❶ 社会网络分析法的优缺点
优点:社会网络分析是定性和定量的桥梁,它对大量的图表数据进行定量分析得出定性的结论。
缺点:社会网络分析过于考虑社会网络“联络性”,没有考虑各种“孤立点”,不能保证找到所有的有联络的行动者,由此难以全面把握社会网络的全貌。
社会网络分析是定性和定量的桥梁,它对大量的图表数据进行定量分析得出定性的结论。社会网络分析法所具有的这些优点使得该方法在我国多个领域都得到了广泛的应用。
以下是社会网络分析法的相关介绍:
社会是一个由多种多样的关系构成的巨大网络。视角当然多种多样,既可以像林语堂的小说中描述的那样对关系进行细致的刻画,又可以像黄光国等社会心理学家那样对人情、面子和关系网进行质的描述,更可以用社会网络分析法对关系进行量化的表征,从而揭示关系的结构,解释一定的社会现象。
社会网络分析的意义在于,它可以对各种关系进行精确的量化分析,从而为某种中层理论的构建和实证命题的检验提供量化的工具,甚至可以建立“宏观和微观”之间的桥梁。
以上资料参考网络——社会网络分析法
❷ 什么是社会网络
社会网络(socialnetwork)是一种基于“网络”(节点之间的相互连接)而非“群体”(明确的边界和秩序)的社会组织形式,也是西方社会学从1960年代兴起的一种分析视角。随着工业化、城市化的进行和新的通讯技术的兴起,社会呈现越来越网络化的趋势,发生“社会网络革命”(socialnetworkrevolution),与移动革命(mobilerevolution)、互联网革命(internetrevolution)并列为新时期影响人类社会的三大革命.
社会网络是指社会个体成员之间因为互动而形成的相对稳定的关系体系,社会网络关注的是人们之间的互动和联系,社会互动会影响人们的社会行为。
社会网络是由许多节点构成的一种社会结构,节点通常是指个人或组织,社会网络代表各种社会关系,经由这些社会关系,把从偶然相识的泛泛之交到紧密结合的家庭关系的各种人们或组织串连起来。社会关系包括朋友关系、同学关系、生意伙伴关系、种族信仰关系等。
社会网络分析是社会科学领域的叫法。类似的东西在物理和计算机领域叫复杂网络。在数学领域叫做图论。也有一些学者叫网络科学。基本的东西都类似,但关注的点不同。就和一个男人有时是爸爸,有时是儿子,有时是孙子。
最早的溯源可以归到哥尼斯堡七桥问题。莫雷诺在上世纪初开始将可视化和类似的网络分析技术应用在分析社会现象上,比如女生的午餐关系。之后生物领域和社会领域分别独立发展出比较完善的分析技术。集大成者是Harvard的HarrisonWhite,许多之后着名的学者都是他的徒子徒孙。
很难说SocialNetworkAnalysis是一门特定的学科。更多的应用是作为一种研究方法,有时候也会作为一种研究视角(perspective)。当然,也产生了一些中层的理论(theory),比较常见的是Granovetter的弱联系理论,Burt的结构洞理论,Watts的小世界模型,Barabasi的PowerLaw。
之前的社会科学往往关注个体(或者行动者,如企业、个人)的特性,而忽略个体之间的关系。而社会网络的研究正是研究关系的方法、视角。最大的特征在于考虑了个体之间的互相依赖,更接近于现实社会。将这些关系用如题头所示的图片展示出来,可以直观的看到各个行动者在网络中的位置和网络整体结构。
❸ 《社会网络分析方法与实践》epub下载在线阅读全文,求百度网盘云资源
《社会网络分析方法与实践》()电子书网盘下载免费在线阅读
链接: https://pan..com/s/1y9Kiz07GFKQMbIRIGZv_gg
书名:社会网络分析方法与实践
豆瓣评分:7.2
作者:
出版社:机械工业出版社
副标题:方法与实践
原作名:Social Network Analysis for Startups
译者:王薇/王成军/王颖/刘璟
出版年:2013-6-1
页数:177
内容简介:
本书以基于Python的网络分析包NetworkX作为社会网络分析工具,但不是一本NetworkX使用手册。作者将重点放在如何从庞大的社会网络分析学术积累中,挑选最精要与最实用的知识点,以帮助读者形成关于社会网络分析的知识谱系图。全书可以分为四部分。第1章和第2章是基础知识,主要介绍社会网络分析的背景信息与图论基础知识。第3~5章主要介绍如何分析社会网络,分别从个体与群体两个层面,介绍社会网络的主要测量指标与分析方法。其中第3章重点介绍社会网络节点层面的四个核心指标:
程度中心性:哪些是明星人物?哪些是边缘者?程度中心性回答类似问题。这是最为人们理解的社会网络测量指标。以微博为例,程度中心性就是粉丝的数量,那些程度中心性高的人就是微博中的明星。
亲近中心性:亲近中心性通过点与其他点的距离来测量。那些在社交网络中经常与人互动、人际关系颇好的人,比如公司中的八卦传播者,往往亲近中心性得分较高。
居间中心性:节点的居间程度,表示一个网络中经过该点最短路径的数量。在网络中,节点的居间程度越大,那么它在节点相互之间的信息传播起到的作用也就越大。在两个社会网络之间的人,比如跨界者,往往拥有较高的居间中心性。
特征向量中心性:那些在社交网络中沉默却拥有极大权力的人物,如《教父》中的主人翁柯里昂。社会网络研究者将他们称为“灰衣主教”。特征向量中心性就是找出他们的办法。基本原理是,一个有着高特征向量中心性的行动者,与他建立连接的很多行动者往往也被其他很多行动者所连接。在社交网络中,有这样一种人,很多明星与其做朋友,即使他沉默不语,也可能是一位重要的人物。
社会网络分析不仅仅在节点层面测量。第4章、第5章介绍如何分析群体。其中,第4章主要介绍社群划分的基础知识:如何将庞大的社会网络划分为小的组块?如何利用社会网络中的结构洞牟利?如何进行三元组普查与分析?例如,如何通过岛屿方法逐步找出推特上埃及革命的成千上万条转发的核心人物?又如,如何评估埃及革命中一个人的信息传播能力?显然,如果你的朋友们相互信任,将比那种一个明星发言,粉丝们单纯收听的星形网络传播能力更强。第5章主要介绍二模网络与多模网络的基础知识。关系还会存在于不同类型的主体之间,比如公司雇佣员工、投资者购买公司股票、人们占有信息与资源等。这些关系称为二模关系。现实生活中的关系往往是二模或多模。比如在微博上,可以通过你的兴趣、地域、使用的标签来为你推荐新的朋友,或者基于你对一些公共事件的看法,将你划分到特定政治群体中,这些都是基于二模或多模网络的分析得出的。
第6章是全书最精彩的部分,关注信息如何传播,初步展示分析动态社会网络发展的建模技巧。一条微博如何从一两个人关注突然成为流行用语?作者在实验中发现,当网络密度接近7%的时候,将从线性增长(每次增加一条连接)转化为病毒式扩散,也就是说,如果转发一条微博、加入一个网络社群等的人数比例达到7%,其他人将会在关键阶段马上跟进。这是一个推动脸谱走出哈佛大学的神奇数字。脸谱一步一步地跃迁,总是遵循一个规则——在一个社群里到达饱和点之后才移入一个更大的社群。作者通过手写Python算法,为读者打开动态社会网络与网络仿真的大门——我们如何用算法来模拟人类社会各类关系的变迁?有了自己亲手实践算法的经验,读者未来使用netlogo等网络仿真软件,将更加得心应手。
对于初学者来说,第4~6章这三章有一定难度,需要同时理解社会科学与编程技巧两方面知识。第7章则简单明了,主要介绍获取网络数据的入门知识。如果希望深入了解,可以阅读作者推荐的相关资源。附录A介绍收集社会网络分析所需数据的传统方法、伦理准则与相关API。附录B介绍如何安装本书涉及的相关软件,如NetworkX、matplotlib等。
总而言之,作为一本技术非常新颖的入门读物,本书通俗易懂,基于Python进行分析使得其灵活性变得更高。可以说,本书令学习者从一开始就具有上手实践的能力,除介绍网络数据获取技巧、网络抽样方法、网络在个体与群体两个层面的基本属性之外,还涉及目前日益热门的网络模拟方法,融合基础理论与算法于一身。简约却不简单,上升空间非常大!无论你是对社会网络感兴趣的大众读者,还是社会网络的专业研究者、开发者,相信本书都会在社会网络的理论与实践两方面给予启发!
作者简介:
maksim tsvetovat是一个跨学科的科学家、软件工程师和爵士音乐家。他从卡内基·梅隆大学获得计算、组织和社会方向的博士学位,专注于社会网络进化、信息和态度扩散、集体智能发生的计算机建模。目前,他在乔治·梅森大学教授社会网络分析。他还是deepmile networks公司的联合创始人之一,该公司聚焦于社交媒体影响的图形化。maksim还教授社会网络分析的管理人员研讨班,包括面向创业公司的“社会网络”和面向决策人员的“理解社交媒体”。
alexander kouznetsov是一名软件设计师和架构师,具有从数据仓库到信号处理的广泛技术背景。他为业界开发了大量的社会网络分析工具,从大规模数据采集到在线分析和演示工具。alex在得克萨斯大学获得数学和计算科学学士学位。
❹ 社会网络连接关系怎么算
社会网络关系由节点和关系两部分组成,围绕这两部分进行计算。
社会网络是指社会个体成员之间因为互动而形成的相对稳定的关系体系。
社会网络关系就是社会资本,在新经济中,社会网络关系即指社会资本已经成为科技创新的一个关键因子,是在一个组织网络能够进行团结协作、相互促进生产收益的情况下而形成的“库存”。
❺ 社会网络分析法的研究方法
社会网络分析法是一种社会学研究方法,社会学理论认为社会不是由个人而是由网络构成的,网络中包含结点及结点之间的关系,社会网络分析法通过对于网络中关系的分析探讨网络的结构及属性特征,包括网络中的个体属性及网络整体属性,网络个体属性分析包括:点度中心度,接近中心度等;网络的整体属性分析包括小世界效应,小团体研究,凝聚子群等。该方法目前在教育领域应用比较广泛,主要探究信息技术环境下学习者所构成网络的特点,以及在此基础上对于该网络的改进策略。
❻ 社会性网络的社会性网络分析
根据维基网络的解释,“社会网络(Social Networking:SN)”是指个人之间的关系网络。
据一些不系统的分析,社会网络(或称为社会性网络)的理论基础源于六度分隔理论(Six Degrees of Separation)和150法则(Rule Of 150)。 美国着名社会心理学家米尔格伦(Stanley Milgram)于20世纪60年代最先提出。“你和任何一个陌生人之间所间隔的人不会超过六个,也就是说,最多通过六个人你就能够认识任何一个陌生人。”
六度分隔理论(Six Degrees of Separation)由美国着名社会心理学家米尔格伦(Stanley Milgram)于20世纪60年代最先提出。1967年,哈佛大学的心理学教授Stanley Milgram(1933-1984)想要描绘一个连结人与社区的人际连系网。做过一次连锁信实验,结果发现了“六度分隔”现象。简单地说:“你和任何一个陌生人之间所间隔的人不会超过六个,也就是说,最多通过六个人你就能够认识任何一个陌生人。”
“六度分隔”说明了社会中普遍存在的“弱纽带”,但是却发挥着非常强大的作用。有很多人在找工作时会体会到这种弱纽带的效果。 通过弱纽带人与人之间的距离变得非常“相近”。
Jon Kleinberg 把这个问题变成了一个可以评估的数学模型,并发表在自己的论文“The Small-World Phenomenon”中。我们经常在与新朋友碰面的时候说“世界真小”,因为往往可能大家有共同认识的人。Jon的研究实证了这个观点。
曾经“六度分隔”理论只能作为理论而存在。但是,互联网使一切成为现实。六度理论的发展,使得构建于信息技术与互联网络之上的应用软件越来越人性化、社会化。软件的社会化,即在功能上能够反映和促进真实的社会关系的发展和交往活动的形成,使得人的活动与软件的功能融为一体。六度理论的发现和社会性软件的发展向人们表明:社会性软件所构建的“弱链接”,正在人们的生活中扮演越来越重要的作用。 从欧洲发源的“赫特兄弟会”是一个自给自足的农民自发组织,这些组织在维持民风上发挥了重要作用。有趣的是,他们有一个不成文的严格规定:每当聚居人数超过150人的规模,他们就把它变成两个,再各自发展。
“把人群控制在150人以下似乎是管理人群的一个最佳和最有效的方式。”
150法则在现实生活中的应用很广泛。比如中国移动的“动感地带”sim卡只能保存150个手机号,微软推出的聊天工具“MSN”(也是一种SS)只能是一个MSN对应150个联系人。
150成为我们普遍公认的“我们可以与之保持社交关系的人数的最大值。”无论你曾经认识多少人,或者通过一种社会性网络服务与多少人建立了弱链接,那些强链接仍然在此次此刻符合150法则。这也符合“二八”法则[3],即80%的社会活动可能被150个强链接所占有。
❼ 社会网络分析的内容简介
本书的内容结构是,除前言外共分为八章,分别介绍社会网络分析的基本原理和理论、社会网络资料类型和收集方法、网络分析的各种技术与方法、社会网络分析的应用等内容。
第一章
首先追溯了西方社会网络分析的思想渊源,对国内外的研究状况做了系统回顾,介绍了社会网络分析的一些新进展。社会网络分析有不同的学科发展背景,其发展也经历了不同的阶段。我们通过回顾社会网络分析思想与方法在西方的发展,梳理出其中的主要线索和问题,并结合国内的研究状况进行探讨,目的在于强调更好地借鉴已有的成果,加强对社会网络分析的认识和应用。
第二章
系统说明了社会网络分析的基本原理。社会网络分析作为一种独立的社会研究方法,已形成了自己的理论基础和方法论原则。通过这些方面我们可以认识社会网络分析方法的特征及其独特之处。在本章中我们在说明社会网络分析概念的基础上,具体介绍了社会网络分析的方法论原理和研究程序。
第三章
主要说明社会网络分析所用的数据资料具有自己的类型与特征,它是一组反映行动者关系的信息。社会网络资料首先是关于社会关系的数据信息,简称关系数据。关系数据不同于属性数据,不仅其本质内容不同,其表达形式也不同。本章在介绍了社会网络资料的概念和类型基础上,结合研究设计具体说明了社会网络的测量及其收集方法。
第四章
主要介绍社会网络分析的研究技术与方法。社会网络最基本的数学表达形式是图论法和矩阵法。图论法是以线和点的形式来表示行动者及其关系的一种方法。用社群图可表示社会关系的结构、特征等属性。矩阵法是把社会网络中的每一个结点或关系分别按行和列的方式排列即可形成网络矩阵,包括邻接矩阵、关联矩阵等。矩阵法可以对群体关系进行具体分析。
第五章
是关于社会网络的中心度分析。中心度是我们认识社会网络中行动者位置及其关系的重要概念,具有广泛的应用性。本章首先介绍了中心度、中心势概念,重点说明了结点中心度、紧密中心度、间距中心度及其测量方法。最后又对社会网络中与等级密切相关的权力和声望作了分析。网络中的声望不同于一般意义的社会声望概念,这里主要说明了接近度声望概念及其测量。
第六章
是关于社会网络分析中的子群研究。构成社会网络的基本元素就是行动者及其群体,社会中存在着各种各样的子群,它们相互结合形成了复杂的社会结构。本章首先从社会群体、子群概念出发,说明各种团聚性的子群及其测量方法,包括“团伙”、n-团伙、n-宗派、k-丛等,最后分析隶属性群体。
第七章
是关于网络中的位置和角色的分析。在社会结构分析中,位置和角色是两个重要的概念。本章在简要介绍了网络分析的位置和角色概念之后,主要说明了结构等价性、自同构等价性和正则等价性及其不同的测量方法,最后一节简要介绍了关系代数法和统计模型法。位置和角色分析是目前社会网络分析中数量化分析程度最高的方面,已应用和发展出了许多不同的数学分析方法。本章结合例子简要介绍了聚类法、统计模型法等。这些分析方法现在都可借助于有关的分析软件来应用。
第八章
讨论了社会网络分析的一些应用。社会网络分析具有非常广泛的应用,其应用领域已远远超出了社会学和人类学的传统范围,如小群体关系、社会支持网等,而且扩展到了人文社会科学甚至工程技术科学的诸多领域。但本书只是简要分析了与社会网络分析密切相关的社会资本研究以及体现中国社会结构特征的“关系”研究。
本书最后在附录中介绍了社会网络分析软件包的应用,重点说明了Pajek 的内容及使用方法。附录中还附有两个不同的各具代表性的《社会网络分析》教学大纲,供读者参考比较。
❽ 《社会网络分析方法与实践》txt下载在线阅读全文,求百度网盘云资源
《社会网络分析》(Maksim Tsvetovat)电子书网盘下载免费在线阅读
链接:https://pan..com/s/1Q6jv8MJ94GgH1B8nDBsnWQ
书名:社会网络分析
作者:Maksim Tsvetovat
译者:王薇
豆瓣评分:7.2
出版社:机械工业出版社
出版年份:2013-6-1
页数:177
内容简介:
本书以基于Python的网络分析包NetworkX作为社会网络分析工具,但不是一本NetworkX使用手册。作者将重点放在如何从庞大的社会网络分析学术积累中,挑选最精要与最实用的知识点,以帮助读者形成关于社会网络分析的知识谱系图。全书可以分为四部分。第1章和第2章是基础知识,主要介绍社会网络分析的背景信息与图论基础知识。第3~5章主要介绍如何分析社会网络,分别从个体与群体两个层面,介绍社会网络的主要测量指标与分析方法。其中第3章重点介绍社会网络节点层面的四个核心指标:
程度中心性:哪些是明星人物?哪些是边缘者?程度中心性回答类似问题。这是最为人们理解的社会网络测量指标。以微博为例,程度中心性就是粉丝的数量,那些程度中心性高的人就是微博中的明星。
亲近中心性:亲近中心性通过点与其他点的距离来测量。那些在社交网络中经常与人互动、人际关系颇好的人,比如公司中的八卦传播者,往往亲近中心性得分较高。
作者简介:
maksim tsvetovat是一个跨学科的科学家、软件工程师和爵士音乐家。他从卡内基·梅隆大学获得计算、组织和社会方向的博士学位,专注于社会网络进化、信息和态度扩散、集体智能发生的计算机建模。目前,他在乔治·梅森大学教授社会网络分析。他还是deepmile networks公司的联合创始人之一,该公司聚焦于社交媒体影响的图形化。maksim还教授社会网络分析的管理人员研讨班,包括面向创业公司的“社会网络”和面向决策人员的“理解社交媒体”。
alexander kouznetsov是一名软件设计师和架构师,具有从数据仓库到信号处理的广泛技术背景。他为业界开发了大量的社会网络分析工具,从大规模数据采集到在线分析和演示工具。alex在得克萨斯大学获得数学和计算科学学士学位。