外网接口接到交换机上的WAN口,集线器的WAN口接到交换机的LAN口,电脑接到集线器的其他口
⑵ 计算机网络连接原理是什么(越详细越好)
连接原理是TCP/IP原理..
我目前也正在学.
TCP/IP的通讯协议
这部分简要介绍一下TCP/IP的内部结构,为讨论与互联网有关的安全问题打下基础。TCP/IP协议组之所以流行,部分原因是因为它可以用在各种各样的信道和底层协议(例如T1和X.25、以太网以及RS-232串行接口)之上。确切地说,TCP/IP协议是一组包括TCP协议和IP协议,UDP(User Datagram Protocol)协议、ICMP(Internet Control Message Protocol)协议和其他一些协议的协议组。
TCP/IP整体构架概述
TCP/IP协议并不完全符合OSI的七层参考模型。传统的开放式系统互连参考模型,是一种通信协议的7层抽象的参考模型,其中每一层执行某一特定任务。该模型的目的是使各种硬件在相同的层次上相互通信。这7层是:物理层、数据链路层、网路层、传输层、话路层、表示层和应用层。而TCP/IP通讯协议采用了4层的层级结构,每一层都呼叫它的下一层所提供的网络来完成自己的需求。这4层分别为:
应用层:应用程序间沟通的层,如简单电子邮件传输(SMTP)、文件传输协议(FTP)、网络远程访问协议(Telnet)等。
传输层:在此层中,它提供了节点间的数据传送服务,如传输控制协议(TCP)、用户数据报协议(UDP)等,TCP和UDP给数据包加入传输数据并把它传输到下一层中,这一层负责传送数据,并且确定数据已被送达并接收。
互连网络层:负责提供基本的数据封包传送功能,让每一块数据包都能够到达目的主机(但不检查是否被正确接收),如网际协议(IP)。
网络接口层:对实际的网络媒体的管理,定义如何使用实际网络(如Ethernet、Serial Line等)来传送数据。
TCP/IP中的协议
以下简单介绍TCP/IP中的协议都具备什么样的功能,都是如何工作的:
1. IP
网际协议IP是TCP/IP的心脏,也是网络层中最重要的协议。
IP层接收由更低层(网络接口层例如以太网设备驱动程序)发来的数据包,并把该数据包发送到更高层---TCP或UDP层;相反,IP层也把从TCP或UDP层接收来的数据包传送到更低层。IP数据包是不可靠的,因为IP并没有做任何事情来确认数据包是按顺序发送的或者没有被破坏。IP数据包中含有发送它的主机的地址(源地址)和接收它的主机的地址(目的地址)。
高层的TCP和UDP服务在接收数据包时,通常假设包中的源地址是有效的。也可以这样说,IP地址形成了许多服务的认证基础,这些服务相信数据包是从一个有效的主机发送来的。IP确认包含一个选项,叫作IP source routing,可以用来指定一条源地址和目的地址之间的直接路径。对于一些TCP和UDP的服务来说,使用了该选项的IP包好象是从路径上的最后一个系统传递过来的,而不是来自于它的真实地点。这个选项是为了测试而存在的,说明了它可以被用来欺骗系统来进行平常是被禁止的连接。那么,许多依靠IP源地址做确认的服务将产生问题并且会被非法入侵。
2. TCP
如果IP数据包中有已经封好的TCP数据包,那么IP将把它们向‘上’传送到TCP层。TCP将包排序并进行错误检查,同时实现虚电路间的连接。TCP数据包中包括序号和确认,所以未按照顺序收到的包可以被排序,而损坏的包可以被重传。
TCP将它的信息送到更高层的应用程序,例如Telnet的服务程序和客户程序。应用程序轮流将信息送回TCP层,TCP层便将它们向下传送到IP层,设备驱动程序和物理介质,最后到接收方。
面向连接的服务(例如Telnet、FTP、rlogin、X Windows和SMTP)需要高度的可靠性,所以它们使用了TCP。DNS在某些情况下使用TCP(发送和接收域名数据库),但使用UDP传送有关单个主机的信息。
3.UDP
UDP与TCP位于同一层,但对于数据包的顺序错误或重发。因此,UDP不被应用于那些使用虚电路的面向连接的服务,UDP主要用于那些面向查询---应答的服务,例如NFS。相对于FTP或Telnet,这些服务需要交换的信息量较小。使用UDP的服务包括NTP(网落时间协议)和DNS(DNS也使用TCP)。
欺骗UDP包比欺骗TCP包更容易,因为UDP没有建立初始化连接(也可以称为握手)(因为在两个系统间没有虚电路),也就是说,与UDP相关的服务面临着更大的危险。
4.ICMP
ICMP与IP位于同一层,它被用来传送IP的的控制信息。它主要是用来提供有关通向目的地址的路径信息。ICMP的‘Redirect’信息通知主机通向其他系统的更准确的路径,而‘Unreachable’信息则指出路径有问题。另外,如果路径不可用了,ICMP可以使TCP连接‘体面地’终止。PING是最常用的基于ICMP的服务。
5. TCP和UDP的端口结构
TCP和UDP服务通常有一个客户/服务器的关系,例如,一个Telnet服务进程开始在系统上处于空闲状态,等待着连接。用户使用Telnet客户程序与服务进程建立一个连接。客户程序向服务进程写入信息,服务进程读出信息并发出响应,客户程序读出响应并向用户报告。因而,这个连接是双工的,可以用来进行读写。
两个系统间的多重Telnet连接是如何相互确认并协调一致呢?TCP或UDP连接唯一地使用每个信息中的如下四项进行确认:
源IP地址 发送包的IP地址。
目的IP地址 接收包的IP地址。
源端口 源系统上的连接的端口。
目的端口 目的系统上的连接的端口。
端口是一个软件结构,被客户程序或服务进程用来发送和接收信息。一个端口对应一个16比特的数。服务进程通常使用一个固定的端口,例如,SMTP使用25、Xwindows使用6000。这些端口号是‘广为人知’的,因为在建立与特定的主机或服务的连接时,需要这些地址和目的地址进行通讯。
⑶ 描述以太网设备的连接方式
以太网是当今现有局域网采用的最通用的通信协议标准,组建于七十年代早期。Ethernet(以太网)是一种传输速率为10Mbps的常用局域网(LAN)标准。在以太网中,所有计算机被连接一条同轴电缆上,采用具有冲突检测的载波感应多处访问(CSMA/CD)方法,采用竞争机制和总线拓朴结构。基本上,以太网由共享传输媒体,如双绞线电缆或同轴电缆和多端口集线器、网桥或交换机构成。在星型或总线型配置结构中,集线器/交换机/网桥通过电缆使得计算机、打印机和工作站彼此之间相互连接。
以太网具有的一般特征概述如下:
共享媒体:所有网络设备依次使用同一通信媒体。
广播域:需要传输的帧被发送到所有节点,但只有寻址到的节点才会接收到帧。
CSMA/CD:以太网中利用载波监听多路访问/冲突检测方法(Carrier Sense Multiple Access/Collision Detection)以防止 twp 或更多节点同时发送。
MAC 地址:媒体访问控制层的所有 Ethernet 网络接口卡(NIC)都采用48位网络地址。这种地址全球唯一。
Ethernet 基本网络组成:
共享媒体和电缆:10BaseT(双绞线),10Base-2(同轴细缆),10Base-5(同轴粗缆)。
转发器或集线器:集线器或转发器是用来接收网络设备上的大量以太网连接的一类设备。通过某个连接的接收双方获得的数据被重新使用并发送到传输双方中所有连接设备上,以获得传输型设备。
网桥:网桥属于第二层设备,负责将网络划分为独立的冲突域获分段,达到能在同一个域/分段中维持广播及共享的目标。网桥中包括一份涵盖所有分段和转发帧的表格,以确保分段内及其周围的通信行为正常进行。
交换机:交换机,与网桥相同,也属于第二层设备,且是一种多端口设备。交换机所支持的功能类似于网桥,但它比网桥更具有的优势是,它可以临时将任意两个端口连接在一起。交换机包括一个交换矩阵,通过它可以迅速连接端口或解除端口连接。与集线器不同,交换机只转发从一个端口到其它连接目标节点且不包含广播的端口的帧。
以太网协议:IEEE 802.3标准中提供了以太帧结构。当前以太网支持光纤和双绞线媒体支持下的四种传输速率:
10 Mbps – 10Base-T Ethernet(802.3)
100 Mbps – Fast Ethernet(802.3u)
1000 Mbps – Gigabit Ethernet(802.3z))
10 Gigabit Ethernet – IEEE 802.3ae
以太网简史:
1972年,罗伯特•梅特卡夫(Robert Metcalfe)和施乐公司帕洛阿尔托研究中心(Xerox PARC)的同事们研制出了世界上第一套实验型的以太网系统,用来实现Xerox Alto(一种具有图形用户界面的个人工作站)之间的互连,这种实验型的以太网用于Alto工作站、服务器以及激光打印机之间的互连,其数据传输率达到了2.94Mbps。
梅特卡夫发明的这套实验型的网络当时被称为Alto Aloha网。1973年,梅特卡夫将其命名为以太网,并指出这一系统除了支持Alto工作站外,还可以支持任何类型的计算机,而且整个网络结构已经超越了Aloha系统。他选择“以太”(ether)这一名词作为描述这一网络的特征:物理介质(比如电缆)将比特流传输到各个站点,就像古老的“以太理论”(luminiferous ether)所阐述的那样,古代的“以太理论”认为“以太”通过电磁波充满了整个空间。就这样,以太网诞生了。
最初的以太网事一种实验型的同轴电缆网,冲突检测采用CSMA/CD 。该网络的成功,引起了大家的关注。1980年,三家公司(数字设备公司、Intel公司、施乐公司)联合研发了10M以太网1.0规范。最初的IEEE802.3即基于该规范,并且与该规范非常相似。802.3工作组于1983年通过了草案,并于1985年出版了官方标准ANSI/IEEE Std 802.3-1985。从此以后,随着技术的发展,该标准进行了大量的补充与更新,以支持更多的传输介质和更高的传输速率等。
1979年,梅特卡夫成立了3Com公司,并生产出第一个可用的网络设备:以太网卡(NIC), 它是允许从主机到IBM终端和PC机等不同设备相互之间实现无缝通信的第一款产品,使企业能够以无缝方式共享和打印文件,从而增强工作效率,提高企业范围的通信能力。
以太网和IEEE802.3:
以太网是Xerox公司发明的基带LAN标准。它采用带冲突检测的载波监听多路访问协议(CSMA/CD),速率为10Mbps,传输介质为同轴电缆。以太网是在20世纪70年代为解决网络中零散的和偶然的堵塞而开发的,而IEEE802.3标准是在最初的以太网技术基础上于1980年开发成功的。现在,以太网一词泛指所有采用CSMA/CD协议的局域网。以太网2.0版由数字设备公司、Intel公司和Xerox公司联合开发,它与IEEE802.3兼容。
以太网和IEEE802.3通常由接口卡(网卡)或主电路板上的电路实现。以太网电缆协议规定用收发器将电缆连到网络物理设备上。收发器执行物理层的大部分功能,其中包括冲突检测及收发器电缆将收发器连接到工作站上。
IEEE802.3提供了多种电缆规范,10Base5就是其中的一种,它与以太网最为接近。在这一规范中,连接电缆称作连接单元接口(AUI),网络连接设备称为介质访问单元(MAU)而不再是收发器。
1.以太网和IEEE802.3的工作原理
在基于广播的以太网中,所有的工作站都可以收到发送到网上的信息帧。每个工作站都要确认该信息帧是不是发送给自己的,一旦确认是发给自己的,就将它发送到高一层的协议层。
在采用CSMA/CD传输介质访问的以太网中,任何一个CSMA/CDLAN工作站在任何一时刻都可以访问网络。发送数据前,工作站要侦听网络是否堵塞,只有检测到网络空闲时,工作站才能发送数据。
在基于竞争的以太网中,只要网络空闲,任一工作站均可发送数据。当两个工作站发现网络空闲而同时发出数据时,就发生冲突。这时,两个传送操作都遭到破坏,工作站必须在一定时间后重发,何时重发由延时算法决定。
2.以太网和IEEE802.3服务的差别
尽管以太网与IEEE802.3标准有很多相似之处,但也存在一定的差别。以太网提供的服务对应于OSI参考模型的第一层和第二层,而IEEE802.3提供的服务对应于OSI参考模型的第一层和第二层的信道访问部分(即第二层的一部分)。IEEE802.3没有定义逻辑链路控制协议,但定义了几个不同物理层,而以太网只定义了一个。
IEEE802.3的每个物理层协议都可以从三方面说明其特征,这三方面分别是LAN的速度、信号传输方式和物理介质类型。
⑷ 电路与电气设备的连接有什么注意事项
用规定的符号表示电路连接的图叫电路图。根据电路图正确连接实物图和根据实物图各元件连接情况画出电路图,是学好电学知识必须练好的基本功。根据电路图连接实物图的方法是先串后并,即先按电流流向将电源与其中一支路连成串联电路,而后将其支路的元件并联在相应的两点间;根据实物图画电路图的方法是先要看清通路,分清干路、支路,得出连接方法,然后画出电路图。同时,电路连接时要注意以下六个问题:
1. 注意顺序
所谓的顺序是指按照给定的电路图中元件的顺序连接实物图,在连接实物图的过程中各个元件的顺序不能颠倒。一般的画序:电源正极电路元件电源负极。
2. 注意量程
电路中若有电表,那么电表的量程必须注意选择,被测电流不能超过量程。
3. 注意正负
由于电表有多个接线柱且有正负接线柱之分,我们要在正确选择量程的基础上,看准是用正接线柱还是负接线柱,保证电流从电流表和电压表的正接线柱流进,从负接线柱流出。
4. 注意交叉
根据电路图连接实物图时,要求导线不能交叉,注意合理安排导线的位置,力求画出简洁、流畅的实物图。
5. 注意符号
根据实物图画电路图时,电路中的各个元件一定要用统一规定的物理符号。
6. 注意连接
根据实物图画电路图时,线路要画得简洁、美观、整齐,导线应注意横平竖直及导线到元件间不能断开。
⑸ 论述网络中处于不同层次的网络连接设备的功能和特点
1、物理层:中继器(Repeater)和集线器(Hub)。用于连接物理特性相同的网段,这些网段,只是位置不同而已。Hub
的端口没有物理和逻辑地址。
2、逻辑链路层:网桥(Bridge)和交换机(Switch)。用于连接同一逻辑网络中、物理层规范不同的网段,这些网段的拓扑结构和其上的数据帧格式,都可以不同。Bridge和Switch的端口具有物理地址,但没有逻辑地址。
3、网络层:路由器(Router)。用于连接不同的逻辑网络。Router的每一个端口都有唯一的物理地址和逻辑地址。
4、应用层:网关(Gateway)。用于互连网络上,使用不同协议的应用程序之间的数据通信,目前尚无硬件产品。
前两者属于OSI和TCP/IP模型的最低层,即物理层,起到数字信号放大和中转的作用。
中继器(REPEATER),用来延长网络距离的互连设备。(局域网络互连长度是有限制,不是无限,例如在10M以太网中,任何两个数据终端设备允许的传输通路最多为5个中继器、4个中继器组成)。REPEATER可以增强线路上衰减的信号,它两端即可以连接相同的传输媒体,也可以连接不同的媒体,如一头是同轴电缆另一头是双绞线。
集线器(HUB)实际上就是一个多端口的中继器,它有一个端口与主干网相连,并有多个端口连接一组工作站。它应用于使用星型拓扑结构的网络中,连接多个计算机或网络设备。集线器又分成:1
能动式,2 被动式,3 混合式。1
动能式:对所连接的网络介质上的信号有再生和放大的作用,可使所连接的介质长度达到最大有效长度,需要有电源才能工作,目前多数HUB为此类型。2
被动式只充当连接器,其不需要电源就可以工作,市场上已经不多见。3 混合式:可以连接多种类型线缆,如同轴和双绞线。
集线器就是一种共享设备,HUB本身不能识别目的地址,当同一局域网内的A主机给B主机传输数据时,数据包在以HUB为架构的网络上是以广播方式传输的,由每一台终端通过验证数据包头的地址信息来确定是否接收。也就是说,在这种工作方式下,同一时刻网络上只能传输一组数据帧的通讯,如果发生碰撞还得重试。这种方式就是共享网络带宽。
网桥和交换机属于OSI和TCP/IP的第二层,即数据链路层。数据链路层的作用包括数据链路的建立、维护和拆除、帧包装、帧传输、帧同步、帧差错控制以及流量控制等。
网桥(BRIDGE)工作在数据链路层,将两个局域网(LAN)连起来,根据MAC地址(物理地址)来转发帧,可以看作一个“低层的路由器”(路由器工作在网络层,根据网络地址如IP地址进行转发)。它可以有效地联接两个LAN,使本地通信限制在本网段内,并转发相应的信号至另一网段,网桥通常用于联接数量不多的、同一类型的网段。
网桥通常有透明网桥和源路由选择网桥两大类。 1、透明网桥
简单的讲,使用这种网桥,不需要改动硬件和软件,无需设置地址开关,无需装入路由表或参数。只须插入电缆就可以,现有LAN的运行完全不受网桥的任何影响。
2、源路由选择网桥
源路由选择的核心思想是假定每个帧的发送者都知道接收者是否在同一局域网(LAN)上。当发送一帧到另外的网段时,源机器将目的地址的高位设置成1作为标记。另外,它还在帧头加进此帧应走的实际路径。
交换机(SWITCH)是按照通信两端传输信息的需要,用人工或设备自动完成的方法,把要传输的信息送到符合要求的相应路由上的技术统称。广义的交换机就是一种在通信系统中完成信息交换功能的设备。
在计算机网络系统中,交换概念的提出是对于共享工作模式的改进。
交换机拥有一条很高带宽的背部总线和内部交换矩阵。交换机的所有的端口都挂接在这条背部总线上,控制电路收到数据包以后,处理端口会查找内存中的地址对照表以确定目的MAC(网卡的硬件地址)的NIC(网卡)挂接在哪个端口上,通过内部交换矩阵迅速将数据包传送到目的端口,目的MAC若不存在才广播到所有的端口,接收端口回应后交换机会“学习”新的地址,并把它添加入内部地址表中。
使用交换机也可以把网络“分段”,通过对照地址表,交换机只允许必要的网络流量通过交换机。通过交换机的过滤和转发,可以有效的隔离广播风暴,减少误包和错包的出现,避免共享冲突。
总之,交换机是一种基于MAC地址识别,能完成封装转发数据包功能的网络设备。交换机可以“学习”MAC地址,并把其存放在内部地址表中,通过在数据帧的始发者和目标接收者之间建立临时的交换路径,使数据帧直接由源地址到达目的地址。
其实SWITCH的前身就是网桥。交换机是使用硬件来完成以往网桥使用软件来完成过滤、学习和转发过程的任务。SWITCH速度比HUB快,这是由于HUB不知道目标地址在何处,发送数据到所有的端口。而SWITCH中有一张路由表,如果知道目标地址在何处,就把数据发送到指定地点,如果它不知道就发送到所有的端口。这样过滤可以帮助降低整个网络的数据传输量,提高效率。但是交换机的功能还不止如此,它可以把网络拆解成网络分支、分割网络数据流,隔离分支中发生的故障,这样就可以减少每个网络分支的数据信息流量而使每个网络更有效,提高整个网络效率。目前有使用SWITCH代替HUB的趋势。
路由器(ROUTER)位于网络层,用于连接多个逻辑上分开的网络,几个使用不同协议和体系结构的网络。当一个子网传输到另外一个子网时,可以用路由器完成。它具有判断网络地址和选择路径的功能,过滤和分隔网络信息流。一方面能够跨越不同的物理网络类型(DDN、FDDI、以太网等等),另一方面在逻辑上将整个互连网络分割成逻辑上独立的网络单位,使网络具有一定的逻辑结构。
对于不同规模的网络,路由器作用的侧重点有所不同:
1、在主干网上,路由器的主要作用是路由选择。主干网上的路由器,必须知道到达所有下层网络的路径。这需要维护庞大的路由表,并对连接状态的变化作
出尽可能迅速的反应。路由器的故障将会导致严重的信息传输问题。
2、在地区网中,路由器的主要作用是网络连接和路由选择,即连接下层各个基层网络单位——园区网,同时,负责下层网络之间的数据转发。
3、在园区网内部,路由器的主要作用是分隔子网。早期的互连网基层单位是局域网(LAN),其中所有主机处于同一个逻辑网络中。随着网络规模的不断扩大,局域网演变成以高速主干和路由器连接的多个子网所组成的园区网。在其中,各个子网在逻辑上独立,而路由器就是唯一能够分隔它们的设备,它负责子网间的报文转发和广播隔离,在边界上的路由器则负责与上层网络的连接
⑹ 计算机网络中硬件连接设备有哪些
中继器,集线器,网关,网桥,路由器,交换器,调制解调器
⑺ 常用的网络设备有哪些每样的大概功能应用及一些简单的配置知识
猫:就是ADSL,这个是电脑与互联玩连接的第一道关口,个人宽带用户必需品。
交换机:前期为集线器,不过随着技术的发展已经逐渐被交换机替代。据说当前最先进的智能交换机已经可以替代路由器。交换机主要用于大型网络环境,用于网络开拓,连接,数据分发。相当于电路中的分线器。
路由器:这个在数字网络中有着至关重要的作用。
无线路由器,3G无线路由器,等等
⑻ 网络设备的连接方法
网络设备的链接方法:
1、首先点击开始菜单,选择设置图标。
2、在设置界面,选择网络和internet。
3、选择以太网,在右侧窗口选择更改适配器选项。
4、在网络连接窗口,鼠标双击以太网图标。
5、在弹出的窗口中,点击属性按钮。
6、然后鼠标双击internet协议版本4。
7、将自动获取改为手动设定,设定为和路由器相同网段的IP地址,路由器的地址在路由器设备的背面有标识。网关和DNS的地址为路由器的地址。
8、设定完成后,点击确定退出,然后电脑和路由器就可以通讯了,可以使用网页登录路由器。
(8)网络设备连接电路扩展阅读:
网络连接设备是把网络中的通信线路连接起来的各种设备的总称,这些设备包括中继器、集线器、交换机和路由器等。
1、中继器
是一种放大模拟信号或数字信号的网络连接设备,通常具有两个端口。它接收传输介质中的信号,将其复制、调整和放大后再发送出去,从而使信号能传输得更远,延长信号传输的距离。
2、集线器
是构成局域网的最常用的连接设备之一。集线器是局域网的中央设备,它的每一个端口可以连接一台计算机,局域网中的计算机通过它来交换信息。
3、交换机
又称交换式集线器,在网络中用于完成与它相连的线路之间的数据单元的交换,是一种基于MAC(网卡的硬件地址)识别,完成封装、转发数据包功能的网络设备。
4、路由器
是一种连接多个网络或网段的网络设备,它能将不同网络或网段之间的数据信息进行“翻译”,以使它们能够相互“读”懂对方的数据,实现不同网络或网段间的互联互通,从而构成一个更大的网络。
⑼ 网络设备的连接方式
直连网线
即正线(两端均为标准568B):
两端线序一样,线序是:
白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。
交叉网线
即反线
一端线序为(标准568B):
白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。
另一端线序为(标准568A):
白绿,绿,白橙,蓝,白蓝,橙,白棕,棕。
PC-PC:反线
PC-HUB:正线
HUB普通口-HUB普通口:反线
HUB级连口-HUB级连口:反线
HUB普通口-HUB级连口:正线
HUB普通口-SWITCH:反线
HUB级联口-SWITCH:正线
SWITCH-SWITCH:反线
SWITCH-ROUTER:正线
ROUTER-ROUTER:反线
⑽ 网络拓扑结构图以及网络设备的连接和配置
这些重点是看路由器的设置,至于拓扑,该放什么位置就放什么位置呗
一个办公室一个一条网线,均由机房交换机下发,交换机设置vlan
路由器设置访问列表规则。
中兴的路由器我也没用过,具体配置,没法说