A. 無線感測器網路的訪問控制協議有哪些
HTTP協議肯定有。
感測器網路用來感知客觀物理世界,獲取物理世界的信息量。客觀世界的物理量多種多樣,不可窮盡。不同的感測器網路應用關心不同的物理量,因此對感測器的應用系統也有多種多樣的要求。
無線感測器網路
不同的應用對感測器網路的要求不同,其硬體平台、軟體系統和網路協議必然會有很大差別。所以感測器網路不能像網際網路一樣,有統一的通信協議平台。對於不同的感測器網路應用雖然存在一些共性問題,但在開發感測器網路應用中,更關心感測器網路的差異。只有讓系統更貼近應用,才能做出最高效的目標系統。針對每一個具體應用來研究感測器網路技術,這是感測器網路設計不同於傳統網路的顯著特徵。
無線感測網路有著許多不同的應用。在工業界和商業界中,它用於監測數據,而如果使用有線感測器,則成本較高且實現起來困難。無線感測器可以長期放置在荒蕪的地區,用於監測環境變數,而不需要將他們重新充電再放回去。
B. 【高分】無線感測器網路S-MAC協議的原理及演算法
S-MAC很簡單 再往上學就是802.15.4
我做過S-MAC方面的編程,可以說S-MAC沒有協議可說,不像802。15.4
不過S-MAC有她的特點
由於感測器網路節點能量有限,所以S-MAC協議要做到減少節點能量消耗。S-MAC主要採用以下機制:
1 周期性偵聽、睡眠的低占空比工作方式,控制節點盡量處於睡眠狀態來降低節點能量的消耗
2鄰居節點通過協商的一致性睡眠調度機制形成虛擬簇,減少節點的空閑偵聽時間
3流量自適應偵聽機制
4串音避免
5通過消息分割和突發傳遞機制來減少控制消息得開銷和消息的傳遞延遲
打字太累了,不多說了,有啥問題,發郵件吧。我還有S-MAC的代碼,15.4的代碼,EMG-SMAC代碼,要看可以發給你
C. 無線感測器網路採用哪些調制解調方式,為什麼
感測器網路系統通常包括感測器節點EndDevice、匯聚節點Router和管理節點Coordinator。
大量感測器節點隨機部署在監測區域內部或附近,能夠通過自組織方式構成網路。感測器節點監測的數據沿著其他感測器節點逐跳地進行傳輸,在傳輸過程中監測數據可能被多個節點處理,經過多跳後路由到匯聚節點,最後通過互聯網或衛星到達管理節點。用戶通過管理節點對感測器網路進行配置和管理,發布監測任務以及收集監測數據。
感測器節點
處理能力、存儲能力和通信能力相對較弱,通過小容量電池供電。從網路功能上看,每個感測器節點除了進行本地信息收集和數據處理外,還要對其他節點轉發來的數據進行存儲、管理和融合,並與其他節點協作完成一些特定任務。
匯聚節點
匯聚節點的處理能力、存儲能力和通信能力相對較強,它是連接感測器網路與Internet 等外部網路的網關,實現兩種協議間的轉換,同時向感測器節點發布來自管理節點的監測任務,並把WSN收集到的數據轉發到外部網路上。匯聚節點既可以是一個具有增強功能的感測器節點,有足夠的能量供給和更多的、Flash和SRAM中的所有信息傳輸到計算機中,通過匯編軟體,可很方便地把獲取的信息轉換成匯編文件格式,從而分析出感測節點所存儲的程序代碼、路由協議及密鑰等機密信息,同時還可以修改程序代碼,並載入到感測節點中。
管理節點
管理節點用於動態地管理整個無線感測器網路。感測器網路的所有者通過管理節點訪問無線感測器網路的資源。
無線感測器測距
在無線感測器網路中,常用的測量節點間距離的方法主要有TOA(Time of Arrival),TDOA(Time Difference of Arrival)、超聲波、RSSI(Received Sig nalStrength Indicator)和TOF(Time of Light)等。
D. 無線感測器網路安全目標是要解決網路的哪些問題
無線通信和低功耗嵌入式技術的飛速發展,孕育出無線感測器網路(Wireless Sensor Networks, WSN),並以其低功耗、低成本、分布式和自組織的特點帶來了信息感知的一場變革,無線感測器網路是由部署在監測區域內大量的廉價微型感測器節點,通過無線通信方式形成的一個多跳自組織網路。
信息安全
很顯然,現有的感測節點具有很大的安全漏洞,攻擊者通過此漏洞,可方便地獲取感測節點中的機密信息、修改感測節點中的程序代碼,如使得感測節點具有多個身份ID,從而以多個身份在感測器網路中進行通信,另外,攻擊還可以通過獲取存儲在感測節點中的密鑰、代碼等信息進行,從而偽造或偽裝成合法節點加入到感測網路中。一旦控制了感測器網路中的一部分節點後,攻擊者就可以發動很多種攻擊,如監聽感測器網路中傳輸的信息,向感測器網路中發布假的路由信息或傳送假的感測信息、進行拒絕服務攻擊等。
對策:由於感測節點容易被物理操縱是感測器網路不可迴避的安全問題,必須通過其它的技術方案來提高感測器網路的安全性能。如在通信前進行節點與節點的身份認證;設計新的密鑰協商方案,使得即使有一小部分節點被操縱後,攻擊者也不能或很難從獲取的節點信息推導出其它節點的密鑰信息等。另外,還可以通過對感測節點的合法性進行認證等措施來提高節點本身的安全性能。
根據無線傳播和網路部署特點,攻擊者很容易通過節點間的傳輸而獲得敏感或者私有的信息,如:在使用WSN監控室內溫度和燈光的場景中,部署在室外的無線接收器可以獲取室內感測器發送過來的溫度和燈光信息;同樣攻擊者通過監聽室內和室外節點間信息的傳輸,也可以獲知室內信息,從而非法獲取出房屋主人的生活習慣等私密信息。[6]
對策:對傳輸信息加密可以解決竊聽問題,但需要一個靈活、強健的密鑰交換和管理方案,密鑰管理方案必須容易部署而且適合感測節點資源有限的特點,另外,密鑰管理方案還必須保證當部分節點被操縱後(這樣,攻擊者就可以獲取存儲在這個節點中的生成會話密鑰的信息),不會破壞整個網路的安全性。由於感測節點的內存資源有限,使得在感測器網路中實現大多數節點間端到端安全不切實際。然而在感測器網路中可以實現跳-跳之間的信息的加密,這樣感測節點只要與鄰居節點共享密鑰就可以了。在這種情況下,即使攻擊者捕獲了一個通信節點,也只是影響相鄰節點間的安全。但當攻擊者通過操縱節點發送虛假路由消息,就會影響整個網路的路由拓撲。解決這種問題的辦法是具有魯棒性的路由協議,另外一種方法是多路徑路由,通過多個路徑傳輸部分信息,並在目的地進行重組。
感測器網路是用於收集信息作為主要目的的,攻擊者可以通過竊聽、加入偽造的非法節點等方式獲取這些敏感信息,如果攻擊者知道怎樣從多路信息中獲取有限信息的相關演算法,那麼攻擊者就可以通過大量獲取的信息導出有效信息。一般感測器中的私有性問題,並不是通過感測器網路去獲取不大可能收集到的信息,而是攻擊者通過遠程監聽WSN,從而獲得大量的信息,並根據特定演算法分析出其中的私有性問題。因此攻擊者並不需要物理接觸感測節點,是一種低風險、的獲得私有信息方式。遠程監聽還可以使單個攻擊者同時獲取多個節點的傳輸的信息。
對策:保證網路中的感測信息只有可信實體才可以訪問是保證私有性問題的最好方法,這可通過數據加密和訪問控制來實現;另外一種方法是限制網路所發送信息的粒度,因為信息越詳細,越有可能泄露私有性,比如,一個簇節點可以通過對從相鄰節點接收到的大量信息進行匯集處理,並只傳送處理結果,從而達到數據化。
拒絕服務攻擊(DoS)
專門的拓撲維護技術研究還比較少,但相關研究結果表明優化的拓撲維護能有效地節省能量並延長網路生命周期,同時保持網路的基本屬性覆蓋或連通。本節中,根據拓撲維護決策器所選維護策略
在無線感測器網路的研究中,能效問題一直是熱點問題。當前的處理器以及無線傳輸裝置依然存在向微型化發展的空間,但在無線網路中需要數量更多的感測器,種類也要求多樣化,將它們進行鏈接,這樣會導致耗電量的加大。如何提高網路性能,延長其使用壽命,將不準確性誤差控制在最小將是下一步研究的問題。
採集與管理數據
在今後,無線感測器網路接收的數據量將會越來越大,但是當前的使用模式對於數量龐大的數據的管理和使用能力有限。如何進一步加快其時空數據處理和管理的能力,開發出新的模式將是非常有必要的。
無線通訊的標准問題
標準的不統一會給無線感測器網路的發展帶來障礙,在接下來的發展中,要開發出無線通訊標准。
E. 怎麼設置自己的無線網路密鑰
無線路由器加密有以下幾種方法:
1.使用無線路由器提供的WEP,WPA等加密方式.WEP一般設置簡單.
2.或者使用訪問限制,同過MAC地址來限制連接,就是說在訪問限制列表裡輸入MAC的機器,才能連接到你的無線路由器.
3.一種更簡單的,就是關閉SSID廣播,就是無法搜索到你AP的SSID,你只能手工的方式自己填入正確的SSID,才能連接!上述三個方法都可以,但安全性質最好的是通過MAC地址限制訪問.設置都是在無線路由器完成.
下面將對這些加密方式詳細介紹下:
一、先介紹下最簡單的,關閉SSID廣播,這樣無線用戶就搜索不到你的網路標識,可以起到限制其他用戶的連接.具體設置:
a、路由器方設置,在關閉SSID廣播時,你最好改變下SSID廣播號,如果不改動的話,以前連過你網路的用戶,還可以連接;
b、客戶機設置:無線網路---屬性----無線配置---"使用windows配置您的無線網路"--然後點"添加"--寫上你設置的SSID名稱.OK後,---再點屬性,要確認"自動連接到非手選網路"的勾未打上,確定就可以----讓你剛剛設置的SSID號排在最上方,因為SSID廣播關閉後,是你的電腦無線網卡去搜尋路由器,在最上方,可以首先訪問你的無線網路,且避免連接到其他的無線網路.(備注:如果這樣還是上不去網的話,你可以點開無線網路的TCP/IP設置,寫上內網的固定 ip,網關,DNS.一般網關,DNS都是你路由器的ip.)
二、WEP加密及MAC地址限制
1、啟用WEP加密。
打開路由器管理界面,「無線設置」->「基本設置」:
「安全認證類型」選擇「自動選擇」,因為「自動選擇」就是在「開放系統」和「共享密鑰」之中自動協商一種,而這兩種的認證方法的安全性沒有什麼區別。
「密鑰格式選擇」選擇「16進制」,還有可選的是「ASCII碼」,這里的設置對安全性沒有任何影響,因為設置「單獨密鑰」的時候需要「16進制」,所以這里推薦使用「16進制」。
「密鑰選擇」必須填入「密鑰2」的位置,這里一定要這樣設置,因為新的升級程序下,密鑰1必須為空,目的是為了配合單獨密鑰的使用(單獨密鑰會在下面的MAC地址過濾中介紹),不這樣設置的話可能會連接不上。密鑰類型選擇64/128/152位,選擇了對應的位數以後「密鑰類型」的長度會變更,本例中我們填入了26位參數11111111111111111111111111 。因為「密鑰格式選擇」為「16進制」,所以「密鑰內容」可以填入字元是0、1、2、3、4、5、6、7、8、9、a、b、c、d、e、f,設置完記得保存。
如果不需要使用「單獨密鑰」功能,網卡只需要簡單配置成加密模式,密鑰格式,密鑰內容要和路由器一樣,密鑰設置也要設置為「WEP密鑰2」的位置(和路由器對應),這時候就可以連接上路由器了。
2、單獨密鑰的使用。
這里的MAC地址過濾可以指定某些MAC地址可以訪問本無線網路而其他的不可以,「單獨密鑰」功能可以為單個MAC指定一個單獨的密鑰,這個密鑰就只有帶這個MAC地址的網卡可以用,其他網卡不能用,增加了一定的安全性。
打開「無線設置」->「MAC地址過濾」,在「MAC地址過濾」頁面「添加新條目」,如下界面是填入參數的界面:
「MAC地址」參數我們填入的是本例中TL-WN620G的MAC地址00-0A-EB-88-65-06 ,
「類型」可以選擇「允許」/「禁止」/「64位密鑰」/「128位密鑰」/「152位密鑰」 ,本例中選擇了64位密鑰。「允許」和「禁止」只是簡單允許或禁止某一個MAC地址的通過,這和之前的MAC地址功能是一樣的,這里不作為重點。
「密鑰」填入了10位AAAAAAAAAA ,這里沒有「密鑰格式選擇」,只支持「16進制」的輸入。
「狀態」選擇生效。
最後點擊保存即可,保存後會返回上一級界面:
注意到上面的「MAC地址過濾功能」的狀態是「已開啟」,如果是「已關閉」,右邊的按鈕會變成「開啟過濾」,點擊這個按鈕來開啟這一功能。至此,無線路由器這一端配置完成!
順便說一下怎樣獲取網卡MAC地址?可以參考我司網站「網路教室」 文檔《路由器配置指南》相關內容,通過電腦DOS界面運行ipconfig/all這個命令會彈出如下類似信息,紅線勾勒部分「Physical Address」對應的就是處於連接狀態的網卡的MAC地址;
二、網卡TL-WN620G的配置
打開TL-WN620G客戶端應用程序主界面——「用戶文件管理」—>「修改」,會彈出用戶配置文件管理對話框。首先是「常規」頁填入和無線路由器端相同的SSID —— 本例為「TP-LINK」
然後點擊「高級」頁,紅線勾勒部分注意選擇認證模式,可以保持和無線路由器端相同,由於我們的路由器上選擇了「自動選擇」模式,所以這里無論選擇什麼模式都是可以連接的。
如果這個選項是灰色,就請先配置「安全」頁面的參數,回過頭再來這里配置;
接下來我們進入「安全」頁
先選擇「預共享密鑰(靜態WEP)」,然後點擊「配置…..」按鈕,進入設置共享密鑰的界面:
上面用紅線勾勒的參數說明一下:
1)、「密鑰格式」必須選擇「十六進制(0-9,A-F);
2)、總共需要填入兩個密鑰,密鑰1對應的是路由器 「無線配置」->「MAC地址過濾」頁面下設置的單獨密鑰,本例為64位長度的密鑰AAAAAAAAAA ;密鑰2對應的是路由器「無線配置」->「基本設置」頁面下設置的公共密鑰,本例為128位長度的密鑰:11111111111111111111111111 。
3)、最後要選中「WEP密鑰1」。(注意「WEP密鑰1」後面的圓點)
4)、單獨密鑰和公共密鑰的位置是不能更改的。
配置完成,連續點擊兩次「取定」回到客戶端應用程序主界面,我們可以看到網卡和無線路由器已經建立了連接,如下圖所示:
這時候我們進入路由器「無線設置」-「主機狀態」,可以看到已連接的網卡MAC地址;在「主機狀態」頁面,表裡第一個顯示的是無線路由器的MAC地址;
F. 無線網路怎樣設置密鑰啊。。。急
你 先進地址 192.168.1.1 點無線參數-基本設置-確定 開啟安全設置
--安全類型 選 wpa-psk/wpa2/psk
--安全選項選 wpa2/psk
--加密方法選 AES
--psk密碼 自己選
最好在 mac地址過濾 開啟
增加自己主機的無線網卡的mac地址
過濾規則線 「禁止 列表中生效規則之外的MAC地址訪問本無線網路」
如何獲取本機的MAC?
對於數量不多的幾台機器,我們可以這樣獲取MAC地址:在Windows 98/Me中,依次單擊「開始」→「運行」 →輸入「winipcfg」→回車。即可看到MAC地址。 在Windows 2000/XP中,依次單擊「開始」→「運行」→輸入「CMD」→回車→輸入「ipconfig /all」→回車。即可看到MAC地址。或者是依次單擊「開始」→「運行」→輸入「CMD」→回車→輸入「getmac」→回車,即可快速獲取MAC地址了。
G. 無線感測網路協議包括哪三種方式
ZIGBEE協議。最適合感測器網路的無線通信技術。相應的就是ZIGBEE協議,實現是ZIGBEE協議棧。
此外無線通信技術還有WIFI,藍牙,GPRS等
H. 如何選擇感測器網路安全協議的加密演算法
無線感測器網路的研究起步於20世紀90年代末期,但安全問題的研究成果近幾 年才出現,無線感測器網路安全方案正處於理論研究階段。由於在無線感測器網路中 數據是以無線的形式傳輸,信息隨時可能被非法竊聽、篡改以及破壞,因此,保證數 據在無線傳輸時的安全性顯得尤為重要,數據加密技術是保證數據安全性的一種重要 手段,目前,雖然已經存在許多成熟的加密演算法,但是由於無線感測器節點自身的特 殊性,使得大多數的加密演算法都無法應用到無線感測器網路中。在無線感測器網路中 如何選擇加密演算法以及如何實現加密演算法,便成為無線感測器網路安全通信的關鍵。 本文研究了加密演算法在無線感測器網路中的應用實現。在概述無線感測器網路的 基礎上,針對無線感測器網路自身的特點,提出了在無線感測器網路節點安全通信中, 加密演算法必須遵循的原則;設計了加密演算法在無線感測器網路中的模擬方案,選取了 RC5/6演算法作為節點的加密演算法,TOSSIM作為加密演算法的模擬平台,實現了加密算 法在無線感測器網路中對數據加、解密的模擬實驗;最後,通過對模擬結果進行分析, 驗證了加密演算法遵循的原則是合理的,表明RC5/6演算法適合於無線感測器網路數據加 密應用,可以達到安全通信的要求。
I. 無線感測器網路可能採用哪些無線通信方式
基於XL.SN智能感測網路的無線感測器數據採集傳輸系統,可以實現對溫度,壓力,氣體,溫濕度,液位,流量,光照,降雨量,振動,轉速等數據參數的實時採集,無線傳輸,無線監控與預警。在實際應用中,無線感測器數據採集傳輸系統常見的包括深圳信立科技農業物聯網智能大棚環境監控系統,智慧養殖環境監控系統,智慧管網管溝監控系統,倉儲館藏環境監控系統,機房實驗室環境監控系統,危險品倉庫環境監控系統,大氣環境監控系統,智能製造運行過程監控系統,能源管理系統,電力監控系統等。
無線感測器數據採集傳輸系統,比較常用的的無線數據傳輸組網技術包括433MHZ,Zigbee(2.4G),運營商網路(GPRS)等三種方式,其中433MHZ,Zigbee(2.4G)屬於近距離無線通訊技術,並且都使用ISM免執照頻段。運營商網路(GPRS)屬於遠距離無線通訊技術,按數據流量收費。
1、基於Zigbee(2.4G)的智能感測網路
ZigBee的特點是低功耗、高可靠性、強抗干擾性,布網容易,通過無線中繼器可以非常方便地將網路覆蓋范圍擴展至數十倍,因此從小空間到大空間、從簡單空間環境到復雜空間環境的場合都可以使用。但相比於WiFi技術,Zigbee是定位於低傳輸速率的應用,因此Zigbee顯然不適合於高速上網、大文件下載等場合。對於餐飲行業的無線點餐應用,由於其數據傳輸量一般來說都不是很大,因此Zigbee技術是非常適合該應用的。
2、基於433MHz的智能感測網路
433MHz技術使用433MHz無線頻段,因此相比於WiFi和Zigbee,433MHz的顯著優勢是無線信號的穿透性強、能夠傳播得更遠。但其缺點也是很明顯的,就是其數據傳輸速率只有9600bps,遠遠小於WiFi和Zigbee的數據速率,因此433Mhz技術一般只適用於數據傳輸量較少的應用場合。從通訊可靠性的角度來講,433Mhz技術和WiFi一樣,只支持星型網路的拓撲結構,通過多基站的方式實現網路覆蓋空間的擴展,因此其無線通訊的可靠性和穩定性也遜於Zigbee技術。另外,不同於Zigbee和WiFi技術中所採用的加密功能,433Mhz網路中一般採用數據透明傳輸協議,因此其網路安全可靠性也是較差的。
3、基於運營商的智能感測網路
GPRS無線傳輸設備主要針對工業級應用,是一款內嵌GSM/GPRS核心單元的無線Modem,採用GSM/GPRS網路為傳輸媒介,是一款基於移動GSM短消息平台和GPRS數據業務的工業級通訊終端。它利用GSM 移動通信網路的簡訊息和GPRS業務為用戶搭建了一個超遠距離的數據傳輸平台。
標准工業規格設計,提供RS232標准介面,直接與用戶設備連接,實現中英文簡訊功能,彩信功能,GPRS數據傳輸功能。具有完備的電源管理系統,標準的串列數據介面。外觀小巧,軟體介面簡單易用。可廣泛應用於工業簡訊收發、GPRS實時數據傳輸等諸多工業與民用領域。