導航:首頁 > 無線網路 > 智能無線感測器網路系統第二版於海斌梁煒曾鵬

智能無線感測器網路系統第二版於海斌梁煒曾鵬

發布時間:2023-08-23 17:04:05

⑴ 無線感測器網路通信協議的目錄

第1章 無線感測器網路概述
1.1 引言
1.2 無線感測器網路介紹
1.2.1 無線感測器網路體系結構
1.2.2 無線感測器網路的特點和關鍵技術
1.2.3 無線感測器網路的應用
1.3 無線感測器網路路由演算法
1.3.1 無線感測器網路路由演算法研究的主要思路
1.3.2 無線感測器網路路由演算法的分類
1.3.3 無線感測器網路QoS路由演算法研究的基本思想
1.3.4 無線感測器網路QoS路由演算法研究的分類
1.3.5 平面路由的主流演算法
1.3.6 分簇路由的主流演算法
1.4 ZigBee技術
1.4.1 ZigBee技術的特點
1.4.2 ZigBee協議框架
1.4.3 ZigBee的網路拓撲結構
1.5 無線感測器安全研究
1.5.1 無線感測器網路的安全需求
1.5.2 無線感測器網路安全的研究進展
1.5.3 無線感測器網路安全的研究方向
1.6 水下感測器網路
1.7 無線感測器網路定位
1.7.1 存在的問題
1.7.2 性能評價
1.7.3 基於測距的定位方法
1.7.4 非測距定位演算法
1.7.5 移動節點定位
第2章 無線感測器網路的分布式能量有效非均勻成簇演算法
2.1 引言
2.2 相關研究工作
2.2.1 單跳成簇演算法
2.2.2 多跳成簇演算法
2.3 DEEUC成簇路由演算法
2.3.1 網路模型
2.3.2 DEEUC成簇演算法
2.3.3 候選簇頭的產生
2.3.4 估計平均能量
2.3.5 最終簇頭的產生
2.3.6 平衡簇頭區節點能量
2.3.7 演算法分析
2.4 模擬和分析
2.5 結論及下一步工作
參考文獻
第3章 無線感測器網路分簇多跳能量均衡路由演算法
3.1 無線傳輸能量模型
3.2 無線感測器網路路由策略研究
3.2.1 平面路由
3.2.2 單跳分簇路由演算法研究
3.2.3 多跳層次路由演算法研究
3.3 LEACH-L演算法
3.3.1 LEACH-L的改進思路
3.3.2 LEACH-L演算法模型
3.3.3 LEACH-L描述
3.4 LEACH-L的分析
3.5 實驗模擬
3.5.1 評價參數
3.5.2 模擬環境
3.5.3 模擬結果
3.6 總結及未來的工作
3.6.1 總結
3.6.2 未來的工作
參考文獻
第4章 基於生成樹的無線感測器網路分簇通信協議
4.1 引言
4.2 無線傳輸能量模型
4.3 基於時間延遲機制的分簇演算法(CHTD)
4.3.1 CHTD的改進思路
4.3.2 CHTD簇頭的產生
4.3.3 CHTD簇頭數目的確定
4.3.4 CHTD最優簇半徑
4.3.5 CHTD描述
4.3.6 CHTD的特性
4.4 CHTD簇數據傳輸研究
4.4.1 引言
4.4.2 改進的CHTD演算法(CHTD-M)
4.4.3 CHTD-M的分析
4.5 模擬分析
4.5.1 生命周期
4.5.2 接收數據包量
4.5.3 能量消耗
4.5.4 負載均衡
4.6 總結及未來的工作
4.6.1 總結
4.6.2 未來的工作
參考文獻
第5章 基於自適應蟻群系統的感測器網路QoS路由演算法
5.1 引言
5.2 蟻群演算法
5.3 APAS演算法的信息素自適應機制
5.4 APAS演算法的揮發系數自適應機制
5.5 APAS演算法的QoS改進參數
5.6 APAS演算法的信息素分發機制
5.7 APAS演算法的定向廣播機制
5.8 模擬實驗及結果分析
5.8.1 模擬環境
5.8.2 模擬結果及分析
5.9 總結及未來的工作
5.9.1 總結
5.9.2 未來的工作
參考文獻
第6章 無線感測器網路簇頭選擇演算法
6.1 引言
6.2 LEACH NEW演算法
6.2.1 網路模型
6.2.2 LEACH NEW簇頭選擇機制
6.2.3 簇的生成
6.2.4 簇頭間多跳路徑的建立
6.3 模擬實現
6.4 結論及未來的工作
參考文獻
第7章 水下無線感測網路中基於向量的低延遲轉發協議
7.1 引言
7.2 相關工作
7.3 網路模型
7.3.1 問題的數學描述
7.3.2 網路模型
7.4 基於向量的低延遲轉發協議
7.4.1 基於向量轉發協議的分析
7.4.2 基於向量的低延遲轉發演算法
7.5 模擬實驗
7.5.1 模擬環境
7.5.2 模擬分析
7.6 總結
參考文獻
第8章 無線感測器網路數據融合演算法研究
8.1 引言
8.2 節能路由演算法
8.2.1 平面式路由演算法
8.2.2 層狀式路由演算法
8.3 數據融合模型
8.3.1 數據融合系統
8.3.2 LEACH簇頭選擇演算法
8.3.3 簇內融合路徑
8.3.4 環境設定和能耗公式
8.4 數據融合模擬
8.4.1 模擬分析
8.4.2 模擬結果分析
8.5 結論
參考文獻
第9章 無線感測器網路相關技術
9.1 超寬頻技術
9.1.1 系統結構的實現比較簡單
9.1.2 空間傳輸容量大
9.1.3 多徑分辨能力強
9.1.4 安全性高
9.1.5 定位精確
9.2 物聯網技術
9.2.1 物聯網原理
9.2.2 物聯網的背景與前景
9.3 雲計算技術
9.3.1 SaaS軟體即服務
9.3.2 公用/效用計算
9.3.3 雲計算領域的Web服務
9.4 認知無線電技術
9.4.1 傳統的Ad-hoc方式中無線感測器網路的不足
9.4.2 在ZigBee無線感測器網路中的應用
參考文獻
第10章 無線感測器網路應用
10.1 軍事應用
10.2 農業應用
10.3 環保監測
10.4 建築應用
10.5 醫療監護
10.6 工業應用
10.6.1 工業安全
10.6.2 先進製造
10.6.3 交通控制管理
10.6.4 倉儲物流管理
10.7 空間、海洋探索
10.8 智能家居應用

⑵ 物聯網的現狀

1、國內研究現狀:目前中科院信息口相關研究所幾乎都在開展無線感測網的研究工作。中科院上海微系統與信息技術研究所、中科院聲學所、中科院微電子所、中科院半導體所、中科院自動化所、中科院沈陽自動化所、中科院電子鎖、中科院上海硅酸鹽研究所、中科院軟體所、中科院計算所等中科院單位均在從事物聯網的研究。國內許多高校也掀起了無線感測網的研究熱潮,清華大學、東南大學、中國科技大學、浙江大學、華中科技大學、天津大學、南開大學等高校紛紛開展了有關無線感測器網路方面的研究工作。國內物聯網先頭單位——中科院工作基礎,中國科學院在感測器與微系統、感測網與寬頻接入等領域已有長期的工作基礎,並在知識創新工程中進行了更大的前瞻性戰略布局:1999年,將「無線感測網及其應用」列入知識創新工程重點方向。2001年,成立「中國科學院上海微系統與信息技術研究所」。2001年,成立「中國科學院微系統中心」(非法人事業機構),作為頂層協調機構負責組織全院相應研究所開展微系統和感測網相關的創新工作。全院開展相關工作的研究所有:上海微系統所、聲學所、電子所、微電子所、半導體所、計算所、長光所、沈陽自動化所、自動化所、物理所、上海技物所、中國科技大學等十幾個單位。 中國科學院、江蘇省、無錫市共建「中國物聯網研究發展中心」總體目標:形成從研發、系統集成到典型應用示範的創新價值鏈,成為國家級「感知中國」創新基地。成為中國物聯網產業培育中心、集成創新中心和行業應用示範中心,成為中國物聯網產業大發展的核心技術引擎。針對「感知中國」戰略產業發展過程中的應用瓶頸和技術難點,開展重大技術研究;匯集各方力量和現有成果進行集成創新,推進成果轉化和產品孵化;開展應用示範,推動產業發展。 2、美國物聯網發展現狀:美國很多大學在無線感測器網路方面已開展了大量工作,如加州大學洛杉磯分校的嵌入式網路感知中心實驗室、無線集成網路感測器實驗室、網路嵌入系統實驗室等。另�,麻省理工學院從事著極低功耗的無線感測器網路方面的研究;奧本大學也從事了大量關於自組織感測器網路方面的研究,並完成了一些實驗系統的研製;賓漢頓大學計算機系統研究實驗室在移動自組織網路協議、感測器網路系統的應用層設計等方面做了很多研究工作;州立克利夫蘭大學(俄亥俄州)的移動計算實驗室在基於IP的移動網路和自組織網路方面結合無線感測器網路技術進行了研究。 除了高校和科研院所之外,國外的各大知名企業也都先後參與開展了無線感測器網路的研究。克爾斯博公司是國際上率先進行無線感測器網路研究的先驅之一,為全球超過2000所高校以及上千家大型公司提供無線感測器解決方案;Crossbow公司與軟體巨頭微軟、感測器設備巨頭霍尼韋爾、硬體設備製造商英特爾、網路設備製造巨頭、著名高校加州大學伯克利分校等都建立了合作關系。IBM提出的「智慧地球」概念已上升至美國的國家戰略。2009年,IBM與美國智庫機構向奧巴馬政府提出通過信息通信技術(ICT)投資可在短期內創造就業機會,美國政府只要新增300億美元的ICT投資(包括智能電網、智能醫療、寬頻網路三個領域),鼓勵物聯網技術發展政策主要體現在推動能源、寬頻與醫療三大領域開展物聯網技術?應用。2009年美國振興經濟法案中與ICT相關計劃整理見下表所示。②美國ICT相關發展計劃1、 歐盟物聯網發展現狀:2009年,歐盟委員會向歐盟議會、理事會、歐洲經濟和社會委員會及地區委員會遞交了《歐盟物聯網行動計劃》,以確保歐洲在建構物聯網的過程中起主導作用。行動計劃共包括14項內容:管理、隱私及數據保護、「晶元沉默」的權利、潛在危險、關鍵資源、標准化、研究、公私合作、創新、管理機制、國際對話、環境問題、統計數據和進展監督等。該行動方案,描繪了物聯網技術應用的前景,並提出要加強歐盟政府對物聯網的管理,其行動方案提出的政策建議主要包括:(1)加強物聯網管理。(2)完善隱私和個人數據保護。(3)提高物聯網的可信度、接受度、安全性。2009年10月,歐盟委員會以政策文件的形式對外發布了物聯網戰略,提出要讓歐洲在基於互聯網的智能基礎設施發展上領先全球,除了通過ICT研發計劃投資4億歐元,啟動90多個研發項目提高網路智能化水平外,歐盟委員會還將於2011年~2013年間每年新增2億歐元進一步加強研發力度,同時拿出3億歐元專款,支持物聯網相關公私合作短期項目建設。2、 日本物聯網發展現狀:自上世紀90年代中期以來,日本政府相繼制定了e-Japan、u-Japan、i-Japan等多項國家信息技術發展戰略,從大規模開展信息基礎設施建設入手,穩步推進,不斷拓展和深化信息技術的應用,以此帶動本國社會、經濟發展。其中,日本的u-Japan、i-Japan戰略與當前提出的物聯網概念有許多共同之處。2004年,日本信息通信產業的主管機關總務省提出2006至2010年間IT發展任務——u-Japan戰略。該戰略的理念是以人為本,實現所有人與人、物與物、人與物之間的連接(即4U,Ubiquitous、Universal、User-oriented、Unique),希望在2010年將日本建設成一個「實現隨時、隨地、任何物體、任何人均可連接的泛在網路社會」。2008年,日本總務省提出將u-Japan政策的重心從之前的單純關注居民生活品質提升拓展到帶動產業及地區發展,即通過各行業、地區與ICT的?化融合,進而實現經濟增長的目的。具體說就是通過ICT的有效應用,實現產業變革,推動新應用的發展;通過ICT以電子方式聯系人與地區社會,促進地方經濟發展;有效應用ICT達到生活方式變革,實現無所不在的網路社會環境。2009年7月,日本IT戰略本部頒布了日本新一代的信息化戰略——「i-Japan」戰略,為了讓數字信息技術融入每一個角落。首先,將政策目標聚焦在三大公共事業:電子化政府治理、醫療健康信息服務、教育與人才培育。提出到2015年,透過數位技術達到「新的行政改革」,使行政流程簡化、效率化、標准化、透明化,同時推動電?病歷、遠程醫療、遠程教育等應用的發展。日本政府對企業的重視也毫不遜色。另外,日本企業為了能夠在技術上取得突破,對研發同樣傾注極大的心血。在日本愛知世博會的日本展廳,呈現的是一個凝聚了機器人、納米技術、下一代家庭網路和高速列車等眾多高科技和新產品的未來景象,支撐這些的是大筆的研發投入。3、 韓國物聯網發展現狀:韓國也經歷了類似日本的發展過程。韓國是目前全球寬頻普及率最高的國家,同時它的移動通信、信息家電、數字內容等也居世界前列。面對全球信息產業新一輪「u」化戰略的政策動向,韓國制定了u-Korea?略。在具體實施過程中,韓國信通部推出IT839戰略以具體呼應u-Korea。韓國信通部發布的《數字時代的人本主義:IT839戰略》報告指出,無所不在網路社會將是由智能網路、最先進的計算技術,以及其它領先的數字技術基礎設施武裝而成的技術社會形態。在無所不在的網路社會中,所有人可以在任何地點、任何時刻享受現代信息技術帶來的便利。u-Korea意味著信息技術與信息服務的發展不僅要滿足於產業和經濟的增長,而且在國民生活中將為生活文化帶來革命性的進步。由此可見,日、韓兩國各自製定並實施的「u」計劃都是建立在兩國已夯實的信息產?硬體基礎上的,是完成「e」計劃後啟動的新一輪國家信息化戰略。從「e」到「u」是信息化戰略的轉移,能夠幫助人類實現許多「e」時代無法企及的夢想。繼日本提出u-Japan戰略後,韓國在2006年確立了u-Korea戰略。u-Korea旨在建立無所不在的社會,也就是在民眾的生活環境里,布建智能型網路、最新的技術應用等先進的信息基礎建設,讓民眾可以隨時隨地享有科技智慧服務。其最終目的,除運用IT科技為民眾創造食衣住行育樂各方面無所不在的便利生活服務,亦希望扶植IT產業發展新興應用技術,強化產業優勢與國家競爭力。為實現上述目標,u-Korea包括了四項關鍵基礎環境建設以及五大應用領域的研究開發。四項關鍵基礎環境建設是平衡全球領導地位、生態工業建設、現代化社會建設、透明化技術建設,五大應用領域是親民政府、智慧科技園區、再生經濟、安全社會環境、u生活定製化服務。u-Korea主要分為發展期與成熟期兩個執行階段。發展期(2006至2010年)的重點任務是基礎環境的建設、技術的應用以及u社會制度的建立;成熟期(2011至2015年)的重點任務為推廣u化服務。自1997年起,韓國政府出台了一系列推動國家信息化建設的產業政策。目前,韓國的RFID發展已經從先?應用開始全面推廣;而USN也進入實驗性應用階段。2009年,韓通信委員會通過了《物聯網基礎設施構建基本規劃》,將物聯網市場確定為新增長動力。該規劃樹立了到2012年「通過構建世界最先進的物聯網基礎實施,打造未來廣播通信融合領域超一流ICT強國」的目標,為實現這一目標,確定了構建物聯網基礎設施、發展物聯網服務、研發物聯網技術、營造物聯網擴散環境等4大領域、12項詳細課題。在世界物聯網領域,中國與德國、美國、韓國一起成為國際標准制定的主導國之一。2009年9月,經國家標准化管理委員會批准,全國信息技術標准化技術委員會組建了感測器網路標准工作?。標准工作組聚集了科學院、*等中國感測網主要的技術研究和應用單位,將積極開展感測網標准制訂工作,深度參與國際標准化活動,旨在通過標准化為產業發展奠定堅實技術基礎。目前,我國感測網標准體系已形成初步框架,向國際標准化組織提交的多項標准提案被採納,物聯網標准化工作已經取得積極進展。

⑶ 碩士論文開題報告

隨著個人素質的提升,需要使用報告的情況越來越多,報告具有成文事後性的特點。寫起報告來就毫無頭緒?下面是我整理的碩士論文開題報告,僅供參考,歡迎大家閱讀。

課題名稱:基於信任管理的WSN安全數據融合演算法的研究

一、立論依據

課題來源、選題依據和背景情況、課題研究目的、理論意義和實際應用價值。

1、課題來源。

國家自然科學基金資助項目(60873199)。

2、選題依據。

無線感測器網路具有硬體資源(存儲能力、計算能力等)有限,電源容量有限,拓撲結構動態變化,節點眾多難於全面管理等特點,這些特點給理論研究人員和工程技術人員提出了大量具有挑戰性的研究課題,安全數據融合即為其一。雖然目前的研究已經取得了一些成果,但仍然不能滿足應用的需求。無線感測器網路是以數據為中心的網路,如何保證其數據融合的安全性還是一個有待解決的問題。基於此,提出了本課題的研究。

3、背景情況。

微電子技術、計算技術和無線通信等技術的進步,推動了低功耗多功能感測器的快速發展,使其在微小體積內能夠集成信息採集、數據處理和無線通信等多種功能。無線感測器網路就是由部署在監測區域內大量的廉價微型感測器節點組成,通過無線通信方式形成的一個多跳的自組織的網路系統,其目的是協作地感知、採集和處理網路覆蓋區域中感知對象的信息,並發送給數據處理中心或基站。感測器網路被廣泛的應用於軍事、環境監測和預報、健康護理、智能家居、建築物狀態監控、復雜機械監控、城市交通,以及機場、大型工業園區的安全監測等領域。

感測器網路由大量感測器節點組成,收集的信息量大,存在冗餘數據。感測器節點的計算能力、存儲能力、通信能量以及攜帶的能量都十分有限,數據融合就是針對冗餘數據進行網內處理,減少數據傳輸量,是減少能耗地重要技術之一。感測器網路中,將路由技術與數據融合技術結合是一個重要的問題。數據融合可以減少數據量,減輕數據匯聚過程中的網路擁塞,協助路由協議延長網路的生存時間。因而可以數據為中心的路由技術中應用數據融合技術。在戰場等非可信環境或對可靠性要求非常高的環境中,數據融合也帶來了風險。例如,敵人可以俘獲節點獲取節點中的所有信息,從而完全控制節點的行為,偽造和篡改數據。傳統網路中的安全技術需要大量的存儲空間和計算量,不適合能量、計算能力、存儲空間都十分有限的感測器網路。因此必須設計適合感測器網路具有較強安全性的數據融合技術。

4、課題研究目的。

通過對無線感測器網路安全數據融合技術的研究,消除感測器中存在的、大量冗餘數據,有效節省感測器節點能量消耗,延遲節點和網路的工作壽命,在有節點被捕獲成為惡意節點情況下,及時檢測惡意節點,消除惡意節點發送的惡意數據對數據融合的不良影響,保障了感測器網路數據融合過程的可靠性,維護感測器網路的正常工作。

5、理論意義。

無線感測器網路安全技術的研究涵蓋了非常多的研究領域,安全數據融合技術是其中一個重要研究課題。本文把信任管理機制加入到感測器網路安全數據融合過程中,研究設計一種感測器節點信任值的計算方法,有效識別節點狀態,實現可靠的數據融合。

6、實際應用價值。

對於工作在敵方環境中的無線感測器網路,感測器節點容易被地方捕獲成為惡意節點,節點內存儲的密鑰等加密暴露,導致傳統的基於加密和認證的無線感測器網路安全措施失效,在這種情況下,本研究可以可以及時識別惡意節點,保證感測器網路數據融合的可靠性,有效減少網路負載,延長網路工作壽命。

二、文獻綜述

國內外研究現狀、發展動態;所閱文獻的查閱范圍及手段。

1、國內外研究現狀、發展動態。

感測器網路與眾不同的特點導致感測器網路與傳統網路有極大不同。感測器網路的安全數據匯聚是要解決加密傳輸和數據匯聚的協調問題,實現數據的安全處理和傳輸。傳統有線網路和無線網路的安全技術並不適用於感測器網路,這吸引了眾多研究人員研究適合感測器網路的安全技術,並且提出了許多適合感測器網路的安全技術。安全數據融合演算法是WSN安全性研究的重要方面,一直以來受到研究人員的重視,並取得了一定的研究成果。目前已有的研究成果如下:

(1)PerrigA等人提出了一種有效的WSN數據加密方法和廣播認證方法,為WSN安全性研究作出了基礎性工作。

(2)CAMH等人提出了一種基於模式碼的能量有效安全數據融合演算法,演算法用簇頭節點通過自定義的模式碼的選取來組織感測器節的發送冗餘數據實現數據融合,並且使用同態加密體重保證了數據在傳輸過程中的機密性。改方法對於每類數據類型需要保存和維護一個查找表,一旦查找表信息暴露,該安全方案將會失效。

(3)PrzydatekB等人提出的基於數據統計規律的數據融合演算法,演算法使用高效的`抽樣和迭代的證明來保證有多個惡意節點發送錯誤數據的情況下,保證基站能夠判定查詢結果的准確性。但是該方法對於每種聚集函數都需要一個復雜的演算法,為證明數據准確性,聚集節點需向基站發送大量參數,能量消耗太大。

(4)MahimkarA等人研究在WSN中使用橢圓曲線密碼實現數據加密和安全數據融合。但是在感測器節的十分有限的情況下,使用公鑰密碼體系使節點能量消耗更加迅速,縮短網路的壽命。

WSN的信任管理是在WSN管理的基礎上提出的,主要研究對節點進行信任值評估,藉助信任值增強WSN的安全性。傳統的基於密碼體系的安全機制,主要用來抵抗外部攻擊。假如節點被捕獲,節點存儲的密鑰信息將泄漏,使密碼體系失效。WSN信任管理作為密碼體系的補充可以有效的抵抗這種內部攻擊。將信任管理同WSN的安全構架相結合,可以全面提高WSN各項基礎支撐技術的安全性和可靠性。

近年來,WSN信任管理受到了越來越多的關注,取得了一定的研究成果。

(1)Ganeriwal等人提出的RFSN是一個較為完整的WSN信任管理系統,該模型使用直接信息和堅決信息來更新節點的信譽,節點根據得到的信譽信息來選擇是否和其他節點合作。可以建立僅由可信節點組成的網路環境。

(2)Garth等人中將信任管理用於簇頭選舉,採取冗餘策略和挑戰應答手段,盡可能的保證選舉出的簇頭節點為可信節點。

(3)Krasniewski提出了TIBFIT演算法將信任用於WSN容錯系統,把信任度作為一個參數融入到數據融合的過程中,提高對感知事件判斷的准確率,其提出的信任度計算方法比較的簡單。

無線感測器網路需要採取一定的措施來保證網路中數據傳輸的安全性。就目前的研究來看,對無線感測器網路安全數據融合技術和信任管理機制都取得了一些研究成果,但是如何使用信任管理機制保證安全的數據融合的研究並不多見,許多問題還有待於進一步深入研究。

2、所閱文獻的查閱范圍及手段。

充分利用校內圖書館資源、網路資源以及一些位於科技前沿的期刊學報。從對文獻的學習中掌握足夠的理論依據,獲得啟發以用於研究。

三、研究內容

1、研究構想與思路。

在本項目前期工作基礎上建立WSN三級簇結構模型,節點分為普通節點,數據融合節點(免疫節點),簇頭節點。在常規加密演算法的基礎上完成節點身份認證,通過消息認證碼或數字水印技術保證感測器節點傳送數據的真實性。上級節點保存下級節點的信任值,信任度的計算建立在傳送數據的統計分析之上。節點加入網路後先初始化為一定的信任值,每輪數據發送時,接收節點收集數據後,量化數據的分布規律,主要包括單個節點歷史數據分布規律和節點間數據差異的分析,確定數據分布模型(如正態分布、beta分布等),建立計算模型以確定節點間的信任值。信任值確定後,數據融合節點將普通節點按照不同的信任度進行分類,選取可信節點傳送的數據按查詢命令進行數據融合,將結果傳送到簇頭。簇頭同樣計算融合節點的信任度,保證數據融合節點的可靠性,計算最終數據查詢結果,使用Josang信任模型給出結果的評價。各數據融合節點之間保持通信,通過對比數據的一致性確保簇頭節點的可靠。

2、主要研究內容。

(1)設計有效的節點信任值計算方法,網路工作一段時間後,所有正常節點具有較高信任度,異常節點具有較低信任度,可初步判定為惡意節點。

(2)當融合節點或簇頭節點發生異常時能及時發現異常,並上報基站。

(3)過濾異常數據和惡意數據,盡量減少因節點被捕獲而對感知數據結果造成的影響。

(4)計算最終數據融合結果並且對最終數據融合結果做出評價來反映該結果的的可靠程度,供基站參考。

(5)進行演算法的能量分析。

3、擬解決的關鍵技術。

(1)建立WSN一個簇內數據傳送的三層簇結構模型,節點密集部署。

(2)模擬工作過程中節點被捕獲成為惡意節點,惡意節點可能發送和真實數據差別較大的數據,也能發送和真實數據差別不大但會影響融合結果的數據。

(3)計算並更新感測器節點的信任值,分析信任值的有效性。

(4)記錄各節點傳送數據值,並與實際值進行比較,分析融合數據的准確性。測試當有較多節點被捕獲時演算法的工作效果。

4、擬採取的研究方法。

查閱國內外大量有關無線感測器網路數據融合技術和信任管理技術方面的文獻,分析當前無線感測器網路安全領域的發展現狀與未來。借鑒在該領域已經取得的研究成果和經驗,系統而深入的研究在無線感測器網路數據融合中使用信任管理機制的主要問題。通過對已有的安全數據融合技術進行總結和分析,結合無線感測器網路自身的特點,設計出一種基於信任管理的無線感測器網路安全數據融合演算法。

5、技術路線。

本課題嘗試使用信任管理機制來保障在無線感測器網路中實現安全的數據融合,在現有的對無線感測器網路安全數據融合技術的研究基礎上,與信任管理技術相結合,期望能夠對感測器網路安全數據融合提出有效的解決方案。針對課題中的技術難點,通過查閱資料、向導師請教以及與項目組同學討論的形式來解決。

6、實施方案。

(1)在Windows平台下使用omnet++進行模擬實驗。

(2)建立無線感測器網路一個簇內數據傳送的三層結構模型,節點密集部署。

(3)模擬無線感測器網路受到攻擊時時的數據發送,根據數據統計規律計算和更新節點信任值。

(4)把節點按信任值分類,檢測識別惡意節點。

(5)根據節點信任值選擇有效數據完成數據融合。

7、可行性分析。

(1)理論知識積累:通過廣泛閱讀無線感測器網路數據融合技術方面的文獻形成了一定量的理論知識儲備,為課題的研究奠定基礎。

(2)技術積累:熟悉OMNeT++網路模擬軟體,具有一定的C++編程能力。

(3)技術合作:研究過程中遇到難以解決的問題時,可以向指導老師請教解決問題的基本思路。對項目相關課題有疑問時,可以向項目組同學請教。對實驗平台的建立及使用有疑問時,可以和項目組同學共同討論解決。

⑷ 無線感測器網路

無線感測器網路:是一種分布式感測網路,它的末梢是可以感知和檢查外部世界的感測器。無線感測器網路中的感測器通過無線方式通信,因此網路設置老寬早靈活,設備位置可以隨時更改,還可以跟互聯網進行有線或無線方式的連接。通過無線通信方式形成的一個多巧卜跳自組織網路。

無線感測器網路的發展得益於微機電系統、片上系統侍雀、無線通信和低功耗嵌入式技術的飛速發展。無線感測器網路廣泛應用於軍事、智能交通、環境監控、醫療衛生等多個領域。

⑸ 急 急 急 求一篇關於《通信網路模擬研究》的論文

幫您下了兩篇,希望對您有所幫助哦!祝您愉快!

1
題目:基於無線感測器網路模擬平台的研究
一、引言

感測器網路(WSN)日新月異,各種網路方案和協議日趨復雜,網路規模日趨龐大,對網路研究人員而言,掌握網路模擬的重要性是不言而喻的。WSN模擬能夠在一個可控制的環境里研究WSN應用,包括操作系統和網路協議棧,能夠模擬數量眾多的節點,能夠觀察由不可預測的干擾和雜訊引起的難以琢磨的節點間的相互作用,獲取節點間詳細的細節,從而提高節點投放後的網路成功率,減少投放後的網路維護工作。目前無線感測器網路使用的模擬工具主要有NS2、TinyOS、OPNET、OMNET++等等。其中TinyOS是專門針對無線感測器網路的特點而研究開發的。

二、無線感測器網路模擬簡介

在感測器網路中,單個感測器節點有兩個很突出的特點。一個特點是它的並發性很密集;另一個特點是感測器節點模塊化程度很高.上述這些特點使得無線感測器網路模擬需要解決可擴展性與模擬效率、分布與非同步特性、動態性、綜合模擬平台等等問題。

三、無線感測器網路常用模擬工具

無線感測器網路常用模擬工具有NS2、OPNET、OMNET++、TinyOS,下面我們簡要介紹它們各自的性能和特點。

3.1 NS2
NS是一種可擴展、以配置和可編程的時間驅動的模擬工具,它是由REAL模擬器發展而來.在NS的設計中,使用C++和OTCL兩種程序設計語言, C++是一種相對運行速度較快但是轉換比較慢的語言,所以C++語言被用來實現網路協議, 編寫NS底層的模擬引擎; OTCL是運行速度較慢,但可以快速轉換的腳本語言,正好和C++互補,所以OTCL語言被用來配置模擬中各種參數,建立模擬的整體結構, OTCL的腳本通過調用引擎中各類屬性、方法,定義網路的拓撲,配置源節點、目的節點建立鏈接,產生所有事件的時間表,運行並跟蹤模擬結果,還可以對結果進行相應的統計處理或制圖.NS可以提供有線網路、無線網路中鏈路層及其上層精確到數據包的一系列行為模擬。NS中的許多協議都和真實代碼十分接近,其真實性和可靠性是非常高的。

3.2 OPNET
OPNET是在MIT研究成果的基礎上由MIL3公司開發的網路模擬軟體產品。 OPNET的主要特點包括以下幾個方面:(1)採用面向對象的技術,對象的屬性可以任意配置,每一對象屬於相應行為和功能的類,可以通過定義新的類來滿足不同的系統要求; (2)OPNET提供了各種通信網路和信息系統的處理構件和模塊;(3) OPNET採用圖形化界面建模,為使用者提供三層(網路層、節點層、進程層)建模機制來描述現實的系統;(4) OPNET在過程層次中使用有限狀態機來對其它協議和過程進行建模,用戶模型及OPNET內置模型將會自動生成C語言實現可執行的高效、高離散事件的模擬流程;(5) OPNET內建了很多性能分析器,它會自動採集模擬過程的結果數據;(6)OPNET幾乎預定義了所有常用的業務模型,如均勻分布、泊松分布、歐蘭分等。

3.3 OMNET++
OMNET++是面向對象的離散事件模擬工具,為基於進程式和事件驅動兩種方式的模擬提供了支持。 OMNET++採用混合式的建模方式,同時使用了OMNET++特有的ned(Network Discription,網路描述)語言和C++進行建模。OMNET++主要由六個部分組成:模擬內核庫、網路描述語言的編譯器、圖形化的網路編譯器、模擬程序的圖形化用戶介面、模擬程序的命令行用戶介面和圖形化的向量輸出工具。OMNET++的主要模型拓撲描述語言NED,採用它可以完成一個網路模型的描述。 網路描述包括下列組件:輸入申明、信道定義、系統模塊定義、簡單模塊和復合模塊定義。使用NED描述網路,產生.NED文件,該文件不能直接被C++編譯器使用,需要首先採用OMNET++提供的編譯工具NEDC將.NED文件編譯成.cpp文件。最後,使用C++編譯器將這些文件與用戶和自己設計的簡單模塊程序連接成可執行程序。

3.4 TinyOS
TinyOS是專門針對感測器研發出的操作系統。在TinyOS上編程序使用的語言為nesC(C language for network embedded systems) 語言。

nesC語言是由C語言擴展而來的,意在把組件化/模塊化思想和TinyOS基於事件驅動的執行模型結合起來。 nesC 組件有Mole(模塊)和Configuration(連接配置文件)兩種。在模塊中主要實現代碼的編制,在連接配置文件中主要是將各個組件和模塊連接起來成為一個整體。

TinyOS程序採用的是模塊化設計,所以它的程序核心往往都很小,能夠突破感測器存儲資源少的限制,這能夠讓TinyOS很有效的運行在無線感測器網路上並去執行相應的管理工作等。TinyOS的特點主要體現在以下幾個方面:

(1)組件化編程(Componented-Based Architecture)。TinyOS的組件通常可以分為以下三類:硬體抽象組件、合成組件、高層次的軟體組件;硬體抽象組件將物理硬體映射到TinyOS組件模型.合成硬體組件模擬高級硬體的行為.高層次軟體模塊完成控制、路由以及數據傳輸等。}

(2)事件驅動模式(Event-Driven Architecture)。事件驅動分為硬體驅動和軟體事件驅動。硬體事件驅動也就是由一個硬體發出中斷,然後進入中斷處理函數。而軟體驅動則是通過singal關鍵字發出一個事件。

(3)任務和事件並發模式(Tasks And Events Concurrency Model)。任務用在對於時間要求不是很高的應用中,任務之間是平等的,即在執行時是按順序先後來的,而不能相互搶占,TinyOS對任務是按簡單的FIFO隊列進行處理的。事件用在對於時間的要求很嚴格的應用中,而且它可以佔先優於任務和其他事件執行。

(4)分段執行(Split-Phase Operations)。在TinyOS中由於tasks 之間不能互相佔先執行,所以TinyOS沒有提供任何阻塞操作,為了讓一個耗時較長的操作盡快完成,一般來說都是將對這個操作的需求和這個操作的完成分開來實現,以便獲得較高的執行效率。

(5) 輕量級線程(lightweight thread)。輕量級線程(task, 即TinyOS中的任務)按FIFO方式進行調度,輕量級線程之間不允許搶占;而硬體處理線程(在TinyOS中,稱為硬體處理器),即中斷處理線程可以打斷用戶的輕量級線程和低優先順序的中斷處理線程,對硬體中斷進行快速處理響應。

(6) 主動通信消息(active message)。每一個消息都維護一個應用層和處理器。當目標節點收到這個消息後,就會把消息中的數據作為參數,並傳遞給應用層的處理器進行處理。應用層的處理器一般完成消息數據的解包操作、計算處理或發送響應消息等工作。

TinyOS操作系統中常用的模擬平台主要是TOSSIM和Avrora

(1)TOSSIM(TinyOS simulation)是一個支持基於TinyOS的應用在PC機上運行的模擬器.TOSSIM運行和感測器硬體相同的代碼,模擬編譯器能直接從TinyOS應用的組件表中編譯生成模擬程序。

(2)Avrora是一種專門為Atmel和Mica2節點上以AVR單片機語言編寫的程序提供模擬分析的工具。它的主要特點如下:1) 為AVR單片機提供了cycle accurate級的模擬,使靜態程序可以准確的運行。它可以模擬片上(chip-on)設備驅動程序,並為片外(off-chip)程序提供了有規則的介面;2)可以添加監測代碼來報告模擬程序運行的性能,或者可以在模擬結束後收集統計數據,並產生報告;3)提供了一套基本的監控器來剖析程序,這有助於分析程序的執行模式和資源使用等等;4)Avrora可以用gdb調試程序;5) Avrora可以為程序提供一個程序流圖,通過這個流程圖可以清楚的表示機器代碼程序的結構和組織;6) Avrora中提供了分析能量消耗的工具,並且可以設置設備的帶電大小;7) Avrora可以用來限製程序的最大堆棧空間,它會提供一些關於目前程序中的最大的堆棧結構,和一些關於空間和時間消耗的信息報告。

3.5性能比較

TinyOS 用行為建模,可以模擬跨層協議;模擬程序移植到節點上,不需要二次編碼。
通過對上述幾種模擬軟體的分析比較,我們可以清楚的看到各個模擬軟體的特點、適用范圍,我們可以根據研究需要選擇適合的模擬軟體,使得我們的學習研究可以事半功倍。

結束語

網路模擬技術為通信網路規劃和優化提供了一種科學高效的方法。網路模擬在國內是近幾年才發展起來的,但在國外網路模擬技術已經相當成熟,我們應該大膽地借鑒國外先進技術,促進國內網路模擬技術迅速發展。

參考文獻
【1】於海斌,曾鵬等.智能無線感測器網路.科學出版社,2006,p283~p303,
【2】石懷偉,李明生,王少華,網路模擬技術與OPNET應用實踐,計算機系統應用2006.第3期
【3】李玥,吳辰文,基於OMNeT++地TCP/IP協議模擬,蘭州交通大學學報(自然科學版),2005年8月
【4】袁紅林,徐晨,章國安,TOSSIM:無線感測器網路模擬環境,感測器與儀表儀器 ,2006年第22卷第7-1期

2

集群虛擬伺服器的模擬建模研究

來源:電子技術應用 作者:楊建華 金笛 李燁 寧宇

摘要:闡述了集群虛擬伺服器的工作原理和三種負載均衡方式,通過實例討論了虛擬伺服器的模擬和建模方法,創建了測試和模擬系統性能的輸入和系統模型,並依據Q—Q圖和累積分布函數校驗了其概率分布。

關鍵詞:集群虛擬伺服器負載均衡模擬建模概率分布

隨著互聯網訪問量和數據流量的快速增長,新的應用層出不窮。盡管Intemel伺服器處理能力和計算強度相應增大,但業務量的發展超出了先前的估計,以至過去按最優配置建設的伺服器系統也無法承擔。在此情況下,如果放棄現有設備單純將硬體升級,會造成現有資源的浪費。因此,當前和未來的網路服務不僅要提供更豐富的內容、更好的交互性、更高的安全性,還要能承受更高的訪問量,這就需要網路服務具有更高性能、更大可用性、良好可擴展性和卓越的性價比。於是,集群虛擬伺服器技術和負載均衡機制應運而生。

集群虛擬伺服器可以將一些真實伺服器集中在一起,組成一個可擴展、高可用性和高可靠性的統一體。負載均衡建立在現有網路結構之上,提供了一種廉價、有效和透明的方法建立伺服器集群系統,擴展網路設備和伺服器的帶寬,增加吞吐量,加強網路數據處理能力。提高網路的靈活性和可用性。使用負載均衡機制.大量的並發訪問或數據流量就可以分配到多台節點設備上分別處理。系統處理能力得到大幅度提高,大大減少用戶等待應答的時間。

實際應用中,虛擬伺服器包含的真實伺服器越多,整體伺服器的性能指標(如應答延遲、吞吐率等)越高,但價格也越高。在集群中通道或其他部分也可能會進入飽和狀態。因此,有必要根據實際應用設計虛擬伺服器的模擬模型,依據實際系統的測量數據確定隨機變數的概率分布類型和參數,通過分位點一分位點圖即Q-Q圖(Quaantile-Quantile Plot)和累積分布函數(Cumulative Distribution Functions)等方法校驗應答或傳播延遲等性能指標的概率分布,通過模擬軟體和工具(如Automod)事先分析伺服器的運行狀態和性能特點,使得集群系統的整體性能穩定,提高虛擬伺服器設計的客觀性和設計的可靠性,降低伺服器建設的投資風險。

1 集群虛擬伺服器的體系結構

一般而言,首先需要在集群虛擬伺服器上建立互聯網協議偽裝(Internet Protocol Masquerading)機制,即IP偽裝,接下來創立IP埠轉發機制,然後給出在真實伺服器上的相關設置。圖1為集群虛擬伺服器的通用體系結構。集群虛擬伺服器通常包括:真實伺服器(RealServers)和負載均衡器(Load Balmlcer)。

由於虛擬伺服器的網路地址轉換方式是基於IP偽裝的,因此對後台真實伺服器的操作系統沒有特別要求,可以是windows操作系統,也可以是Lmux或其他操作系統。

負載均衡器是伺服器集群系統的惟一入口點。當客戶請求到達時,均衡器會根據真實伺服器負載情況和設定的調度演算法從真實伺服器中選出一個伺服器,再將該請求轉發到選出的伺服器,並記錄該調度。當這個請求的其他報文到達後,該報文也會被轉發到前面已經選出的伺服器。因為所有的操作都在操作系統核心空間中完成,調度開銷很小,所以負載均衡器具有很高的吞吐率。整個伺服器集群的結構對客戶是透明的,客戶看到的是單一的虛擬伺服器。

負載均衡集群的實現方案有多種,其中一種是Linux虛擬伺服器LVS(Linux Virtual Server)方案。LVS實現負載均衡的技術有三種:網路地址轉換(Network Address Translation)、直接路由(Direct Routing)和IP隧道(IP Yunneling)。

網路地址轉換按照IETF標准,允許一個整體機構以一個公用IP地址出現在Inlemet上。通過網路地址轉換,負載均衡器重寫請求報文的目標地址,根據預設的調度演算法,將請求分派給後端的真實伺服器;真實伺服器的應答報文通過均衡器時,報文的源地址被重寫,把內部私有網路地址翻譯成合法網路IP地址,再返回給客戶,完成整個負載調度過程。

直接路由的應答連接調度和管理與網路地址轉換的調度和管理相同,但它的報文是直接轉發給真實伺服器。在直接路由應答中,均衡器不修改、也不封裝IP報文.而是將數據幀的媒體接入控制MAC(Medium Aceess Control)地址改為選出伺服器的MAC地址,再將修改後的數據幀在區域網上發送。因為數據幀的MAC地址是選出的伺服器,所以伺服器肯定可以收到該數據幀,從中獲得該IP報文。當伺服器發現報文的目標地址在本地的網路設備時,伺服器處理該報文,然後根據路由表應答報文,直接返回給客戶。

IP隧道是將一個IP報文封裝在另一個IP報文中的技術。該技術可以使目標為某個口地址的數據報文被封裝和轉發到另一個IP地址。用戶利用IP隧道技術將請求報文封裝轉發給後端伺服器,應答報文能從後端伺服器直接返回給客戶。這樣做,負載均衡器只負責調度請求,而應答直接返回給客戶,不需要再處理應答包,將極大地提高整個集群系統的吞吐量並有效降低負載均衡器的負載。IP隧道技術要求所有的伺服器必須支持IP Yunnehng或lP.封裝(Encapsulation)協議。

2 集群虛擬伺服器報文延遲的確定

通過一個裝有5台真實伺服器並使用網路地址轉換技術實現Linux虛擬伺服器的實際系統,可以得到有關請求和應答報文的時戳(Time Stamp)文件n根據這些文件.能夠計算出集群虛擬伺服器的模擬和建模所需數據。

為了確定隨機變數分布類型和參數,應該統計下列延遲:(1)從客戶到負載均衡器的傳播延遲(Transport Delay);(2)負載均衡器的應答延遲(Response Delay);(3)從負載均衡器到真實伺服器的傳播延遲;(4)真實伺服器的應答延遲;(5)從真實伺服器到負載均衡器的傳播延遲;f61負載均衡器對真實伺服器的應答延遲;(7)從負載均衡器到客戶的傳播延遲。

在實際系統產生的時戳文件中,問接地描述了上述各延遲時間。文件包含的內容如下:

當一個服務請求到達集群虛擬伺服器系統時,即產生帶有惟一序列號的同步請求報文(Synchronized Request Package),將該報文轉發到某一真實伺服器,同時建立該伺服器與客戶端的連接,每個這樣的連接都帶有惟一的埠號;該伺服器處理通過該連接的確認請求報文(Acknowledgement Request Package),直到伺服器收到結束請求報文(Finished Request Package)。對每一種類型的請求報文,系統都給予一個相應的應答報文。因此,在不同的報文時戳文件中,如果兩條記錄具有相同的埠號、報文類型和序列號,則它們是同一個請求或應答報文,對相關的時戳相減即可得到集群虛擬伺服器系統的模擬和建模所需的延遲數據。通過所編寫的C++程序即可計算這些延遲。

3 系統模擬模型

上述的集群虛擬伺服器實際系統的模擬模型如圖2所示,在負載均衡器、各通道、5台真實伺服器中通過或處理的均為請求或應答報文。

4 隨機變數模型的確定

對具有隨機變數的集群虛擬伺服器進行模擬,必須確定其隨機變數的概率分布,以便在模擬模型中對這些分布進行取樣,得到所需的隨機變數。

4.1 實際虛擬伺服器的延遲數據概況

在實際虛擬伺服器的負載均衡器、各通道和5台真實伺服器中,對請求和應答報文都有一定的延遲。部分報文延遲的統計數據如表1所示。

由表l中的數據可見,報文延遲的中位數與均值差異較大,所以其概率分布不對稱;變異系數不等於l,導致概率分布不會是指數分布,而可能是γ分布或其他分布。

4.2 隨機變數的概率分布

圖3為第一台真實伺服器到負載均衡器之間的通道報文傳播延遲直方圖,其中t為報文延遲時間,h(t)為報文延遲區間數。由圖3可知,通道內的報文傳播延遲數據近似服從γ分布或對數正態分布。

描述γ分布需要兩個參數:形狀(Shape)參數α和比例(Scahj)參數口,這兩個參數與均值M、方差V之間的關系是非線性的:

描述對數正態分布也需要形狀參數σ和比例參數μ,這兩個參數與均值M、方差V之問的關系也是非線性的:

式(1)~(4)都可以通過最大似然估計MLE(Maximum Likelihood Estimator)方法或最速下降法(Steepest Descent Method)求出。表2給出了甩這兩種方法求出的從第一台真實伺服器到負載均衡器之間通道內的報文延遲概率分布參數。

使用累積分布函數和Q-Q圖可以校驗並進一步確定上述通道內報文傳播延遲的概率分布。取用表2中的參數,可以得到γ分布的累積分布函數,如圖4所示,其中t為報文延遲時間,F(t)為報文延遲的累積分布函數。為作比較,實驗分布也畫在該圖中。γ分布和對數正態分布的Q-Q圖如圖5所示。

由圖4和圖5可以看出,γ分布較好地擬合了該通道內的報文傳播延遲數據分布。其他通道報文延遲直方圖也有類似形狀。經計算和分析,這些通道的報文傳播延遲概率分布也近似服從γ分布。

根據表1中的數據以及相關的直方圖都難以確定在負載均衡器和真實伺服器中報文延遲的理論分布。因此,採用實驗分布作為其模型。

5 模型模擬

在建立了圖1所示的集群虛擬伺服器的系統模擬模型並確定了其隨機變數的分布特性後,可以採用由美國布魯克斯自動化公司(Brooks Automation)開發的模擬軟體Automod輸入該模型,並通過在Automod環境中編程進行集群虛擬伺服器的模擬和分析。

在Automod的模擬過程中,可以直接利用軟體提供的資源(Resource)作為各種報文數據處理的單元;系統各部分的報文排隊活動可以直接通過排隊(Queue)實現;建立一個負載產生器,等效為在Inlemtet上使用虛擬伺服器的客戶。

通過採用Automod的屬性變數(Attribute Variable)可以解決負載均衡器的雙方向報文處理功能的問題。負載均衡器使用輪轉調度演算法(Round Robin Scheling),即假設所有真實伺服器的處理性能均相同,依次將請求調度到不同的伺服器。

驗證模擬模型可以分別在實際虛擬伺服器系統和Automod的模擬模型中從以下兩方面進行對比:(1)在負載均衡器、各個真實伺服器和通道中排隊的應答或傳播報文數量;(2)真實伺服器及負載均衡器的cPU利用率。例如,當使用實際的應答或傳播報文延遲數據時,在Automod的模擬模型中,如果設置一個較低的資源量,則在模擬過程中就會發現大部分的負載都被堵在真實伺服器的排隊中,即真實伺服器處理報文的能力過低,無法與實際系統的狀況相比;如果設置一個較高的資源量,則意味著伺服器的並行處理能力增加,真實伺服器的利用率提高,負載就很少或不會滯留在真實伺服器的排隊中。因此,在Automod中可以根據實際情況調整模擬模型的資源量大小。

如果在Automod中增加負載產生器的負載產生率,就等效為用戶訪問量增加,通過觀察排隊中的負載滯留比例,就可以發現系統的最大處理報文的能力以及系統各部分應答報文可能出現瓶頸之處。例如,將負載產生率增加一倍,雖然系統仍然可以處理所有的報文,但各台真實伺服器的平均利用率將達80%左右。顯然,這時系統應答報文的「瓶頸」為真實伺服器,有必要在系統中增添一台新的真實伺服器。

通過一個包括5台真實伺服器的實際虛擬伺服器系統。收集並計算了模擬和建模的樣板數據。依據系統報文延遲的中位數、均值、變異系數和直方圖等,確定了系統隨機變數的概率分布;採用最大似然估計方法和最速下降法,得到了通道概率分布的具體參數;根據Q-Q圖和累積分布函數進一步校驗並最終確定通道的概率分布形式。使用Automod軟體進行了模擬建模和編程,藉助模擬結果可以發現虛擬伺服器的最大處理能力和可能的「瓶頸」之處。通過及時定位系統「瓶頸」,可以有的放矢地進一步研究和改進系統,有效提高系統性能。所採用的模擬方法也可以用於其他領域的模擬建模或分析中。

在模擬模型中,負載均衡方式和調度演算法還需要進一步增加,以便於比較不同的虛擬伺服器系統。樣本數據也需要進一步擴充,以避免報文延遲的自相關性。

閱讀全文

與智能無線感測器網路系統第二版於海斌梁煒曾鵬相關的資料

熱點內容
網路共享中心沒有網卡 瀏覽:486
電腦無法檢測到網路代理 瀏覽:1346
筆記本電腦一天會用多少流量 瀏覽:471
蘋果電腦整機轉移新機 瀏覽:1345
突然無法連接工作網路 瀏覽:956
聯通網路怎麼設置才好 瀏覽:1185
小區網路電腦怎麼連接路由器 瀏覽:926
p1108列印機網路共享 瀏覽:1181
怎麼調節台式電腦護眼 瀏覽:599
深圳天虹蘋果電腦 瀏覽:837
網路總是異常斷開 瀏覽:579
中級配置台式電腦 瀏覽:890
中國網路安全的戰士 瀏覽:598
同志網站在哪裡 瀏覽:1374
版觀看完整完結免費手機在線 瀏覽:1427
怎樣切換默認數據網路設置 瀏覽:1073
肯德基無線網無法訪問網路 瀏覽:1249
光纖貓怎麼連接不上網路 瀏覽:1371
神武3手游網路連接 瀏覽:933
局網列印機網路共享 瀏覽:970