① 什麼是自然數 自然數有哪些
表示物體個數的數叫自然數,自然數由0開始,一個接一個,組成一個無窮的集體。自然數有有序性,無限性。分為偶數和奇數,合數和質數等。
分類
按是否是偶數分
可分為奇數和偶數。
1、奇數:不能被2整除的數叫奇數。
2、偶數:能被2整除的數叫偶數。也就是說,除了奇數,就是偶數
註:0是偶數。(2002年國際數學協會規定,零為偶數。我國2004年也規定零為偶數。偶數可以被2整除,0照樣可以,只不過得數依然是0而已)。
按因數個數分
可分為質數、合數、1和0。
1、質 數:只有1和它本身這兩個因數的自然數叫做質數。也稱作素數。
2、合 數:除了1和它本身還有其它的因數的自然數叫做合數。
3、1:只有1個因數。它既不是質數也不是合數。
4、當然0不能計算因數,和1一樣,也不是質數也不是合數。
備註:這里是因數不是約數。
② 什麼叫自然數自然數包括什麼
自然數用以計量事物的件數或表示事物次序的數。
自然數:0、1、2、3、4、5、7、8、9、10。
又稱:非。
性質:有序性、無限性。
分為:偶數奇數,合數質數。
按是否是偶數分
可分為奇數和偶數。
1、奇數:不能被2整除的數叫奇數。
2、偶數:能被2整除的數叫偶數。也就是說,除了奇數,就是偶數。
註:0是偶數。(2002年國際數學協會規定,零為偶數.我國2004年也規定零為偶數。偶數可以被2整除,0照樣可以,只不過得數依然是0而已)。
按因數個數分
可分為質數、合數、1和0。
1、質 數:只有1和它本身這兩個因數的自然數叫做質數。也稱作素數。
2、合 數:除了1和它本身還有其它的因數的自然數叫做合數。
3、1:只有1個因數。它既不是質數也不是合數。
4、當然0不能計算因數,和1一樣,也不是質數也不是合數。
備註:這里是因數不是約數。
③ 什麼叫做自然數,自然數有哪些
自然數是以計量事物的件數或表示事物次序的數。自然數由0開始,一個接一個,組成一個無窮的集體。
1、自然數是一切等價有限集合共同特徵的標記,:整數包括自然數,所以自然數一定是整數,且一定是非負整數。
2、自然數的有序性是指,自然數可以從0開始,不重復也不遺漏地排成一個數列:0,1,2,3,…這個數列叫自然數列。一個集合的元素如果能與自然數列或者自然數列的一部分建立一一對應,我們就說這個集合是可數的,否則就說它是不可數的。
(3)什麼是自然數擴展閱讀:
1、自然數集是一個無窮集合,自然數列可以無止境地寫下去。對於無限集合,我們不再說它們的元素個數相同,而說這兩個集合的基數相同,或者說,這兩個集合等勢。與有限集對比,無限集有一些特殊的性質,其一是它可以與自己的真子集建立一一對應。
2、自然數集合的任一非空子集中必有最小的數。具備性質3、4的數集稱為線性序集。容易看出,有理數集、實數集都是線性序集。
3、整數的全體構成整數集,整數集是一個數環。在整數系中,零和正整數統稱為自然數。-1、-2、-3、…、-n、…(n為非零自然數)為負整數。則正整數、零與負整數構成整數系。整數不包括小數、分數。
4、現行九年義務教育教科書和高級中學教科書(試驗修訂本)都把非負整數集叫做自然數集,記作N,而正整數集記作N+或N*。這就一改以往0不是自然數的說法,明確指出0也是自然數集的一個元素。0同時也是有理數,也是非負數和非正數。
④ 什麼是自然數
自然數,即:
0
1、1、2、3、4……
自然數,就是人們數數時產生的數(如「有3個蘋果」),所以用來表示物體個數的數叫做自然數。一個物體也沒有,當然可以用「0」來表示,所以「0」也是自然數。
自然數除去「0」後,也可用於排序(如「排名第4」)。
自然數更深層的特性,例如素數的分布,屬於數論研究范圍的課題。
⑤ 什麼是自然數
自然數都是人們從現實中的一堆物品集合的數量相對應的.
也就是說,自然數中沒有小數分數.
⑥ 自然數的定義是什麼
自然數是指用以計量事物的件數或表示事物次序的數。即用數碼0,1,2,3,4……所表示的數。自然數由0開始,一個接一個,組成一個無窮的集體。自然數有有序性,無限性。分為偶數和奇數,合數和質數等。
⑦ 什麼叫做自然數的定義是什麼
什麼叫做自然數的定義是什麼
用以計量事物的件數或表示事物次序的數。即用數碼0,1,2,3,4,……所表示的數。表示物體個數的數叫自然數,自然數由0開始,一個接一個,組成一個無窮的集體。
自然數包括0。自然數就是比0大的整數。
自然數集是全體非負整數(在過去的教科書中,零一般被認為不是自然數,但21世紀的規定表明,0確實為自然數,而更正原因是為了方便簡潔)組成的集合,常用 N 來表示。自然數有無窮多個。
自然數不僅是表示量的程度的符號,同時也是表示這個量的有序規律的一種符號。就是說:自然數是能夠表示同一屬性事物的程度及其有序規律的一種符號,並具備表示事物屬性、量的程度、有序規律這三種功能。摘自自然數原本數數論。
自然數集N是指滿足以下條件的集合:①N中有一個元素,記作0。②N中每一個元素都能在 N 中找到一個元素作為它的後繼者。③ 0不是任何元素的後繼者。④ 不同元素有不同的後繼者。⑤(歸納公理)N的任一子集M,如果0∈M,並且只要x在M中就能推出x的後繼者也在M中,那麼M=N。
基數理論則把自然數定義為有限集的基數,這種理論提出,兩個可以在元素之間建立一一對應關系的有限集具有共同的數量特徵,這一特徵叫做基數 。這樣 ,所有單元素集{x},{y},{a},{b}等具有同一基數(用集合的形式表示) , 記作1 。類似,凡能與兩個手指頭建立一一對應的集合,它們的基數相同,記作2,等等 。自然數的加法 、乘法運算可以在序數或基數理論中給出定義,並且兩種理論下的運算是一致的。
自然數的分類
按是否是偶數分
可分為奇數和偶數。
1、奇數:不能被2整除的數叫奇數。
2、偶數:能被2整除的數叫偶數。也就是說,除了奇數,就是偶數
註:0是偶數。(2002年國際數學協會規定,零為偶數.我國2004年也規定零為偶數。偶數可以被2整除,0照樣可以,只不過得數依然是0而已)。
按因數個數分
可分為質數、合數、1和0。
1、質 數:只有1和它本身這兩個因數的自然數叫做質數。也稱作素數。
2、合 數:除了1和它本身還有其它的因數的自然數叫做合數。
3、1:只有1個因數。它既不是質數也不是合數。
4、當然0不能計算因數,和1一樣,也不是質數也不是合數。
備註:這里是因數不是約數。