1. 求感測器畢業論文前言、摘要!
摘要:本文簡述了無線感測器網路的定義、組成及特點,並結合其特點介紹了無線感測器網路在各行各業廣泛的應用價值和未來發展前景以及目前存在的技術問題。 關鍵詞:無線感測器網路;組成;應用;發展 科技發展的腳步越來越快,人類已經置身於信息時代。而作為信息獲取最重要和最基本的技術——感測器技術,也得到了極大的發展。感測器信息獲取技術已經從過去的單一化漸漸向集成化、微型化和網路化方向發展,並將會帶來一場信息革命。具有感知能力、計算能力和通信能力的無線感測器網路(WSN, wireless sensor networks)綜合了感測器技術、嵌人式計算技術、分布式信息處理技術和通信技術,能夠協作地實時監測、感知和採集網路分布區域內的各種環境或監測對象的信息,並對這些信息進行處理,獲得詳盡而准確的信息,傳送到需要這些信息的用戶。 由於WSN的巨大應用價值,它已經引起了世界許多國家的軍事部門、工業界和學術界的廣泛關注,被廣泛地應用於軍事,工業過程式控制制、國家安全、環境監測等領域。 無線感測器網路綜合了感測器技術、嵌入式計算技術、現代網路及無線通信技術、分布式信息處理技術等多種領域,是當前計算機網路研究的熱點。 一、發展概述 早在上世紀70年代,就出現了將傳統感測器採用點對點傳輸、連接感測控制器而構成感測器網路雛形,我們把它歸之為第一代感測器網路。隨著相關學科的不斷發展和進步,感測器網路同時還具有了獲取多種信息信號的綜合處理能力,並通過與感測控制器的相聯,組成了有信息綜合和處理能力的感測器網路,這是第二代感測器網路。而從上世紀末開始,現場匯流排技術開始應用於感測器網路,人們用其組建智能化感測器網路,大量多功能感測器被運用,並使用無線技術連接,無線感測器網路逐漸形成。 無線感測器網路是新一代的感測器網路,具有非常廣泛的應用前景,其發展和應用,將會給人類的生活和生產的各個領域帶來深遠影響。發達國家如美國,非常重視無線感測器網路的發展,IEEE正在努力推進無線感測器網路的應用和發展,波士頓大學(Boston University)還於最近創辦了感測器網路協會(Sensor Network Consortium),期望能促進感測器聯網技術開發。美國的《技術評論》雜志在論述未來新興十大技術時,更是將無線感測器網路列為第一項未來新興技術,《商業周刊》預測的未來四大新技術中,無線感測器網路也列入其中。可以預計,無線感測器網路的廣泛是一種必然趨勢,它的出現將會給人類社會帶來極大的變革。 二、無線感測器網路的定義和特點 無線感測器網路可以看成是由數據獲取網路、數據分布網路和控制管理中心三部分組成的。其主要組成部分是集成有感測器、數據處理單元和通信模塊的節點,各節點通過協議自組成一個分布式網路,再將採集來的數據通過優化後經無線電波傳輸給信息處理中心。 無線感測器網路操作系統Tiny0S141的研製者,Jason Hill博士把WSN定義為: Sensing+CPU+Radio=Thousands of potential application 哈爾濱工業大學的李建中教授將WSN定義為:WSN是由一組感測器節點以自組織的方式構成的有線或無線網路,其目的是協作地感知、採集和處理網路覆蓋的地理區域中感知對象的信息,並發布給觀察者。從硬體上看,WSN節 點主要由數據採集單元、數據處理單元、無線數據收發單元以及小型電池單元組成,通常尺寸很小,具有低成本、低功耗、多功能等特點;從軟體上看,它藉助於節點中內置感測器有效探測所處區域的溫度、濕度、光強度、壓力等環境參數以及待測對象的電壓、電流等物理參數,並通過無線網路將探測信息傳送到數據匯聚中心 進行處理、分析和轉發。
原文出自: http://www.3qlw.com/gongxue/tongxinxue/2010-07-22/1420.html
2. 無線感測器網路數據鏈路層的研究
數據鏈路層:就是利用物理層提供的數據傳輸功能,將物理層的物理連接鏈路轉換成邏輯連接鏈路,從而形成一條沒有差錯的鏈路,保證鏈路的可靠性。
數據鏈路層也向它的上層——網路層提供透明的數據傳送服務,主要負責數據流多路復用、數據幀監測、媒體介入和差錯控制,保證無線感測器網路內點到點以及點到多點的連接。
無線感測器網路的數據鏈路層研究的主要內容就是MAC和差錯控制。
怎樣實現無線感測器網路中無線信道的共享,即介質控制協議(MAC)的實現是無線感測器網路數據鏈路層研究的一個重點,MAC協議的好壞直接影響網路的性能優劣。
3. 無線網路(Wi-Fi) 畢業設計
相關範文:
無線感測器網路自身定位演算法開題報告
1.概述:
無線感測器網路(WSNs)是由許多感測器節點通過自組織的形式組成的一種特殊的Ad-hoc網路,每一個感測器節點由數據採集模塊、數據處理和控制模塊、通信模塊和供電模塊等組成,此外還可能包括與應用相關的其他部分,比如定位系統、動力系統等。藉助於內置多樣的感測器,可以測量溫度、濕度、氣壓、化學等我們感興趣的物理現象。
2.研究動機:
感測器節點的自身定位是感測器網路應用的基礎。例如目標監測與跟蹤、基於位置信息的路由、智能交通、物流管理等許多應用都要求網路節點預先知道自身的位置,並在通信和協作過程中利用位置信息完成應用要求。若沒有位置信息,感測器節點所採集的數據幾乎是沒有應用價值的。所以,在無線感測器網路的應用中,節點的定位成為關鍵的問題。
3.研究意義:
最早期的基於無線網路的室內定位系統,都採用了額外的硬體和設備,如AT&T Cambridge的Active Bat系統,採用了超聲波測距技術,定位的物體攜帶由控制邏輯、無線收發器和超聲波換能器組成的稱為Bat的設備,發出的信號由安裝在房間天花板上的超聲波接收器接收,所有接收器通過有線網路連接;在微軟的RADAR系統中,定位目標要攜帶具有測量RF信號強度的感測器,還要有基站定期發送RF信號,在事先實現的RF信號的資料庫中查詢實現定位;MIT開發了最早的鬆散耦合定位系統Cricket,錨節點(預先部署位置的節點)隨機地同時發射RF和超聲波信號,RF信號中包括該錨節點的位置,未知節點接收這些信號,然後使用TDOA技術測量與錨節點的距離來實現定位。
以上系統都需要事先的網路部署或數據生成工作,無法適用於Ad-hoc網路。現階段研究較多的是不基於測距(Range-free)的定位演算法,這樣就無需增加額外的硬體,還可以減小感測器節點的體積。
4.研究目標:
(1) 較小的能耗
感測器節點所攜帶能源有限和不易更換的特點要求定位演算法應該是低能耗的。
(2) 較高的定位精度
這是衡量定位演算法的一個重要指標,一般以誤差與無線射程的比值來計算,20%表示定位誤差相當於節點無線射程的20%。
(3) 計算方式是分布式的
分布式的定位演算法,即計算節點位置的工作在節點本地完成,分布式演算法可以應用於大規模的感測器網路。
(4) 較低的錨節點密度
錨節點定位通常依賴人工部署或GPS實現。大量的人工部署不適合Ad-hoc網路,而且錨節點的成本比普通節點要高兩個數量級。
(5) 較短的覆蓋時間。
5.參考文獻:
《無線感測器網路:體系結構與協議》作者:Edgar H. Callaway. Jr
《無線感測器網路的理論及應用》作者:王殊
《無線感測器網路節點定位演算法研究》作者:端木慶敏 Publish: 2007-10-18 Hits:591
《無線感測器網路定位演算法研究》作者:申屠明2007-07-11
《無線感測器網路節點自身定位演算法的研究(碩士)》來自:中國文檔網
《無線感測器網路DV-Hop定位演算法的改進》作者:龔思來2007年07月13日
其他相關:
http://www.jianshewang.com/lunwen/cheng/txx/200811/2200.html
僅供參考,請自借鑒
希望對您有幫助
4. 感測器中,無線感測器網路的定義,目的,起源是什麼呢
無線感測器網路的定義是:由大量、靜止或移動的感測器節點,以自組織和多跳的方式構成的無線網路,目的是以協作的方式感知、採集、處理和傳輸在網路覆蓋區域內被感知對象的信息,並把這些信息發送給用戶。無線感測器網路起源於美國軍方的研究,它具有自組織、無中心、動態性、多跳網路、硬體資源有限、能量受限、大規模網路、以數據為中心的特點,綜合了感測器技術、嵌入式計算技術、網路與通信技術、分布式信息處理技術等多種技術,體現了多個學科的相互融合。
5. 無線感測器網路節點部署問題研究
無線感測器網路是近幾年發展起來的一種新興技術,在條件惡劣和無人堅守的環境監測和事件跟蹤中顯示了很大的應用價值。節點部署是無線感測器網路工作的基礎,對網路的運行情況和壽命有很大的影響。部署問題涉及覆蓋、連接和節約能量消耗3個方面。該文重點討論了網路部署中的覆蓋問題,綜述了現有的研究成果,總結了今後的熱點研究方向,為以後的研究奠定了基礎。
基於虛擬勢場的有向感測器網路覆蓋增強演算法
陶 丹+, 馬華東, 劉 亮
(智能通信軟體與多媒體北京市重點實驗室(北京郵電大學),北京 100876)
A Virtual Potential Field Based Coverage-Enhancing Algorithm for Directional Sensor Networks
TAO Dan+, MA Hua-Dong, LIU Liang
(Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia (Beijing University of Posts and Telecommunications), Beijing 100876, China)
+ Corresponding author: Phn: +86-10-62282277, Fax: +86-10-62283523, E-mail: [email protected], http://www.bupt.e.cn
Tao D, Ma HD, Liu L. A virtual potential field based coverage-enhancing algorithm for directional sensor networks. Journal of Software, 2007,18(5):11521163. http://www.jos.org.cn/1000-9825/18/1152.htm
Abstract: Motivated by the directional sensing feature of video sensor, a direction adjustable sensing model is proposed first in this paper. Then, the coverage-enhancing problem in directional sensor networks is analyzed and defined. Moreover, a potential field based coverage-enhancing algorithm (PFCEA) is presented. By introcing the concept of 「centroid」, the pending problem is translated into the centroid points』 uniform distribution problem. Centroid points repel each other to eliminate the sensing overlapping regions and coverage holes, thus enhance the whole coverage performance of the directional sensor network. A set of simulation results are performed to demonstrate the effectiveness of the proposed algorithm.
Key words: directional sensor network; directional sensing model; virtual potential field; coverage enhancement
摘 要: 首先從視頻感測器節點方向性感知特性出發,設計了一種方向可調感知模型,並以此為基礎對有向感測器網路覆蓋增強問題進行分析與定義;其次,提出了一種基於虛擬勢場的有向感測器網路覆蓋增強演算法PFCEA (potential field based coverage-enhancing algorithm).通過引入「質心」概念,將有向感測器網路覆蓋增強問題轉化為質心均勻分布問題,以質心點作圓周運動代替感測器節點感測方向的轉動.質心在虛擬力作用下作擴散運動,以消除網路中感知重疊區和盲區,進而增強整個有向感測器網路覆蓋.一系列模擬實驗驗證了該演算法的有效性.
關鍵詞: 有向感測器網路;有向感知模型;虛擬勢場;覆蓋增強
中圖法分類號: TP393 文獻標識碼: A
覆蓋作為感測器網路中的一個基本問題,反映了感測器網路所能提供的「感知」服務質量.優化感測器網路覆蓋對於合理分配網路的空間資源,更好地完成環境感知、信息獲取任務以及提高網路生存能力都具有重要的意義[1].目前,感測器網路的初期部署有兩種策略:一種是大規模的隨機部署;另一種是針對特定的用途進行計劃部署.由於感測器網路通常工作在復雜的環境下,而且網路中感測器節點眾多,因此大都採用隨機部署方式.然而,這種大規模隨機投放方式很難一次性地將數目眾多的感測器節點放置在適合的位置,極容易造成感測器網路覆蓋的不合理(比如,局部目標區域感測器節點分布過密或過疏),進而形成感知重疊區和盲區.因此,在感測器網路初始部署後,我們需要採用覆蓋增強策略以獲得理想的網路覆蓋性能.
目前,國內外學者相繼開展了相關覆蓋增強問題的研究,並取得了一定的進展[25].從目前可獲取的資料來看,絕大多數覆蓋問題研究都是針對基於全向感知模型(omni-directional sensing model)的感測器網路展開的[6],
即網路中節點的感知范圍是一個以節點為圓心、以其感知距離為半徑的圓形區域.通常採用休眠冗餘節點[2,7]、
重新調整節點分布[811]或添加新節點[11]等方法實現感測器網路覆蓋增強.
實際上,有向感知模型(directional sensing model)也是感測器網路中的一種典型的感知模型[12],即節點的感知范圍是一個以節點為圓心、半徑為其感知距離的扇形區域.由基於有向感知模型的感測器節點所構成的網路稱為有向感測器網路.視頻感測器網路是有向感測器網路的一個典型實例.感知模型的差異造成了現有基於全向感知模型的覆蓋研究成果不能直接應用於有向感測器網路,迫切需要設計出一系列新方法.
在早期的工作中[13],我們率先開展有向感測器網路中覆蓋問題的研究,設計一種基本的有向感知模型,用以刻畫視頻感測器節點的方向性感知特性,並研究有向感測器網路覆蓋完整性以及通信連通性問題.同時,考慮到有向感測器節點感測方嚮往往具有可調整特性(比如PTZ攝像頭的推拉搖移功能),我們進一步提出一種基於圖論和計算幾何的集中式覆蓋增強演算法[14],調整方案一經確定,網路中所有有向感測器節點並發地進行感測方向的一次性調整,以此獲得網路覆蓋性能的增強.但由於未能充分考慮到有向感測器節點局部位置及感測方向信息,因而,該演算法對有向感測器網路覆蓋增強的能力相對有限.
本文將基本的有向感知模型擴展為方向可調感知模型,研究有向感測器網路覆蓋增強問題.首先定義了方向可調感知模型,並分析隨機部署策略對有向感測器網路覆蓋率的影響.在此基礎上,分析了有向感測器網路覆蓋增強問題.本文通過引入「質心」概念,將待解決問題轉化為質心均勻分布問題,提出了一種基於虛擬勢場的有向感測器網路覆蓋增強演算法PFCEA(potential field based coverage-enhancing algorithm).質心在虛擬力作用下作擴散運動,逐步消除網路中感知重疊區和盲區,增強整個網路覆蓋性能.最後,一系列模擬實驗驗證了PFCEA演算法的有效性.
1 有向感測器網路覆蓋增強問題
本節旨在分析和定義有向感測器網路覆蓋增強問題.在此之前,我們對方向可調感知模型進行簡要介紹.
1.1 方向可調感知模型
不同於目前已有的全向感知模型,方向可調感知模型的感知區域受「視角」的限制,並非一個完整的圓形區域.在某時刻t,有向感測器節點具有方向性感知特性;隨著其感測方向的不斷調整(即旋轉),有向感測器節點有能力覆蓋到其感測距離內的所有圓形區域.由此,通過簡單的幾何抽象,我們可以得到有向感測器節點的方向可調感知模型,如圖1所示.
定義1. 方向可調感知模型可用一個四元組P,R, ,
表示.其中,P=(x,y)表示有向感測器節點的位置坐標;R表示節
點的最大感測范圍,即感測半徑;單位向量 = 為扇形感知區域的中軸線,即節點在某時刻t時的感測方向; 和 分別是單位向量 在X軸和Y軸方向上的投影分量;表示邊界距離感測向量 的感測夾角,2代表感測區域視角,記作FOV.
特別地,當=時,傳統的全向感知模型是方向可調感知模型的一個特例.
若點P1被有向感測器節點vi覆蓋成立,記為viP1,當且僅當滿足以下條件:
(1) ,其中, 代表點P1到該節點的歐氏距離;
(2) 與 間夾角取值屬於[,].
判別點P1是否被有向感測器節點覆蓋的一個簡單方法是:如果 且 ,那麼,點P1
被有向感測器節點覆蓋;否則,覆蓋不成立.另外,若區域A被有向感測節點覆蓋,當且僅當區域A中任何一個點都被有向感測節點覆蓋.除非特別說明,下文中出現的「節點」和「感測器節點」均滿足上述方向可調感知模型.
1.2 有向感測器網路覆蓋增強問題的分析與定義
在研究本文內容之前,我們需要作以下必要假設:
A1. 有向感測器網路中所有節點同構,即所有節點的感測半徑(R)、感測夾角()參數規格分別相同;
A2. 有向感測器網路中所有節點一經部署,則位置固定不變,但其感測方向可調;
A3. 有向感測器網路中各節點都了解自身位置及感測方向信息,且各節點對自身感測方向可控.
假設目標區域的面積為S,隨機部署的感測器節點位置滿足均勻分布模型,且目標區域內任意兩個感測器節點不在同一位置.感測器節點的感測方向在[0,2]上也滿足均勻分布模型.在不考慮感測器節點可能落入邊界區域造成有效覆蓋區域減小的情況下,由於每個感測器節點所監控的區域面積為R2,則每個感測器節點能監測整個目標區域的概率為R2/S.目標區域被N個感測器節點覆蓋的初始概率p0的計算公式為(具體推導過程參見文獻[14])
(1)
由公式(1)可知,當目標區域內網路覆蓋率至少達到p0時,需要部署的節點規模計算公式為
(2)
當網路覆蓋率分別為p0和p0+p時,所需部署的感測器節點數目分別為ln(1p0)/,ln(1(p0+p))/.其中, =ln(SR2)lnS.因此,感測器節點數目差異N由公式(3)可得,
(3)
當目標區域面積S、節點感測半徑R和感測夾角一定時,為一常數.此時,N與p0,p滿足關系如圖2所示(S=500500m2,R=60m,=45º).從圖中我們可以看出,當p0一定時,N隨著p的增加而增加;當p一定時,N隨著p0的增加而增加,且增加率越來越大.因此,當需要將覆蓋率增大p時,則需多部署N個節點(p0取值較大時(80%),p取值每增加1%,N就有數十、甚至數百的增加).如果採用一定的覆蓋增強策略,無須多部署節點,就可以使網路覆蓋率達到p0+p,大量節省了感測器網路部署成本.
設Si(t)表示節點vi在感測向量為 時所覆蓋的區域面積.運算操作Si(t)Sj(t)代表節點vi和節點vj所能覆蓋到的區域總面積.這樣,當網路中節點感測向量取值為 時,有向感測器網路覆蓋率可表
示如下:
(4)
因此,有向感測器網路覆蓋增強問題歸納如下:
問題:求解一組 ,使得對於初始的 ,有 取值
接近最大.
Fig.2 The relation among p0, p and N
圖2 p0,p和N三者之間的關系
2 基於虛擬勢場的覆蓋增強演算法
2.1 傳統虛擬勢場方法
虛擬勢場(virtual potential field)的概念最初應用於機器人的路徑規劃和障礙躲避.Howard等人[8]和Pori等人[9]先後將這一概念引入到感測器網路的覆蓋增強問題中來.其基本思想是把網路中每個感測器節點看作一個虛擬的電荷,各節點受到其他節點的虛擬力作用,向目標區域中的其他區域擴散,最終達到平衡狀態,即實現目標區域的充分覆蓋狀態.Zou等人[15]提出了一種虛擬力演算法(virtual force algorithm,簡稱VFA),初始節點隨機部署後自動完善網路覆蓋性能,以均勻網路覆蓋並保證網路覆蓋范圍最大化.在執行過程中,感測器節點並不移動,而是計算出隨機部署的感測器節點虛擬移動軌跡.一旦感測器節點位置確定後,則對相應節點進行一次移動操作.Li等人[10]為解決感測器網路布局優化,在文獻[15]的基礎上提出了涉及目標的虛擬力演算法(target involved virtual force algorithm,簡稱TIVFA),通過計算節點與目標、熱點區域、障礙物和其他感測器之間的虛擬力,為各節點尋找受力平衡點,並將其作為該感測器節點的新位置.
上述利用虛擬勢場方法優化感測器網路覆蓋的研究成果都是基於全向感知模型展開的.假定感測器節點間存在兩種虛擬力作用:一種是斥力,使感測器節點足夠稀疏,避免節點過於密集而形成感知重疊區域;另一種是引力,使感測器節點保持一定的分布密度,避免節點過於分離而形成感知盲區[15].最終利用感測器節點的位置移動來實現感測器網路覆蓋增強.
2.2 基於虛擬勢場的有向感測器網路覆蓋增強演算法
在實際應用中,考慮到感測器網路部署成本,所有部署的感測器節點都具有移動能力是不現實的.另外,感測器節點位置的移動極易引起部分感測器節點的失效,進而造成整個感測器網路拓撲發生變化.這些無疑都會增加網路維護成本.因而,本文的研究工作基於感測器節點位置不變、感測方向可調的假設.上述假設使得直接利用虛擬勢場方法解決有向感測器網路覆蓋增強問題遇到了麻煩.在傳統的虛擬勢場方法中,感測器節點在勢場力的作用下進行平動(如圖3(a)所示),而基於本文的假設,感測器節點表現為其扇形感知區域在勢場力的作用下以感測器節點為軸心進行旋轉(如圖3(b)所示).
為了簡化扇形感知區域的轉動模型,我們引入「質心(centroid)」的概念.質心是質點系中一個特定的點,它與物體的平衡、運動以及內力分布密切相關.感測器節點的位置不變,其感測方向的不斷調整可近似地看作是扇形感知區域的質心點繞感測器節點作圓周運動.如圖3(b)所示,一個均勻扇形感知區域的質心點位於其對稱軸上且與圓心距離為2Rsin/3.每個感測器節點有且僅有一個質心點與其對應.我們用c表示感測器節點v所對應的質心點.本文將有向感測器網路覆蓋增強問題轉化為利用傳統虛擬勢場方法可解的質心點均勻分布問題,如圖4所示.
Fig.3 Moving models of sensor node
圖3 感測器節點的運動模型
Fig.4 The issue description of coverage enhancement in directional sensor networks
圖4 有向感測器網路覆蓋增強問題描述
2.2.1 受力分析
利用虛擬勢場方法增強有向感測器網路覆蓋,可以近似等價於質心點-質心點(c-c)之間虛擬力作用問題.我們假設質心點-質心點之間存在斥力,在斥力作用下,相鄰質心點逐步擴散開來,在降低冗餘覆蓋的同時,逐漸實現整個監測區域的充分高效覆蓋,最終增強有向感測器網路的覆蓋性能.在虛擬勢場作用下,質心點受來自相鄰一個或多個質心點的斥力作用.下面給出質心點受力的計算方法.
如圖5所示,dij表示感測器節點vi與vj之間的歐氏距離.只有當dij小於感測器節點感測半徑(R)的2倍時,它們的感知區域才存在重疊的可能,故它們之間才存在產生斥力的作用,該斥力作用於感測器節點相應的質心點ci和cj上.
定義2. 有向感測器網路中,歐氏距離不大於節點感測半徑(R)2倍的一對節點互為鄰居節點.節點vi的鄰居節點集合記作i.即i={vj|Dis(vi,vj)2R,ij}.
我們定義質心點vj對質心點vi的斥力模型 ,見公式(5).
(5)
其中,Dij表示質心點ci和cj之間的歐氏距離;kR表示斥力系數(常數,本文取kR=1);ij為單位向量,指示斥力方向(由質心點cj指向ci).公式(5)表明,只有當感測器節點vi和vj互為鄰居節點時(即有可能形成冗餘覆蓋時),其相應的質心點ci和cj之間才存在斥力作用.質心點所受斥力大小與ci和cj之間的歐氏距離成反比,而質心點所受斥力方向由ci和cj之間的相互位置關系所決定.
質心點ci所受合力是其受到相鄰k個質心點排斥力的矢量和.公式(6)描述質心點ci所受合力模型 .
(6)
通過如圖6所示的實例,我們分析質心點的受力情況.圖中包括4個感測器節點:v1,v2,v3和v4,其相應的質心
點分別為c1,c2,c3和c4.以質心點c1為例,由於d122R,故 ,質心點c1僅受到來自質心點c3和c4的斥力,其所受合力 .感測器節點感測方向旋轉導致質心點的運動軌跡並不是任意的,而是固定繞感測器節點作圓周運動.因此,質心點的運動僅僅受合力沿圓周切線方向分量 的影響.
Fig.6 The force on centroid
圖6 質心點受力
2.2.2 控制規則(control law)
本文基於一個虛擬物理世界研究質心點運動問題,其中作用力、質心點等都是虛擬的.該虛擬物理世界的構建是建立在求解問題特徵的基礎上的.在此,我們定義控制規則,即規定質心點受力與運動之間的關系,以達到質心點的均勻分布.
質心點在 作用下運動,受到運動學和動力學的雙重約束,具體表現如下:
(1) 運動學約束
在傳統感測器網路中利用虛擬勢場方法移動感測器節點的情況下,由於感測器節點向任意方向運動的概率是等同的,我們大都忽略其所受的運動學約束[8].而在轉動模型中,質心點的運動不是任意方向的,受合力沿圓
周切線方向分量 的影響,只能繞其感測器節點作圓周運動.
質心點在運動過程中受到的虛擬力是變化的,但對感測器網路系統來說,感測器節點之間每時每刻都交換鄰居節點位置及感測方向信息是不現實的.因此,我們設定鄰居節點間每隔時間步長t交換一次位置及感測方向信息,根據交換信息計算當前時間步長質心點所受合力,得出轉動方向及弧長.同時,問題求解的目的在於將節點的感測方向調整至一個合適的位置.在此,我們不考慮速度和加速度與轉動弧長之間的關系.
(2) 動力學約束
動力學約束研究受力與運動之間的關系.本運動模型中的動力學約束主要包含兩方面內容:
• 每個時間步長t內,質心點所受合力與轉動方向及弧長之間的關系;
• 質心點運動的靜止條件.
在傳統感測器網路中利用虛擬勢場方法移動感測器節點的情況下,在每個時間步長內,感測器節點的運動速度受限於最大運動速度vmax,而不是隨感測器節點受力無止境地增加.通過此舉保證微調方法的快速收斂.在本轉動模型中,我們同樣假設質心點每次固定以較小的轉動角度進行轉動,通過多次微調方法逐步趨向最優解,即在每個時間步長t內,質心點轉動的方向沿所受合力在圓周切線方向分量,轉動大小不是任意的,而是具有固定轉動角度.採用上述方法的原因有兩個:
• 運動過程中,質心點受力不斷變化,且變化規律很難用簡單的函數進行表示,加之上述運動學約束和問題特徵等因素影響,我們很難得出一個簡明而合理的質心點所受合力與轉動弧長之間的關系.
• 運動過程中,質心點按固定角度進行轉動,有利於簡化計算過程,減少節點的計算負擔.同時,我們通過分析模擬實驗數據發現,該方法具有較為理想的收斂性(具體討論參見第3.2節).
固定轉動角度取值不同對PFCEA演算法性能具有較大的影響,這在第3.3節中將加以詳細的分析和說明.
當質心點所受合力沿圓周切線方向分量為0時,其到達理想位置轉動停止.如圖7所示,我們假定質心點在圓周上O點處合力切向分量為0.由於質心點按固定轉動角度進行轉動,因此,它
未必會剛好轉動到O點處.當質心點處於圖7中弧 或 時,會
因合力切向分量不為0而導致質心點圍繞O點附近往復振動.因此,為避免出現振動現象,加速質心點達到穩定狀態,我們需要進一步限定質心點運動的停止條件.
當質心點圍繞O點附近往復振動時,其受合力的切向分量很
小.因此,我們設定受力門限,當 (本文取=10e6),即可認
定質心點已達到穩定狀態,無須再運動.經過數個時間步長t後,當網路中所有質心點達到穩定狀態時,整個感測器網路即達到穩定狀態,此時對應的一組 ,該
組解通常為本文覆蓋增強的較優解.
2.3 演算法描述
基於上述分析,本文提出了基於虛擬勢場的網路覆蓋增強演算法(PFCEA),該演算法是一個分布式演算法,在每個感測器節點上並發執行.PFCEA演算法描述如下:
輸入:節點vi及其鄰居節點的位置和感測方向信息.
輸出:節點vi最終的感測方向信息 .
1. t0; //初始化時間步長計數器
2. 計算節點vi相應質心點ci初始位置 ;
3. 計算節點vi鄰居節點集合i,M表示鄰居節點集合中元素數目;
4. While (1)
4.1 tt+1;
4.2 ;
4.3 For (j=0; j<M; j++)
4.3.1 計算質心點cj對ci的當前斥力 ,其中,vji;
4.3.2 ;
4.4 計算質心點ci當前所受合力 沿圓周切線分量 ;
4.5 確定質心點ci運動方向;
4.6 If ( ) Then
4.6.1 質心點ci沿 方向轉動固定角度;
4.6.2 調整質心點ci至新位置 ;
4.6.3 計算節點vj指向當前質心點ci向量並單位化,得到節點vi最終的感測方向信息 ;
4.7 Sleep (t);
5. End.
3 演算法模擬與性能分析
我們利用VC6.0自行開發了適用於感測器網路部署及覆蓋研究的模擬軟體Senetest2.0,並利用該軟體進行了大量模擬實驗,以驗證PFCEA演算法的有效性.實驗中參數的取值見表1.為簡化實驗,假設目標區域中所有感測器節點同構,即所有節點的感測半徑及感測夾角規格分別相同.
Table 1 Experimental parameters
表1 實驗參數
Parameter Variation
Target area S 500500m2
Area coverage p 0~1
Sensor number N 0~250
Sensing radius Rs 0~100m
Sensing offset angel 0º~90º
3.1 實例研究
在本節中,我們通過一個具體實例說明PFCEA演算法對有向感測器網路覆蓋增強.在500500m2的目標區域內,我們部署感測半徑R=60m、感測夾角=45º的感測器節點完成場景監測.若達到預期的網路覆蓋率p=70%, 通過公式(1),我們可預先估算出所需部署的感測器節點數目,
.
針對上述實例,我們記錄了PFCEA演算法運行不同時間步長時有向感測器網路覆蓋增強情況,如圖8所示.
(a) Initial coverage, p0=65.74%
(a) 初始覆蓋,p0=65.74% (b) The 10th time step, p10=76.03%
(b) 第10個時間步長,p10=76.03%
(c) The 20th time step, p20=80.20%
(c) 第20個時間步長,p20=80.20% (d) The 30th time step, p30=81.45%
(d) 第30個時間步長,p30=81.45%
Fig.8 Coverage enhancement using PFCEA algorithm
圖8 PFCEA演算法實現覆蓋增強
直觀看來,質心點在虛擬斥力作用下進行擴散運動,逐步消除網路中感知重疊區和盲區,最終實現有向感測器網路覆蓋增強.此例中,網路感測器節點分別經過30個時間步長的調整,網路覆蓋率由最初的65.74%提高到81.45%,網路覆蓋增強達15.71個百分點.
圖9顯示了逐個時間步長調整所帶來的網路覆蓋增強.我們發現,隨著時間步長的增加,網路覆蓋率也不斷增加,且近似滿足指數關系.當時間步長達到30次以後,網路中絕大多數節點的感測方向出現振動現象,直觀表現為網路覆蓋率在81.20%附近在允許的范圍振盪.此時,我們認定有向感測器網路覆蓋性能近似增強至最優.
網路覆蓋性能可以顯著地降低網路部署成本.實例通過節點感測方向的自調整,在僅僅部署105個感測器節點的情況下,最終獲得81.45%的網路覆蓋率.若預期的網路覆蓋率為81.45%,通過公式(1)的計算可知,我們至少需要部署148個感測器節點.由此可見,利用PFCEA演算法實現網路覆蓋增強的直接效果是可以節省近43個感測器節點,極大地降低了網路部署成本.
3.2 收斂性分析
為了討論本文演算法的收斂性,我們針對4種不同的網路節點規模進行多組實驗.我們針對各網路節點規模隨機生成10個拓撲結構,分別計算演算法收斂次數,並取平均值,實驗數據見表2.其他實驗參數為R=60m,=45º, =5º.
Table 2 Experimental data for convergence analysis
表2 實驗數據收斂性分析
(%)
(%)
1 50 41.28 52.73 24
2 70 52.74 64.98 21
3 90 60.76 73.24 28
4 110 65.58 78.02 27
分析上述實驗數據,我們可以得出,PFCEA演算法的收斂性即調整的次數,並不隨感測器網路節點規模的變化而發生顯著的改變,其取值一般維持在[20,30]范圍內.由此可見,本文PFCEA演算法具有較好的收斂性,可以在較短的時間步長內完成有向感測器網路的覆蓋增強過程.
3.3 模擬分析
在本節中,我們通過一系列模擬實驗來說明4個主要參數對本文PFCEA演算法性能的影響.它們分別是:節點規模N、感測半徑R、感測夾角和(質心點)轉動角度.針對前3個參數,我們與以往研究的一種集中式覆蓋增強演算法[14]進行性能分析和比較.
A. 節點規模N、感測半徑R以及感測角度
我們分別取不同節點規模進行模擬實驗.從圖10(a)變化曲線可以看出,當R和一定時,N取值較小導致網路初始覆蓋率較小.此時,隨著N的增大,p取值呈現持續上升趨勢.當N=200時,網路覆蓋率增強可達14.40個百分點.此後,p取值有所下降.這是由於當節點規模N增加導致網路初始覆蓋率較高時(如60%),相鄰多感測器節點間形成覆蓋盲區的概率大為降低,無疑削弱了PFCEA演算法的性能.另外,部分感測器節點落入邊界區域,也會間接起到削弱PFCEA演算法性能的作用.
另外,感測半徑、感測角度對PFCEA演算法性能的影響與此類似.當節點規模一定時,節點感測半徑或感測角度取值越小,單個節點的覆蓋區域越小,各相鄰節點間形成感知重疊區域的可能性也就越小.此時,PFCEA演算法對網路覆蓋性能改善並不顯著.隨著感測半徑或感測角度的增加,p不斷增加.當R=70m且=45º時,網路覆蓋率最高可提升15.91%.但隨著感測半徑或感測角度取值的不斷增加,PFCEA演算法帶來的網路覆蓋效果降低,如圖10(b)、圖10(c)所示.
(c) The effect of sensing offset angle , other parameters meet N=100, R=40m, =5º
(c) 感測角度的影響,其他實驗參數滿足:N=100,R=40m,=5º
6. 無線感測器網路
無線感測器網路(wirelesssensornetwork,WSN)是綜合了感測器技術、嵌入式計算機技術、分布式信息處理技術和無線通信技術,能夠協作地實時監測、感知和採集網路分布區域內的各種環境或監測對象的信息,並對這些數據進行處理,獲得詳盡而准確的信息。傳送到需要這些信息的用戶。它是由部署在監測區域內大量的廉價微型感測器節點組成,通過無線通信方式形成一個多跳的自組織的網路系統。感測器、感知對象和觀察者構成了感測器網路的三要素。
無線感測器網路作為當今信息領域新的研究熱點,涉及到許多學科交叉的研究領域,要解決的關鍵技術很多,比如:網路拓撲控制、網路協議、網路安全、時間同步、定位技術、數據融合、數據管理、無線通信技術等方面,同時還要考慮感測器的電源和節能等問題。
所謂部署問題,就是在一定的區域內,通過適當的策略布置感測器節點以滿足某種特定的需求。優化節點數目和節點分布形式,高效利用有限的感測器網路資源,最大程度地降低網路能耗,均是節點部署時應注意的問題。
目前的研究主要集中在網路的覆蓋問題、連通問題和能耗問題3個方面。
基於節點部署方式的覆蓋:1)確定性覆蓋2)自組織覆蓋
基於網格的覆蓋:1)方形網格2)菱形網格
被監測目標狀態的覆蓋:1)靜態目標覆蓋2)動態目標覆蓋
連通問題可描述為在感測器節點能量有限,感知、通信和計算能力受限的情況下,採用一定的策略(通常設計有效的演算法)在目標區域中部署感測器節點,使得網路中的各個活躍節點之間能夠通過一跳或多跳方式進行通信。連通問題涉及到節點通信距離和通信范圍的概念。連通問題分為兩類:純連通與路由連通。
覆蓋中的節能對於覆蓋問題,通常採用節點集輪換機制來調度節點的活躍/休眠時間。連通中的節能針對連通問題,也可採用節點集輪換機制與調整節點通信距離的方法。而文獻中涉及最多的主要是從節約網路能量和平衡節點剩餘能量的角度進行路由協議的研究。
7. 無線感測器網路是在什麼背景下產生的具有什麼現實意義
按照生物敏感物質相互作用的類型分類,可分為親和型和代謝型兩種。
視覺
工作原理:
查看圖片[感測器(圖12)]視覺感測器是指:具有從一整幅圖像捕獲光線的數發千計像素的能力,圖像的清晰和細膩程度常用解析度來衡量,以像素數量表示。
視覺感測器具有從一整幅圖像捕獲光線的數以千計的像素。圖像的清晰和細膩程度通常用解析度來衡量,以像素數
8. 基於無線感測器網路在海洋環境監測中的應用有何意義
這是無線網路的一種應用,會更大地提高工作效率,提升管理水平,是環境監測走向網路化、智能化的標志。
一般多用於在海洋水質的浮漂監測系統上。
9. 如何寫溫度監控系統的論文比如說其意義,目的,理論適用等等
溫度監控系統的范圍很廣,你要用在什麼地方,比如說:
我國是世界上設施栽培面積最大的國家,ifu b_近幾年國產連棟溫室每年以新增1001_50萬公頃的面積快速發展「1」。引導溫室用戶根據作物的要求進行環境因子的調節以獲得作物產量和品質的提高,是溫室環境因子調控決策支持系統的主要目標和方向「2」。然}fu,目前的溫室測控系統大多採用有線布網、人工測量,導致現場安裝困難,工作效率偏低,測量精度差,這不僅大大增加了電氣工程施工費用,也導致施肥等工作困難;此外,系統中的每個監控點沒有自組織功能和自愈能力,維護工作量大,也不利十系統
升級。因此,為了實現溫室農作物的優質、高產和高效,開發和研製一種新型的溫室環境測控系統是十分必要的。
無線感測器網路技術是現代感測器技術、微電子技術、通信技術、嵌入式計算技術和分布式信息處理技術等多個學科的綜合。把無線感測器網路技術引入到溫室大棚生產中來,農業將有可能逐漸地從以人力為中心,依賴十孤立的生產模式轉向以信息和軟體為中心的生產模式。從}fU實現溫室信息採集自動部署、自組織傳輸和智能控制、大幅度提高單位面積的勞動生產率和資源產出率、改善溫室等設施內工作環境和工作條件、提高工作效率、保障農民身體健康、提高農民生活質量,有助十解決「二農」問題,對實現溫室作物生產的可持續發展具有重要意義。
本課題基十無線感測器網路技術,研究溫室環境中溫濕度智能監測系統的相關技術,為實現溫室無線感測器網路監測系統奠定良好基礎。