802.11n
802.11n來龍去脈
在當今各種無線區域網技術交織的戰國時代,WLAN、藍牙、HomeRF、UWB等競相綻放,但IEEE802.11系列的WLAN是應用最廣泛的。自從1997年IEEE802.11標准實施以來,先後有802.11b、802.11a、802.11g、802.11e、802.11f、 802.11h、802.11i、802.11j等標准制定或者醞釀,但是WLAN依然面對著「四不一沒有」的問題,即帶寬不足、漫遊不方便、網管不強大、系統不安全和沒有殺手級的應用等。就像當今VoIP應用中一個全新的領域VoWLAN那樣,雖被業內人士看作是WLAN最有希望的殺手級應用,卻因為這四個「不」,很難進一步發展。
為了實現高帶寬、高質量的WLAN服務,使無線區域網達到乙太網的性能水平,802.11n應運而生。
500Mbps的美妙前景
在傳輸速率方面,802.11n可以將WLAN的傳輸速率由目前802.11a及802.11g提供的54Mbps提高到108Mbps,甚至高達500Mbps。這得益於將MIMO(多入多出)與OFDM(正交頻分復用)技術相結合而應用的MIMO OFDM技術,這個技術不但提高了無線傳輸質量,也使傳輸速率得到極大提升。
應用前景:802.11n將使WLAN傳輸速率達到目前傳輸速率的10倍,而且可以支持高質量的語音、視頻傳輸,這意味著人們可以在寫字樓中用Wi-Fi手機來撥打IP電話和可視電話。
在覆蓋范圍方面,802.11n採用智能天線技術,通過多組獨立天線組成的天線陣列,可以動態調整波束,保證讓WLAN用戶接收到穩定的信號,並可以減少其它信號的干擾。因此其覆蓋范圍可以擴大到好幾平方公里,使WLAN移動性極大提高。
應用前景:這使得使用筆記本電腦和PDA可以在更大的范圍內移動,可以讓WLAN信號覆蓋到寫字樓、酒店和家庭的任何一個角落,讓我們真正體驗移動辦公和移動生活帶來的便捷和快樂。
在兼容性方面,802.11n採用了一種軟體無線電技術,它是一個完全可編程的硬體平台,使得不同系統的基站和終端都可以通過這一平台的不同軟體實現互通和兼容,這使得WLAN的兼容性得到極大改善。這意味著WLAN將不但能實現802.11n向前後兼容,而且可以實現WLAN與無線廣域網路的結合,比如3G。
兩個陣營在爭標准
讓人遺憾的是,802.11n現在處於一種「標准滯後、產品早產」的尷尬境地。802.11n標准還沒有得到IEEE的正式批准,但採用 MIMO OFDM技術的廠商已經很多,包括Airgo、Bermai、Broadcom以及傑爾系統、Atheros、思科、Intel等等,產品包括無線網卡、無線路由器等,而且已經大量在PC、筆記本電腦中應用。
主導802.11n標準的技術陣營有兩個,即WWiSE(World Wide Spectrum Efficiency)聯盟和TGn Sync聯盟。這兩個陣營都希望在下一代無線區域網標准之爭中處於優先地位,不過兩大陣營的技術構架已經越來越相似,例如都是採用MIMO OFDM技術,而且在8月2日有消息稱,他們已經決定不計前嫌,共同向美國電氣電子工程師學會(IEEE)遞交了802.11n的無線技術版本。
在這激烈的競爭中,我們卻看不到中國的身影,讓我們不得不感到有些遺憾。這也是我們沒有核心技術的後果。標准之爭最終還是利益之爭,中國企業很難在WLAN核心技術方面取得巨大效益,這是很值得人們深思的。
新無線標准802.11n
802.11n來龍去脈
在當今各種無線區域網技術交織的戰國時代,WLAN、藍牙、HomeRF、UWB等競相綻放,但IEEE802.11系列的WLAN是應用最廣泛的。自從1997年IEEE802.11標准實施以來,先後有802.11b、802.11a、802.11g、802.11e、802.11f、 802.11h、802.11i、802.11j等標准制定或者醞釀,但是WLAN依然面對著「四不一沒有」的問題,即帶寬不足、漫遊不方便、網管不強大、系統不安全和沒有殺手級的應用等。就像當今VoIP應用中一個全新的領域VoWLAN那樣,雖被業內人士看作是WLAN最有希望的殺手級應用,卻因為這四個「不」,很難進一步發展。
為了實現高帶寬、高質量的WLAN服務,使無線區域網達到乙太網的性能水平,802.11n應運而生。
500Mbps的美妙前景
在傳輸速率方面,802.11n可以將WLAN的傳輸速率由目前802.11a及802.11g提供的54Mbps提高到108Mbps,甚至高達500Mbps。這得益於將MIMO(多入多出)與OFDM(正交頻分復用)技術相結合而應用的MIMO OFDM技術,這個技術不但提高了無線傳輸質量,也使傳輸速率得到極大提升。
應用前景:802.11n將使WLAN傳輸速率達到目前傳輸速率的10倍,而且可以支持高質量的語音、視頻傳輸,這意味著人們可以在寫字樓中用Wi-Fi手機來撥打IP電話和可視電話。
在覆蓋范圍方面,802.11n採用智能天線技術,通過多組獨立天線組成的天線陣列,可以動態調整波束,保證讓WLAN用戶接收到穩定的信號,並可以減少其它信號的干擾。因此其覆蓋范圍可以擴大到好幾平方公里,使WLAN移動性極大提高。
應用前景:這使得使用筆記本電腦和PDA可以在更大的范圍內移動,可以讓WLAN信號覆蓋到寫字樓、酒店和家庭的任何一個角落,讓我們真正體驗移動辦公和移動生活帶來的便捷和快樂。
在兼容性方面,802.11n採用了一種軟體無線電技術,它是一個完全可編程的硬體平台,使得不同系統的基站和終端都可以通過這一平台的不同軟體實現互通和兼容,這使得WLAN的兼容性得到極大改善。這意味著WLAN將不但能實現802.11n向前後兼容,而且可以實現WLAN與無線廣域網路的結合,比如3G。
兩個陣營在爭標准
讓人遺憾的是,802.11n現在處於一種「標准滯後、產品早產」的尷尬境地。802.11n標准還沒有得到IEEE的正式批准,但採用 MIMO OFDM技術的廠商已經很多,包括Airgo、Bermai、Broadcom以及傑爾系統、Atheros、思科、Intel等等,產品包括無線網卡、無線路由器等,而且已經大量在PC、筆記本電腦中應用。
主導802.11n標準的技術陣營有兩個,即WWiSE(World Wide Spectrum Efficiency)聯盟和TGn Sync聯盟。這兩個陣營都希望在下一代無線區域網標准之爭中處於優先地位,不過兩大陣營的技術構架已經越來越相似,例如都是採用MIMO OFDM技術,而且在8月2日有消息稱,他們已經決定不計前嫌,共同向美國電氣電子工程師學會(IEEE)遞交了802.11n的無線技術版本。
在這激烈的競爭中,我們卻看不到中國的身影,讓我們不得不感到有些遺憾。這也是我們沒有核心技術的後果。標准之爭最終還是利益之爭,中國企業很難在WLAN核心技術方面取得巨大效益,這是很值得人們深思的。
更多內容請參考中國無線門戶
http://www.anywlan.com
㈣ 計算機網路有哪些常用的性能指標
計算機網路的性能指標
計算機網路的性能指標 (1)速率 計算機發送出的信號都是數字形式的。比特是計算機中數據量的單位,也是資訊理論中使用的信息量的單位。英文字bit來源於binarydigit,意思是一個「二進制數字」,因此一個比特就是二進制數字中的一個1或0。網路技術中的速率指的是連接在計算機網路上的主機在數字信道上傳送數據的速率,它也稱為數據率(datarate)或比特率(bitrate)。速率是計算機網路中最重要的一個性能指標。速率的單位是bit/s(比特每秒)(即bitpersecond)。現在人們常用更簡單的並且是很不嚴格的記法來描述網路的速率,如100M乙太網,它省略了單位中的bit/s,意思是速率為100Mbit/s的乙太網。 (2)帶寬 「帶寬」有以下兩種不同的意義。 ①帶寬本來是指某個信號具有的頻帶寬度。信號的帶寬是指該信號所包含的各種不同頻率成分所佔據的頻率范圍。例如,在傳統的通信線路上傳
送的電話信號的標准帶寬是3.1kHz(從300Hz到3.4kHz,即話音的主要成分的頻率范圍)。這種意義的帶寬的單位是赫(或千赫,兆赫,吉赫等)。 ②在計算機網路中,帶寬用來表示網路的通信線路所能傳送數據的能力,因此網路帶寬表示在單位時間內從網路中的某一點到另一點所能通過的「最高數據率」。這里一般說到的「帶寬」就是指這個意思。這種意義的帶寬的單位是「比特每秒」,記為bi
㈤ 衡量網路的技術指標有什麼
衡量網路的技術指標:
一台計算機功能的強弱或性能的好壞,不是由某項指標來決定的,而是由它的系統結構、指令系統、硬體組成、軟體配置等多方面的因素綜合決定的。但對於大多數普通用戶來說,可以從以下幾個指標來大體評價計算機的性能。
1、CPU的運算速度。運算速度是衡量計算機性能的一項重要指標。通常所說的計算機運算速度(平均運算速度),是指每秒鍾所能執行的指令條數,一般用「百萬條指令/秒」(mips,Million Instruction Per Second)來描述。同一台計算機,執行不同的運算所需時間可能不同,因而對運算速度的描述常採用不同的方法。常用的有CPU時鍾頻率(主頻)、每秒平均執行指令數(ips)等。微型計算機一般採用主頻來描述運算速度,通常顯示為X.X GHz。一般說來,主頻越高,運算速度就越快。
2、字長。一般說來,計算機在同一時間內處理的一組二進制數稱為一個計算機的「字」,而這組二進制數的位數就是「字長」。在其他指標相同時,字長越大計算機處理數據的速度就越快。現在的大多裝人都裝64位的了。
3、內存的容量。內存儲器,也簡稱主存,是CPU可以直接訪問的物理存儲器,需要執行的程序與需要處理的數據就是存放在主存中的。內存儲器容量的大小反映了計算機即時存儲信息的能力。隨著操作系統的升級,應用軟體的不斷豐富及其功能的不斷擴展,人們對計算機內存容量的需求也不斷提高。目前,常見的內存容量都在1GB以上了。內存容量越大,系統功能就越強大,能處理的數據量就越龐大。
4、外存儲器的容量。外存儲器容量通常是指硬碟容量(包括內置硬碟和移動硬碟)。外存儲器容量越大,可存儲的信息就越多,可安裝的應用軟體就越豐富。目前,硬碟容量一般為300 G至1TB,以後存儲容量還會更大.
以上只是一些主要性能指標。除了上述這些主要性能指標外,計算機還有其他一些指標,例如,所配置外圍設備的性能指標以及所配置系統軟體的情況等等。
另外,各項指標之間也不是彼此孤立的,在實際應用時,應該把它們綜合起來考慮,而且還要遵循「性能價格比」的原則。
㈥ 802.11a 802.11b 802.11g三種無線電區域網的標准
802.11a
IEEE 無線網路標准,指定最大 54Mbps 的數據傳輸速率和 5GHz 的工作頻段。
802.11a標準是已在辦公室、家庭、賓館、機場等眾多場合得到廣泛應用的802.11b無線聯網標準的後續標准。它工作在5GHzU-NII頻帶,物理層速率可達54Mb/s,傳輸層可達25Mbps。可提供25Mbps的無線ATM介面和10Mbps的乙太網無線幀結構介面,以及TDD/TDMA的空中介面;支持語音、數據、圖像業務;一個扇區可接入多個用戶,每個用戶可帶多個用戶終端。
802.11的第二個分支被指定為802.11a。承受著風險將802.11帶入了不同的頻帶——5.2GHzU-NII頻帶,並被指定高達54Mbps的數據速率。與單個載波系統802.11b不同,802.11a運用了提高頻率信道利用率的正交頻率劃分多路復用(OFDM)的多載波調制技術。由於802.11a運用5.2GHz射頻頻譜,因此它與802.11b或最初的802.11WLAN標准均不能進行互操作。
IEEE 802.11b
IEEE 802.11b無線區域網的帶寬最高可達11Mbps,比兩年前剛批準的IEEE 802.11標准快5倍,擴大了無線區域網的應用領域。另外,也可根據實際情況採用5.5Mbps、2 Mbps和1 Mbps帶寬,實際的工作速度在5Mb/s左右,與普通的10Base-T規格有線區域網幾乎是處於同一水平。作為公司內部的設施,可以基本滿足使用要求。IEEE 802.11b使用的是開放的2.4GB頻段,不需要申請就可使用。既可作為對有線網路的補充,也可獨立組網,從而使網路用戶擺脫網線的束縛,實現真正意義上的移動應用。
IEEE 802.11b無線區域網與我們熟悉的IEEE 802.3乙太網的原理很類似,都是採用載波偵聽的方式來控制網路中信息的傳送。不同之處是乙太網採用的是CSMA/CD(載波偵聽/沖突檢測)技術,網路上所有工作站都偵聽網路中有無信息發送,當發現網路空閑時即發出自己的信息,如同搶答一樣,只能有一台工作站搶到發言權,而其餘工作站需要繼續等待。如果一旦有兩台以上的工作站同時發出信息,則網路中會發生沖突,沖突後這些沖突信息都會丟失,各工作站則將繼續搶奪發言權。而802.11b無線區域網則引進了CSMA/CA(載波監聽多路訪問/沖突避免)技術和RTS/CTS(請求發送/清除發送)技術,從而避免了網路中沖突的發生,可以大幅度提高網路效率。這里的CSMA/CA技術與正常情況下的CSMA/CD技術原理有所不同,原理是:站點在發送報文後等待來至接入點AP(基本模式)或來至另外站點(對等模式)的確認幀(ACK)。如果在一定的時間內沒有受到確認幀,則假定發生了沖突並從發該數據。如果站點注意到信道上有活動,就不發送數據。RTS/CTS的工作方式與數據機類似,在發送數據之前,站點將一個請求發送幀發送到目的站點,如果信道上沒有活動,那麼目的站點將一個清除發送幀發送回源站點。這個過程成為「預熱」其他站點,從而防止不必要的沖突。RTS/CTS只用於特別大的報文和重發數據時可能出現嚴重帶寬問題的場合。
功能 & 優點
速度:2.4ghz直接序列擴頻無線電提供最大為11mbps的數據傳輸速率,無須直線傳播
動態速率轉換:當射頻情況變差時,降低數據傳輸速率為5.5mbps、2mbps和1mbps
使用范圍:802.11b支持以百米為單位的范圍(在室外為300米;在辦公環境中最長為100米)
可靠性:與乙太網類似的連接協議和數據包確認提供可靠的數據傳送和網路帶寬的有效使用
互用性:與以前的標准不同的是,802.11b只允許一種標準的信號發送技術。weca將認證產品的互用性
電源管理:802.11b網路介面卡可轉到休眠模式,訪問點將信息緩沖到客戶,延長了筆記本電腦的電池壽命 漫遊支持:當用戶在樓房或公司部門之間移動時,允許在訪問點之間進行無縫連接
載入平衡:802.11b nic更改與之連接的訪問點,以提高性能(例如,當前的訪問點流量較擁擠,或發出低質量的信號時)
可伸縮性:最多三個訪問點可以同時定位於有效使用范圍中,以支持上百個用戶同時語音和數據支持
安全性:內置式鑒定和加密
基本運作模式:
802.11b運作模式基本分為兩種:點對點模式(ad-hoc mode)和基本模式(infrastructure mode),如圖1所示。點對點模式是指站點(如:無線網卡)和站點之間的通信方式。只要PC插上無線網卡即可與另一具有無線網卡的PC連接,對於小型的無線網路來說,是一種方便的連接方式,最多可連接256台PC。而基本模式是指無線網路規模擴充或無線和有線網路並存時的通信方式,這是802.11b最常用的方式。此時,插上無線網卡的PC需要由接入點(AP)與另一台PC連接。接入點負責頻段管理及漫遊等指揮工作,一個接入點最多可連接1024台PC(無線網卡)。當無線網路節點擴增時,網路存取速度會隨著范圍擴大和節點的增加而變慢,此時添加接入點可以有效控制和管理頻寬與頻段。無線網路需要與有線網路互連,或無線網路節點需要連接和存取有線網的資源和伺服器時,接入點可以作為無線網和有線網之間的橋梁。
應用
功能 優點
不易接線的區域 在不易接線或接線費用較高的區域(如有歷史意義的建築物,有石棉的建築物,以及教室)中提供網路服務靈活的工作組 為經常進行網路配置更改的工作區降低了總擁有成本網路化的會議室 用戶可在從一個會議室移動到另一個會議室時進行網路連接,以獲得最新的信息,並且可
在決策時相互交流
特殊網路 現場顧問和小工作組的快速安裝和兼容軟體可提高工作效率
子公司網路 為遠程或銷售辦公室提供易於安裝、使用和維護的網路
部門范圍的網路移動 漫遊功能使企業可以建立易於使用的無線網路,可覆蓋所有部門
一般地說,802.11b允許使用任何現有在有線網路上運行的應用程序或網路服務。
多接入點解決方案
當網路規模較大,超過了單個接入點的覆蓋半徑時,可以採用多個接入點分別與有線網路相連,從而形成以有線網路為主幹的多接入點的無線網路,所有無線終端可以通過就近的接入點接入網路,訪問整個網路的資源,從而突破無線網覆蓋半徑的限制。
無線中繼解決方案
無線接入器還有另外一種用途,即充當有線網路的延伸。比如在工廠車間中,車間具有一個網路介面連接有線網,而車間中許多信息點由於距離很遠使得網路布線成本很高,還有一些信息點由於周邊環境比較惡劣,無法進行布線。由於這些信息點的分布范圍超出了單個接入點的覆蓋半徑,我們可以採用兩個接入點實現無線中繼,以擴大無線網路的覆蓋范圍。
無線冗餘解決方案
對於網路可靠性要求較高的應用環境,比如金融、證券等,接入點一旦失效,整個無線網路會癱瘓,將帶來很大損失。因此,可以將兩個接入點放置在同一位置,從而實現無線冗餘備份的方案。
多蜂窩漫遊工作方式
在一個大樓中或者在很大的平面裡面部署無線網路時,可以布置多個接入點構成一套微蜂窩系統,這與行動電話的微蜂窩系統十分相似。微蜂窩系統允許一個用戶在不同的接入點覆蓋區域內任意漫遊,隨著位置的變換,信號會由一個接入點自動切換到另外一個接入點。整個漫遊過程對用戶是透明的,雖然提供連接服務的接入點發生了切換,但對用戶的服務卻不會被中斷。
802.11g
IEEE802.11工作組近年來開始定義新的物理層標准IEEE802.11g。與以前的IEEE802.11協議標准相比,IEEE802.11g草案有以下兩個特點:在2.4GHz頻段使用正交頻分復用(OFDM)調制技術,使數據傳輸速率提高到20Mbit/s以上;能夠與IEEE802.11b的Wi-Fi系統互聯互通,可共存於同一AP的網路里,從而保障了後向兼容性。這樣原有的WLAN系統可以平滑地向高速WLAN過渡,延長了IEEE802.11b產品的使用壽命,降低了用戶的投資。2003年7月IEEE802.11工作組批准了IEEE802.11g草案,該標准成為人們關注的新焦點。
IEEE802.11WLAN實現的關鍵技術
隨著WLAN技術的應用日漸廣泛,用戶對數據傳輸速率的要求越來越高。但是在室內這個較為復雜的電磁環境中,多經效應、頻率選擇性衰落和其它干擾源的存在使得無線信道中高速數據傳輸的實現比有線信道困難,因此WLAN需要採用合適的調制技術。
IEEE802.11WLAN是一種能支持較高數據傳輸速率(1~54Mbit/s),採用微蜂窩、微微蜂窩結構,自主管理的計算機區域網絡。其關鍵技術大致有3種,直序列擴頻調制技術(DSSS:Direct Sequence Spread Spectrum)及補碼鍵控(CCK:Complementary Code Keying)技術、包二進制卷積(PBCC:Packet Binary Convolutional Code)和正交頻分復用技術OFDM:Orthogonal Frequency Division Mustiplexing。每種技術皆有其特點,目前擴頻調制技術正成為主流,而OFDM技術由於其優越的傳輸性能成為人們關注的新焦點。
1.DSSS調制技術
基於DSSS的調制技術有3種。最初IEEE802.11標准制定在1Mbit/s數據速率下採用差分二相相移鍵控(DBPSK:DifferentialBinary Phase Shift Keying)。如果要提供2 Mbit/s的數據速率,可採用差分正交相移鍵控(DQPSK: Differential Quadrature Phase Shift Keying),這種方法每次處理兩個比特碼元,成為雙比特。第三種是基於CCK的QPSK,是IEEE802.11b標准採用的基本數據調制方式。它採用了補碼序列與直序列擴頻技術,是一種單載波調制技術,通過相移鍵控(PSK)方式傳輸數據,傳輸速率分為1,2,5.5和11 Mbit/s。CCK通過與接收端的Pake接收機配合使用,能夠在高效率傳輸數據的同時有效克服多徑效應。IEEE802.11b通過使用CCK調制技術來提高數據傳輸速率,最高可達11 Mbit/s。但是當傳輸速率超過11 Mbit/s,CCK為了對抗多徑干擾,需要更復雜的均衡及調制,實現起來非常困難。因此,IEEE802.11工作組為了推動WLAN的發展,又引入了新的調制技術。
2.PBCC調制技術
PBCC調制技術是由德州儀器(TI)公司提出的,已作為IEEE802.11g的可選項被採納。PBCC也是單載波調制,但與CCK不同,它採用了更多復雜的信號星座圖。PBCC採用8PSK,而CCK使用BPSK/QPSK;另外PBCC使用了卷積碼,而CCK使用區塊碼。因此,它們的解調過程是十分不同的。PBCC可以完成更高速率的數據傳輸,其傳輸速率為11,22,33Mbit/s。
3.OFDM技術
OFDM技術其實是多載波調制(MCM:Multi-CarrierMolation)的一種。其主要思想是:將信道分成許多正交子信道,在每個子信道上進行窄帶調制和傳輸,這樣減少了子信道之間的相互干擾。每個子信道上的信號帶寬小於信道的相關帶寬,因此每個子信道上的頻率選擇性衰落是平坦的,大大消除了符號間干擾。
由於在OFDM系統中各個子信道的載波相互正交,於是它們的頻譜是相互重疊的,這樣不但減少了子載波間的相互干擾,同時還提高了頻譜利用率。在各個子信道中的這種正交調制和解調可以採用反向快速傅里葉變換(IFFT)和快速傅里葉變換(FFT)方法來實現,隨著大規模集成電路技術與DSP技術的發展,IFFT和FFT都是非常容易實現的。FFT的引入,大大降低了OFDM實現的復雜性,提升了系統的性能。
無線數據業務一般都存在非對稱性,即下行鏈路中傳輸的數據量要遠遠大於上行鏈路中的數據傳輸量。因此無論從用戶高速數據傳輸業務的需求,還是從無線通信自身來考慮,都希望物理層支持非對稱高速數據傳輸,而OFDM很容易通過使用不同數量的子信道來實現上行和下行鏈路中不同的傳輸速率。
由於無線信道存在頻率選擇性,所有的子信道不會同時處於比較深的衰落情況中,因此可以通過動態比特分配以及動態子信道分配的方法,充分利用信噪比高的子信道,從而提升系統性能。由於窄帶干擾只能影響一小部分子載波,因此OFDM系統在某種程度上能抵抗這種干擾。
OFDM技術有非常廣闊的發展前景,已成為第四代移動通信的核心技術。IEEE802.11a/g標准為了支持高速數據傳輸都採用了OFDM調制技術。目前,OFDM結合時空編碼、分集、干擾〔包括碼間干擾(ISI)和信道間干擾(ICI)〕抑制以及智能天線技術,最大程度提高了物理層的可靠性。如再結合自適應調制、自適應編碼以及動態子載波分配、動態比特分配演算法等技術,可以使其性能得到進一步優化。
4.IEEE802.11g協議幀結構及其技術細節
從網路邏輯結構上來看,IEEE802.11隻定義了物理層及MAC子層。MAC層提供對共享無線介質的競爭使用和無競爭使用,具有無線介質訪問、網路連接、數據驗證和保密等功能。
物理層為數據鏈路層提供物理連接,實現比特流的透明傳輸,所傳數據單位為比特。物理層定義了通信設備與介面硬體的機械、電氣功能和過程的特性,用以建立、維持和釋放物理連接。物理層由三部分組成:物理層管理層、物理層會聚協議(PLCP)和物理介質依賴子層(PMD)。
IEEE802.11g的物理幀結構分為前導信號(Preamble)、信頭Header和負載Payload。Preamble主要用於確定移動台和接入點之間何時發送和接收數據,傳輸進行時告知其它移動台以免沖突,同時傳送同步信號及幀間隔。Preamble完成,接收方才開始接收數據。Header在Preamble之後 用來傳輸一些重要的數據比如負載長度、傳輸速率、服務等信息。由於數據率及要傳送位元組的數量不同,Payload的包長變化很大,可以十分短也可以十分長。
在一幀信號的傳輸過程中,Preamble和Header所佔的傳輸時間越多,Payload用的傳輸時間就越少,傳輸的效率越低。
綜合上述3種調制技術的特點,IEEE802.11g採用了OFDM等關鍵技術來保障其優越的性能,分別對Preamble,Header,Payload進行調制,這種幀結構稱為OFDM/OFDM方式。
另外,IEEE802.11g草案標准規定了可選項與必選項,為了保障與IEEE802.11b兼容也可採用CCK/OFDM和CCK/PBCC的可選調制方式。因此,OFDM調制為必選項保障傳輸速率達到54Mbit/s;採用CCK調製作為必選保障後向兼容性;CCK/PBCC與CCK/OFDM作為可選項。IEEE802.11g的幀結構比較見表1。
(1)OFDM/OFDM
Preamble,Header和Payload都使用OFDM進行調制傳輸,其傳輸速率可達54Mbit/s。OFDM的一個好特點是它有短的Preamble,CCK調制信號的幀頭是72μs,而OFDM調制信號的幀頭僅為16μs。幀頭是一個信號的重要組成部分,幀頭佔有時間的減少,提高了信號傳送數據的能力。OFDM允許較短的Header給更多的時間用於傳輸數據,具有較高的傳輸效率。因此,對於11Mbit/s的傳輸速率,CCK調制是一個好的選擇,但要繼續提升速率必須使用OFDM調制技術。它的最高傳輸速率可達54Mbit/s。IEEE802.11g協議中的OFDM OFDM方式也可以和Wi-Fi共存,不過它需使用RTS/CTS協議來解決沖突問題。
(2)CCK/OFDM
它是一種混合調制方式,是IEEE802.11g的可選項。其Header和Preamble用CCK調制方式傳輸,OFDM技術傳送負載。由於OFDM技術和CCK技術是分離的,因此在Preamble和Payload之間要有CCK和OFDM的轉換。
IEEE802.11g用CCK/OFDM技術來保障與IEEE802.11b共存。IEEE802.11b不能解調OFDM格式的數據,所以難免會發生數據傳輸沖突,IEEE802.11g使用CCK技術傳輸Header和Preamble就可以使IEEE802.11b兼容,使其可以接收IEEE802.11g的Header從而避免沖突。這樣保障了與IEEE802.11bWi-Fi設備的後向兼容性,但由於Preamble/Header使用CCK調制,增大了開銷,傳輸速率比OFDM OFDM方式的有所下降。
(3)CCK/PBCC
CCK/PBCC和CCK/OFDM一樣,PBCC也是混合波形,包頭使用CCK調制而負載使用PBCC調制方式,這樣它可以工作於高速率上並與IEEE802.11b兼容。PBCC調制技術最高數據傳輸速率是33Mbit/s,比OFDM或CCK/OFDM的傳送速率低。
IEEE802.11g的性能分析
尚未正式成為標準的IEEE802.11g草案由於其不同的特點,成為人們關注的焦點。IEEE802.11g與IEEE802.11b的兼容性,與同頻設備的共存能力及OFDM技術自身的問題將成為研究熱點。
1.IEEE802.11g的兼容性
IEEE802.11g兼容性指的是IEEE802.11g設備能和IEEE802.11b設備在同一個AP節點網路里互聯互通。IEEE802.11g的一個最大特點就是要保障與IEEE802.11bWi-Fi系統兼容。IEEE802.11g可以接收OFDM和CCK數據,但傳統的Wi-Fi系統只能接收CCK信息,這就產生了一個問題,即在兩者共存的環境中如何解決由於IEEE802.11b不能解調OFDM格式信息幀頭所帶來的沖突問題。而為了解決上述問題,IEEE802.11g採用了RTS/CTS技術。
最初,IEEE802.11引入RTS/CTS機制是為了解決隱蔽站問題,即發送站檢測不到另一個站在發送數據,因而在接收站發生碰撞的情況。
IEEE802.11b與IEEE802.11g混合工作的情況與隱蔽站問題非常相似,IEEE802.11b設備無法接收OFDM格式的IEEE802.11g的信息幀頭,因此可以採用RTS/CTS機制來解決。
IEEE 802.11n
IEEE 802.11n :使用2.4GHz頻段和5GHz頻段,傳輸速度300Mbps,最高可達600Mbps,可向下兼容802.11b、802.11g,目前還不是一個正式的標准,
1月19日訊,Broadcom公司推出新型無線LAN(WLAN)晶元組Intensi-fi系列,這是和IEEE 802.11n標准(草案)兼容的首個解決方案. Intensi-fi技術提供了在家庭或辦公室優異的性能和功能強大的無線連接,使得下一代Wi-Fi設備能提供完美的多媒體體驗,支持新興的語音,視頻和數據應用.
Intensi-fi技術集成了IEEE 802.11n標准(草案)所有強制性的元件,一當標准完成即可進行軟體升級.忠於標準是Broadcom的工作重點,因為它不需要考慮兼容性和使用戶煩惱的非標准產品的性能問題.Broadcom和業界其它一流廠商緊密配合,當草案802.11n產品變成現實時,在分支中演示真實的互連性.Broadcom還向Wi-Fi聯盟提供技術資源,來加速802.11n互連測試程序.
Intensi-fi技術支持在多個發送和接收天線上多個同時發生的數據(或"空間")流,提供的數據速率高達300Mbps,比以前的802.11產品(它採用一個發送器和一個接收器,支持單一數據流),其覆蓋范圍更廣.它提供了足夠的帶寬,范圍和可靠性,對家庭中每個房間提供高清晰視頻(HD).為了提供完美的多媒體體驗, Intensi-fi技術把傳統的PC和網路設備擴充到消費電子和娛樂設備,在線纜/DSL/衛星機頂盒,個人視頻記錄儀,DVD播放器,游戲系統,音頻設備照相機,手機和其它手提設備提供了發送電影,照片,音樂,語音呼叫和數據所需的基礎設備.
Intensi-fi解決方案包括MAC/基帶晶元以及能配置各種高速無線應用的無線電晶元.Broadcom還提供兩個網路處理器,使用戶能優化無線路由器設計的性價比.完整的系列產品包括下面所有的CMOS器件:
BCM4321:業界首個和802.11n標准(草案)兼容的MAC和基帶,提供超過300Mbps的PHY速率,並和PCI,Cardbus和主機PCI-Express介面,
BCM2055:Broadcom第五代802.11無線電,集成了多個2.4GHz和5GHz無線電,支持用於802.11n產品的同時發生的空間數據流,並具有2x2,3x3或4x4天線配置.BCM2055是最佳性能的802.11無線電,具有更小的晶元尺寸,更低的功耗,更低的相位噪音和誤差向量幅度(EVM).所有這些對於高吞吐量的802.11n(草案)系統都是至關重要的.
BCM4704:Broadcom已驗證過的第五代無線網路處理器,提供先進的路由/橋接功能,並能滿足802.11n(草案)晶元組的目標性能,用於路由器和網關的設計.
BCM4705:Broadcom第六代無線網路處理器,支持同時工作的2.4GHz和5GHz無線電,集成的吉比特乙太網MAC使得802.11n(草案)和乙太網網路間的吞吐量大於200Mbps.
現在可提供Intensi-fi晶元組的樣品,以及參考設計.
美國Atheros公司於2月16日在日本召開了記者招待會,推出了其符合IEEE 802.11n規格的無線網路晶元組「AR5008」,這款晶元組已經於1月24日在美國上市。
Atheros公司將其面向IEEE 802.11n的產品群總稱為「XSPAN」,這款AR5008保持了其公司原來對應IEEE 802.11a/b/g產品的連續性,無線傳輸的最高速度達到300Mbps。不過這只是理論上的最高速度,在實際的通訊過程中,載入了如TCP之類的協議後,實際速度應為此速度的60%左右。不過即使如此,802.11n的效率也比目前最快的802.11g要高上許多。實際速度802.11n預計能夠比802.11g提高8~9倍。
據Atheros Communications稱,AR5008系列晶元組為架構於國際電機電子工程師學會(IEEE)1月20日確認的802.11n草案規格之首款產品。這些新一代的WLAN解決方案,將充份利用MIMO技術潛力,發揮突破性性能與業界互通性。AR5008解決方案將以更大的覆蓋范圍及更佳的可靠性,達到802.11g與802.11a/g產品的6倍數據傳輸量。由於802.11n規格草案已制定,消費者終於能在家庭、辦公室以及行動時的各種裝置與應用上,享受MIMO的互通技術。
Atheros創新的XSPAN引進訊號持續技術(Signal-Sustain Technology,SST)大幅加強訊號可靠性與覆蓋范圍內的數據傳輸量,全面釋放MIMO的潛力。這一切皆因全球首顆單晶元三射頻設計而獲得實現。AR5008的實體數據速率為300 Mbps (每秒兆位)而實際終端使用者數據傳輸量可達150至180 Mbps,較2x2 MIMO系統平均多出50%的覆蓋范圍持續數據傳輸量。
訊號持續技術同時通過不同空間訊號路徑進行傳送,並且在接收器進行訊號處理時,同時合並來自三個接收器的資訊,因此大幅增加聯機強度與數據傳輸量。若只是在額外的天線間切換較少的同時發射器,是無法達到這樣的強度。Atheros將三組完整的射頻發射鏈與接收鏈整合至單一晶元的作法,加上內建SST基頻處理,以接近於強度較差而不具競爭力的2x2 MIMO方案之價格,實現無法匹敵的覆蓋范圍與強度。