导航:首页 > 异常信息 > 深度神经网络非全连接

深度神经网络非全连接

发布时间:2022-12-28 17:04:41

⑴ 神经网络(深度学习)的几个基础概念

从广义上说深度学习的网络结构也是多层神经网络的一种。传统意义上的多层神经网络是只有输入层、隐藏层、输出层。其中隐藏层的层数根据需要而定,没有明确的理论推导来说明到底多少层合适。而深度学习中最着名的卷积神经网络CNN,在原来多层神经网络的基础上,加入了特征学习部分,这部分是模仿人脑对信号处理上的分级的。具体操作就是在原来的全连接的层前面加入了部分连接的卷积层与降维层,而且加入的是一个层级。输入层 - 卷积层 -降维层 -卷积层 - 降维层 -- .... -- 隐藏层 -输出层简单来说,原来多层神经网络做的步骤是:特征映射到值。特征是人工挑选。深度学习做的步骤是 信号->特征->值。 特征是由网络自己选择。

⑵ 神经网络:卷积神经网络(CNN)

神经网络 最早是由心理学家和神经学家提出的,旨在寻求开发和测试神经的计算模拟。

粗略地说, 神经网络 是一组连接的 输入/输出单元 ,其中每个连接都与一个 权 相关联。在学习阶段,通过调整权值,使得神经网络的预测准确性逐步提高。由于单元之间的连接,神经网络学习又称 连接者学习。

神经网络是以模拟人脑神经元的数学模型为基础而建立的,它由一系列神经元组成,单元之间彼此连接。从信息处理角度看,神经元可以看作是一个多输入单输出的信息处理单元,根据神经元的特性和功能,可以把神经元抽象成一个简单的数学模型。

神经网络有三个要素: 拓扑结构、连接方式、学习规则

神经网络的拓扑结构 :神经网络的单元通常按照层次排列,根据网络的层次数,可以将神经网络分为单层神经网络、两层神经网络、三层神经网络等。结构简单的神经网络,在学习时收敛的速度快,但准确度低。

神经网络的层数和每层的单元数由问题的复杂程度而定。问题越复杂,神经网络的层数就越多。例如,两层神经网络常用来解决线性问题,而多层网络就可以解决多元非线性问题

神经网络的连接 :包括层次之间的连接和每一层内部的连接,连接的强度用权来表示。

根据层次之间的连接方式,分为:

1)前馈式网络:连接是单向的,上层单元的输出是下层单元的输入,如反向传播网络,Kohonen网络

2)反馈式网络:除了单项的连接外,还把最后一层单元的输出作为第一层单元的输入,如Hopfield网络

根据连接的范围,分为:

1)全连接神经网络:每个单元和相邻层上的所有单元相连

2)局部连接网络:每个单元只和相邻层上的部分单元相连

神经网络的学习

根据学习方法分:

感知器:有监督的学习方法,训练样本的类别是已知的,并在学习的过程中指导模型的训练

认知器:无监督的学习方法,训练样本类别未知,各单元通过竞争学习。

根据学习时间分:

离线网络:学习过程和使用过程是独立的

在线网络:学习过程和使用过程是同时进行的

根据学习规则分:

相关学习网络:根据连接间的激活水平改变权系数

纠错学习网络:根据输出单元的外部反馈改变权系数

自组织学习网络:对输入进行自适应地学习

摘自《数学之美》对人工神经网络的通俗理解:

神经网络种类很多,常用的有如下四种:

1)Hopfield网络,典型的反馈网络,结构单层,有相同的单元组成

2)反向传播网络,前馈网络,结构多层,采用最小均方差的纠错学习规则,常用于语言识别和分类等问题

3)Kohonen网络:典型的自组织网络,由输入层和输出层构成,全连接

4)ART网络:自组织网络

深度神经网络:

Convolutional Neural Networks(CNN)卷积神经网络

Recurrent neural Network(RNN)循环神经网络

Deep Belief Networks(DBN)深度信念网络

深度学习是指多层神经网络上运用各种机器学习算法解决图像,文本等各种问题的算法集合。深度学习从大类上可以归入神经网络,不过在具体实现上有许多变化。

深度学习的核心是特征学习,旨在通过分层网络获取分层次的特征信息,从而解决以往需要人工设计特征的重要难题。

Machine Learning vs. Deep Learning 

神经网络(主要是感知器)经常用于 分类

神经网络的分类知识体现在网络连接上,被隐式地存储在连接的权值中。

神经网络的学习就是通过迭代算法,对权值逐步修改的优化过程,学习的目标就是通过改变权值使训练集的样本都能被正确分类。

神经网络特别适用于下列情况的分类问题:

1) 数据量比较小,缺少足够的样本建立模型

2) 数据的结构难以用传统的统计方法来描述

3) 分类模型难以表示为传统的统计模型

缺点:

1) 需要很长的训练时间,因而对于有足够长训练时间的应用更合适。

2) 需要大量的参数,这些通常主要靠经验确定,如网络拓扑或“结构”。

3)  可解释性差 。该特点使得神经网络在数据挖掘的初期并不看好。

优点:

1) 分类的准确度高

2)并行分布处理能力强

3)分布存储及学习能力高

4)对噪音数据有很强的鲁棒性和容错能力

最流行的基于神经网络的分类算法是80年代提出的 后向传播算法 。后向传播算法在多路前馈神经网络上学习。 

定义网络拓扑

在开始训练之前,用户必须说明输入层的单元数、隐藏层数(如果多于一层)、每一隐藏层的单元数和输出层的单元数,以确定网络拓扑。

对训练样本中每个属性的值进行规格化将有助于加快学习过程。通常,对输入值规格化,使得它们落入0.0和1.0之间。

离散值属性可以重新编码,使得每个域值一个输入单元。例如,如果属性A的定义域为(a0,a1,a2),则可以分配三个输入单元表示A。即,我们可以用I0 ,I1 ,I2作为输入单元。每个单元初始化为0。如果A = a0,则I0置为1;如果A = a1,I1置1;如此下去。

一个输出单元可以用来表示两个类(值1代表一个类,而值0代表另一个)。如果多于两个类,则每个类使用一个输出单元。

隐藏层单元数设多少个“最好” ,没有明确的规则。

网络设计是一个实验过程,并可能影响准确性。权的初值也可能影响准确性。如果某个经过训练的网络的准确率太低,则通常需要采用不同的网络拓扑或使用不同的初始权值,重复进行训练。

后向传播算法学习过程:

迭代地处理一组训练样本,将每个样本的网络预测与实际的类标号比较。

每次迭代后,修改权值,使得网络预测和实际类之间的均方差最小。

这种修改“后向”进行。即,由输出层,经由每个隐藏层,到第一个隐藏层(因此称作后向传播)。尽管不能保证,一般地,权将最终收敛,学习过程停止。

算法终止条件:训练集中被正确分类的样本达到一定的比例,或者权系数趋近稳定。

后向传播算法分为如下几步:

1) 初始化权

网络的权通常被初始化为很小的随机数(例如,范围从-1.0到1.0,或从-0.5到0.5)。

每个单元都设有一个偏置(bias),偏置也被初始化为小随机数。

2) 向前传播输入

对于每一个样本X,重复下面两步:

向前传播输入,向后传播误差

计算各层每个单元的输入和输出。输入层:输出=输入=样本X的属性;即,对于单元j,Oj = Ij = Xj。隐藏层和输出层:输入=前一层的输出的线性组合,即,对于单元j, Ij =wij Oi + θj,输出=

3) 向后传播误差

计算各层每个单元的误差。

输出层单元j,误差:

Oj是单元j的实际输出,而Tj是j的真正输出。

隐藏层单元j,误差:

wjk是由j到下一层中单元k的连接的权,Errk是单元k的误差

更新 权 和 偏差 ,以反映传播的误差。

权由下式更新:

 其中,△wij是权wij的改变。l是学习率,通常取0和1之间的值。

 偏置由下式更新:

  其中,△θj是偏置θj的改变。

Example

人类视觉原理:

深度学习的许多研究成果,离不开对大脑认知原理的研究,尤其是视觉原理的研究。1981 年的诺贝尔医学奖,颁发给了 David Hubel(出生于加拿大的美国神经生物学家) 和Torsten Wiesel,以及Roger Sperry。前两位的主要贡献,是“发现了视觉系统的信息处理”, 可视皮层是分级的 。

人类的视觉原理如下:从原始信号摄入开始(瞳孔摄入像素Pixels),接着做初步处理(大脑皮层某些细胞发现边缘和方向),然后抽象(大脑判定,眼前的物体的形状,是圆形的),然后进一步抽象(大脑进一步判定该物体是只气球)。

对于不同的物体,人类视觉也是通过这样逐层分级,来进行认知的:

在最底层特征基本上是类似的,就是各种边缘,越往上,越能提取出此类物体的一些特征(轮子、眼睛、躯干等),到最上层,不同的高级特征最终组合成相应的图像,从而能够让人类准确的区分不同的物体。

可以很自然的想到:可以不可以模仿人类大脑的这个特点,构造多层的神经网络,较低层的识别初级的图像特征,若干底层特征组成更上一层特征,最终通过多个层级的组合,最终在顶层做出分类呢?答案是肯定的,这也是许多深度学习算法(包括CNN)的灵感来源。

卷积神经网络是一种多层神经网络,擅长处理图像特别是大图像的相关机器学习问题。卷积网络通过一系列方法,成功将数据量庞大的图像识别问题不断降维,最终使其能够被训练。

CNN最早由Yann LeCun提出并应用在手写字体识别上。LeCun提出的网络称为LeNet,其网络结构如下:

这是一个最典型的卷积网络,由 卷积层、池化层、全连接层 组成。其中卷积层与池化层配合,组成多个卷积组,逐层提取特征,最终通过若干个全连接层完成分类。

CNN通过卷积来模拟特征区分,并且通过卷积的权值共享及池化,来降低网络参数的数量级,最后通过传统神经网络完成分类等任务。

降低参数量级:如果使用传统神经网络方式,对一张图片进行分类,那么,把图片的每个像素都连接到隐藏层节点上,对于一张1000x1000像素的图片,如果有1M隐藏层单元,一共有10^12个参数,这显然是不能接受的。

但是在CNN里,可以大大减少参数个数,基于以下两个假设:

1)最底层特征都是局部性的,也就是说,用10x10这样大小的过滤器就能表示边缘等底层特征

2)图像上不同小片段,以及不同图像上的小片段的特征是类似的,也就是说,能用同样的一组分类器来描述各种各样不同的图像

基于以上两个假设,就能把第一层网络结构简化

用100个10x10的小过滤器,就能够描述整幅图片上的底层特征。

卷积运算的定义如下图所示:

如上图所示,一个5x5的图像,用一个3x3的 卷积核 :

   101

   010

   101

来对图像进行卷积操作(可以理解为有一个滑动窗口,把卷积核与对应的图像像素做乘积然后求和),得到了3x3的卷积结果。

这个过程可以理解为使用一个过滤器(卷积核)来过滤图像的各个小区域,从而得到这些小区域的特征值。在实际训练过程中, 卷积核的值是在学习过程中学到的。

在具体应用中,往往有多个卷积核,可以认为, 每个卷积核代表了一种图像模式 ,如果某个图像块与此卷积核卷积出的值大,则认为此图像块十分接近于此卷积核。如果设计了6个卷积核,可以理解为这个图像上有6种底层纹理模式,也就是用6种基础模式就能描绘出一副图像。以下就是24种不同的卷积核的示例:

池化 的过程如下图所示:

可以看到,原始图片是20x20的,对其进行采样,采样窗口为10x10,最终将其采样成为一个2x2大小的特征图。

之所以这么做,是因为即使做完了卷积,图像仍然很大(因为卷积核比较小),所以为了降低数据维度,就进行采样。

即使减少了许多数据,特征的统计属性仍能够描述图像,而且由于降低了数据维度,有效地避免了过拟合。

在实际应用中,分为最大值采样(Max-Pooling)与平均值采样(Mean-Pooling)。

LeNet网络结构:

注意,上图中S2与C3的连接方式并不是全连接,而是部分连接。最后,通过全连接层C5、F6得到10个输出,对应10个数字的概率。

卷积神经网络的训练过程与传统神经网络类似,也是参照了反向传播算法

第一阶段,向前传播阶段:

a)从样本集中取一个样本(X,Yp),将X输入网络;

b)计算相应的实际输出Op

第二阶段,向后传播阶段

a)计算实际输出Op与相应的理想输出Yp的差;

b)按极小化误差的方法反向传播调整权矩阵。

⑶ 一文看懂四种基本的神经网络架构

原文链接:
http://blackblog.tech/2018/02/23/Eight-Neural-Network/

更多干货就在我的个人博客 http://blackblog.tech 欢迎关注

刚刚入门神经网络,往往会对众多的神经网络架构感到困惑,神经网络看起来复杂多样,但是这么多架构无非也就是三类,前馈神经网络,循环网络,对称连接网络,本文将介绍四种常见的神经网络,分别是CNN,RNN,DBN,GAN。通过这四种基本的神经网络架构,我们来对神经网络进行一定的了解。

神经网络是机器学习中的一种模型,是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
一般来说,神经网络的架构可以分为三类:

前馈神经网络:
这是实际应用中最常见的神经网络类型。第一层是输入,最后一层是输出。如果有多个隐藏层,我们称之为“深度”神经网络。他们计算出一系列改变样本相似性的变换。各层神经元的活动是前一层活动的非线性函数。

循环网络:
循环网络在他们的连接图中定向了循环,这意味着你可以按照箭头回到你开始的地方。他们可以有复杂的动态,使其很难训练。他们更具有生物真实性。
循环网络的目的使用来处理序列数据。在传统的神经网络模型中,是从输入层到隐含层再到输出层,层与层之间是全连接的,每层之间的节点是无连接的。但是这种普通的神经网络对于很多问题却无能无力。例如,你要预测句子的下一个单词是什么,一般需要用到前面的单词,因为一个句子中前后单词并不是独立的。
循环神经网路,即一个序列当前的输出与前面的输出也有关。具体的表现形式为网络会对前面的信息进行记忆并应用于当前输出的计算中,即隐藏层之间的节点不再无连接而是有连接的,并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出。

对称连接网络:
对称连接网络有点像循环网络,但是单元之间的连接是对称的(它们在两个方向上权重相同)。比起循环网络,对称连接网络更容易分析。这个网络中有更多的限制,因为它们遵守能量函数定律。没有隐藏单元的对称连接网络被称为“Hopfield 网络”。有隐藏单元的对称连接的网络被称为玻尔兹曼机。

其实之前的帖子讲过一些关于感知机的内容,这里再复述一下。
首先还是这张图
这是一个M-P神经元

一个神经元有n个输入,每一个输入对应一个权值w,神经元内会对输入与权重做乘法后求和,求和的结果与偏置做差,最终将结果放入激活函数中,由激活函数给出最后的输出,输出往往是二进制的,0 状态代表抑制,1 状态代表激活。

可以把感知机看作是 n 维实例空间中的超平面决策面,对于超平面一侧的样本,感知器输出 1,对于另一侧的实例输出 0,这个决策超平面方程是 w⋅x=0。 那些可以被某一个超平面分割的正反样例集合称为线性可分(linearly separable)样例集合,它们就可以使用图中的感知机表示。
与、或、非问题都是线性可分的问题,使用一个有两输入的感知机能容易地表示,而异或并不是一个线性可分的问题,所以使用单层感知机是不行的,这时候就要使用多层感知机来解决疑惑问题了。

如果我们要训练一个感知机,应该怎么办呢?
我们会从随机的权值开始,反复地应用这个感知机到每个训练样例,只要它误分类样例就修改感知机的权值。重复这个过程,直到感知机正确分类所有的样例。每一步根据感知机训练法则来修改权值,也就是修改与输入 xi 对应的权 wi,法则如下:

这里 t 是当前训练样例的目标输出,o 是感知机的输出,η 是一个正的常数称为学习速率。学习速率的作用是缓和每一步调整权的程度,它通常被设为一个小的数值(例如 0.1),而且有时会使其随着权调整次数的增加而衰减。

多层感知机,或者说是多层神经网络无非就是在输入层与输出层之间加了多个隐藏层而已,后续的CNN,DBN等神经网络只不过是将重新设计了每一层的类型。感知机可以说是神经网络的基础,后续更为复杂的神经网络都离不开最简单的感知机的模型,

谈到机器学习,我们往往还会跟上一个词语,叫做模式识别,但是真实环境中的模式识别往往会出现各种问题。比如:
图像分割:真实场景中总是掺杂着其它物体。很难判断哪些部分属于同一个对象。对象的某些部分可以隐藏在其他对象的后面。
物体光照:像素的强度被光照强烈影响。
图像变形:物体可以以各种非仿射方式变形。例如,手写也可以有一个大的圆圈或只是一个尖头。
情景支持:物体所属类别通常由它们的使用方式来定义。例如,椅子是为了让人们坐在上面而设计的,因此它们具有各种各样的物理形状。
卷积神经网络与普通神经网络的区别在于,卷积神经网络包含了一个由卷积层和子采样层构成的特征抽取器。在卷积神经网络的卷积层中,一个神经元只与部分邻层神经元连接。在CNN的一个卷积层中,通常包含若干个特征平面(featureMap),每个特征平面由一些矩形排列的的神经元组成,同一特征平面的神经元共享权值,这里共享的权值就是卷积核。卷积核一般以随机小数矩阵的形式初始化,在网络的训练过程中卷积核将学习得到合理的权值。共享权值(卷积核)带来的直接好处是减少网络各层之间的连接,同时又降低了过拟合的风险。子采样也叫做池化(pooling),通常有均值子采样(mean pooling)和最大值子采样(max pooling)两种形式。子采样可以看作一种特殊的卷积过程。卷积和子采样大大简化了模型复杂度,减少了模型的参数。
卷积神经网络由三部分构成。第一部分是输入层。第二部分由n个卷积层和池化层的组合组成。第三部分由一个全连结的多层感知机分类器构成。
这里举AlexNet为例:

·输入:224×224大小的图片,3通道
·第一层卷积:11×11大小的卷积核96个,每个GPU上48个。
·第一层max-pooling:2×2的核。
·第二层卷积:5×5卷积核256个,每个GPU上128个。
·第二层max-pooling:2×2的核。
·第三层卷积:与上一层是全连接,3*3的卷积核384个。分到两个GPU上个192个。
·第四层卷积:3×3的卷积核384个,两个GPU各192个。该层与上一层连接没有经过pooling层。
·第五层卷积:3×3的卷积核256个,两个GPU上个128个。
·第五层max-pooling:2×2的核。
·第一层全连接:4096维,将第五层max-pooling的输出连接成为一个一维向量,作为该层的输入。
·第二层全连接:4096维
·Softmax层:输出为1000,输出的每一维都是图片属于该类别的概率。

卷积神经网络在模式识别领域有着重要应用,当然这里只是对卷积神经网络做了最简单的讲解,卷积神经网络中仍然有很多知识,比如局部感受野,权值共享,多卷积核等内容,后续有机会再进行讲解。

传统的神经网络对于很多问题难以处理,比如你要预测句子的下一个单词是什么,一般需要用到前面的单词,因为一个句子中前后单词并不是独立的。RNN之所以称为循环神经网路,即一个序列当前的输出与前面的输出也有关。具体的表现形式为网络会对前面的信息进行记忆并应用于当前输出的计算中,即隐藏层之间的节点不再无连接而是有连接的,并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出。理论上,RNN能够对任何长度的序列数据进行处理。
这是一个简单的RNN的结构,可以看到隐藏层自己是可以跟自己进行连接的。

那么RNN为什么隐藏层能够看到上一刻的隐藏层的输出呢,其实我们把这个网络展开来开就很清晰了。

从上面的公式我们可以看出,循环层和全连接层的区别就是循环层多了一个权重矩阵 W。
如果反复把式2带入到式1,我们将得到:

在讲DBN之前,我们需要对DBN的基本组成单位有一定的了解,那就是RBM,受限玻尔兹曼机。
首先什么是玻尔兹曼机?
[图片上传失败...(image-d36b31-1519636788074)]
如图所示为一个玻尔兹曼机,其蓝色节点为隐层,白色节点为输入层。
玻尔兹曼机和递归神经网络相比,区别体现在以下几点:
1、递归神经网络本质是学习一个函数,因此有输入和输出层的概念,而玻尔兹曼机的用处在于学习一组数据的“内在表示”,因此其没有输出层的概念。
2、递归神经网络各节点链接为有向环,而玻尔兹曼机各节点连接成无向完全图。

而受限玻尔兹曼机是什么呢?
最简单的来说就是加入了限制,这个限制就是将完全图变成了二分图。即由一个显层和一个隐层构成,显层与隐层的神经元之间为双向全连接。

h表示隐藏层,v表示显层
在RBM中,任意两个相连的神经元之间有一个权值w表示其连接强度,每个神经元自身有一个偏置系数b(对显层神经元)和c(对隐层神经元)来表示其自身权重。
具体的公式推导在这里就不展示了

DBN是一个概率生成模型,与传统的判别模型的神经网络相对,生成模型是建立一个观察数据和标签之间的联合分布,对P(Observation|Label)和 P(Label|Observation)都做了评估,而判别模型仅仅而已评估了后者,也就是P(Label|Observation)。
DBN由多个限制玻尔兹曼机(Restricted Boltzmann Machines)层组成,一个典型的神经网络类型如图所示。这些网络被“限制”为一个可视层和一个隐层,层间存在连接,但层内的单元间不存在连接。隐层单元被训练去捕捉在可视层表现出来的高阶数据的相关性。

生成对抗网络其实在之前的帖子中做过讲解,这里在说明一下。
生成对抗网络的目标在于生成,我们传统的网络结构往往都是判别模型,即判断一个样本的真实性。而生成模型能够根据所提供的样本生成类似的新样本,注意这些样本是由计算机学习而来的。
GAN一般由两个网络组成,生成模型网络,判别模型网络。
生成模型 G 捕捉样本数据的分布,用服从某一分布(均匀分布,高斯分布等)的噪声 z 生成一个类似真实训练数据的样本,追求效果是越像真实样本越好;判别模型 D 是一个二分类器,估计一个样本来自于训练数据(而非生成数据)的概率,如果样本来自于真实的训练数据,D 输出大概率,否则,D 输出小概率。
举个例子:生成网络 G 好比假币制造团伙,专门制造假币,判别网络 D 好比警察,专门检测使用的货币是真币还是假币,G 的目标是想方设法生成和真币一样的货币,使得 D 判别不出来,D 的目标是想方设法检测出来 G 生成的假币。
传统的判别网络:

生成对抗网络:

下面展示一个cDCGAN的例子(前面帖子中写过的)
生成网络

判别网络

最终结果,使用MNIST作为初始样本,通过学习后生成的数字,可以看到学习的效果还是不错的。

本文非常简单的介绍了四种神经网络的架构,CNN,RNN,DBN,GAN。当然也仅仅是简单的介绍,并没有深层次讲解其内涵。这四种神经网络的架构十分常见,应用也十分广泛。当然关于神经网络的知识,不可能几篇帖子就讲解完,这里知识讲解一些基础知识,帮助大家快速入(zhuang)门(bi)。后面的帖子将对深度自动编码器,Hopfield 网络长短期记忆网络(LSTM)进行讲解。

⑷ “深度学习”和“多层神经网络”的区别

多层神经网络都是全连接结构,比如1000*1000的图片作为输入,那么一层的参数需要10^12个。这样就带来一些问题。
深度学习在多层神经网络的基础上,采用局部连接,权职共享,下菜样等技术,使得一层的参数从10w个,缩小到100*10*10=1w个。使得多层结构可以工作的更高效。

⑸ 30分钟讲清楚深度神经网络

这两年神经网络各种火。但对很多人而言,只是听着觉得各种高大上,究其本质,还是听不懂。下面我们花三十分钟把这个事情讲清楚。

神经网络算法是最早来源于某神经生理学家和某数学家联合发表的一篇论文,他们对人类神经运行规律的提出了一个猜想,并尝试给出一个建模来模拟人类神经元的运行规律。

神经网络一开始由于求解问题的不稳定,以及范围有限被抛弃。后面又在各个大神的努力下,对遇到的问题一个个解决,加上因为游戏带来的计算能力的提升获得了一个爆发式的增长。

下面我们讲讲神经网络是啥以及遇到的问题和探索出来的解决方案,最终我们给出一个深度神经网络的默认的最优配置项。

建立M个隐藏层,按顺序建立输入层跟隐藏层的联结,最后建立隐藏层跟输出层的联结。为每个隐藏层的每个节点选择激活函数。求解每个联结的权重和每个节点自带的bias值。参见下图。

所谓激活函数就是对各个路径的输入求和之后进一步增强的函数
典型的有如下几个:

下面这个图里面,是已知的各个联结线的权值,求y1, y2

这个练习可以测试对神经网络的理解。

所谓神经网络问题的训练本质,就是已知 y1,y2....yn, 已知x1, x2....xm,求解每个连接的权值和每个神经元上的偏差值。对单层的激活函数为RELU的神经网络而言就是, y = max(sum(w * x)+b, 0),已知y和x,求解w和b。

对于以上求解w和b的值,科学家们发现可以通过反向传播和梯度下降相结合来求解。就是一开始用随机数初始化我们每个联结的权值,然后通过神经网络计算出来的y值跟真实的y值做比对。如果这个值相差比较大,则修改当前层的联结的权重。当发现这个值相差不大时,则修改更低一层的权重。这个步骤一直重复,逐步传递到第一层的权值

三大问题:

针对这三个问题,大拿们开始了一场探索之旅。

神经网络的求解是通过反向传播的技术来解决的。通过梯度下降法。问题是,反向传播从输出层开始一步一步传到Layer 1时,越到低层,联结的权值变化越小,直到没变化。这种叫梯度消失。还有一些呢?则是越到第一层,变化越来越大。这种叫梯度爆炸。常见于RNN。

解决方案探索如下:

目前来说,通常用1+2 多于 3 多于 4。就是现在一般使用He initialization跟ReLU的演进版本作为作为激活函数来解决梯度消失和爆炸的问题,其次才使用Batch Normalization,最后使用Gradient Clipping。

通常来说,我们很难获得足够的标记好的训练数据。常用解决方案如下:

对于大规模数据的训练,很多时候速度很慢。除了解决梯度消失或爆炸的问题之外,还有使用AdamOptimizer替代GradientDescentOptimizer会大大加快收敛速度

我们后面会教大家用tensorflow构造出一个神经网络并求解。

⑹ 深度神经网络具体的工作流程是什么样的

第一,深度神经网络不是黑盒,个人电脑开机直到神经网络运行在内存中的每一比特的变化都是可以很细微的观察的。没有任何神秘力量,没有超出科学解释的现象发生。第二,深度神经网络的工作方式是基于传统的电脑架构之上的,就是数据+算法。但人们确实从中窥探到了一种全新的电子大脑方式。所以目前有研究提炼一些常用神经网络算法加速硬件。微软等巨头则在开发量子计算。第三,深度神经网络是一个很初级的特征自动提取器。说初级因为简单粗暴。以前为了节约算力特征关键模型都是人工亲自设定。而现在这部分工作随着算力的提高可以自动化。所以从某种意义上来说深度神经网络也是一种自动编程机,但和人们相比,一点点小小的自动化都需要很多很多的计算力支持,这一点也不重要,重要的是,它能工作(手动英文)。那么深度神经网络究竟是什么呢?它是一个能迭代更新自己的特征提取算法。现在这个算法可是像全自动高级工厂,数据往里一丢,不得了!整个工厂里面所有机器都动了起来。没见过的小伙伴当场就被吓呆瓜了,用流行的话说叫懵住。几千只机械手把数据搬来搬去,拿出魔方一样的盒子装来装去又倒出来。整个场面就叫一个震撼。算法运行规模也更大了。

⑺ 谁能科普一下“深度学习”网络和以前那种“多层神经网络”的区别

多层神经网络又叫全连接神经网络。当输入图像为1000*1000的分辨率时,神经网络一层的系数就达到10^12。系数过多引起收敛问题导致训练无法达到最优,并且容易过拟合。让它不具有实现意义。深度学习采用权值共享和局部连接等技术,大大降低了系数的个数和各种避免过拟合的方法,使得网络层数可以达到数百,使得深层网络成为可能。感兴趣可以搜搜我的课程,用Python做深度学习1——数学基础

有哪些深度神经网络模型

卷积神经元(Convolutional cells)和前馈神经元非常相似,除了它们只跟前一神经细胞层的部分神经元有连接。因为它们不是和某些神经元随机连接的,而是与特定范围内的神经元相连接,通常用来保存空间信息。这让它们对于那些拥有大量局部信息,比如图像数据、语音数据(但多数情况下是图像数据),会非常实用。

解卷积神经元恰好相反:它们是通过跟下一神经细胞层的连接来解码空间信息。这两种神经元都有很多副本,它们都是独立训练的;每个副本都有自己的权重,但连接方式却完全相同。可以认为,这些副本是被放在了具备相同结构的不同的神经网络中。这两种神经元本质上都是一般意义上的神经元,但是,它们的使用方式却不同。

池化神经元和插值神经元(Pooling and interpolating cells)经常和卷积神经元结合起来使用。它们不是真正意义上的神经元,只能进行一些简单的操作。

池化神经元接受到来自其它神经元的输出过后,决定哪些值可以通过,哪些值不能通过。在图像领域,可以理解成是把一个图像缩小了(在查看图片的时候,一般软件都有一个放大、缩小的功能;这里的图像缩小,就相当于软件上的缩小图像;也就是说我们能看到图像的内容更加少了;在这个池化的过程当中,图像的大小也会相应地减少)。这样,你就再也不能看到所有的像素了,池化函数会知道什么像素该保留,什么像素该舍弃。

插值神经元恰好是相反的操作:它们获取一些信息,然后映射出更多的信息。额外的信息都是按照某种方式制造出来的,这就好像在一张小分辨率的图片上面进行放大。插值神经元不仅仅是池化神经元的反向操作,而且,它们也是很常见,因为它们运行非常快,同时,实现起来也很简单。池化神经元和插值神经元之间的关系,就像卷积神经元和解卷积神经元之间的关系。

均值神经元和标准方差神经元(Mean and standard deviation cells)(作为概率神经元它们总是成对地出现)是一类用来描述数据概率分布的神经元。均值就是所有值的平均值,而标准方差描述的是这些数据偏离(两个方向)均值有多远。比如:一个用于图像处理的概率神经元可以包含一些信息,比如:在某个特定的像素里面有多少红色。举个例来说,均值可能是0.5,同时标准方差是0.2。当要从这些概率神经元取样的时候,你可以把这些值输入到一个高斯随机数生成器,这样就会生成一些分布在0.4和0.6之间的值;值离0.5越远,对应生成的概率也就越小。它们一般和前一神经元层或者下一神经元层是全连接,而且,它们没有偏差(bias)。

循环神经元(Recurrent cells )不仅仅在神经细胞层之间有连接,而且在时间轴上也有相应的连接。每一个神经元内部都会保存它先前的值。它们跟一般的神经元一样更新,但是,具有额外的权重:与当前神经元之前值之间的权重,还有大多数情况下,与同一神经细胞层各个神经元之间的权重。当前值和存储的先前值之间权重的工作机制,与非永久性存储器(比如RAM)的工作机制很相似,继承了两个性质:

⑼ 卷积神经网络和深度神经网络的区别是什么

没有卷积神经网络的说法,只有卷积核的说法。
电脑图像处理的真正价值在于:一旦图像存储在电脑上,就可以对图像进行各种有效的处理。如减小像素的颜色值,可以解决曝光过度的问题,模糊的图像也可以进行锐化处理,清晰的图像可以使用模糊处理模拟摄像机滤色镜产生的柔和效果。
用Photoshop等图像处理软件,施展的魔法几乎是无止境的。四种基本图像处理效果是模糊、锐化、浮雕和水彩。ß这些效果是不难实现的,它们的奥妙部分是一个称为卷积核的小矩阵。这个3*3的核含有九个系数。为了变换图像中的一个像素,首先用卷积核中心的系数乘以这个像素值,再用卷积核中其它八个系数分别乘以像素周围的八个像素,最后把这九个乘积相加,结果作为这个像素的值。对图像中的每个像素都重复这一过程,对图像进行了过滤。采用不同的卷积核,就可以得到不同的处理效果。ß用PhotoshopCS6,可以很方便地对图像进行处理。
模糊处理——模糊的卷积核由一组系数构成,每个系数都小于1,但它们的和恰好等于1,每个像素都吸收了周围像素的颜色,每个像素的颜色分散给了它周围的像素,最后得到的图像中,一些刺目的边缘变得柔和。
锐化卷积核中心的系数大于1,周围八个系数和的绝对值比中间系数小1,这将扩大一个像素与之周围像素颜色之间的差异,最后得到的图像比原来的图像更清晰。
浮雕卷积核中的系数累加和等于零,背景像素的值为零,非背景像素的值为非零值。照片上的图案好像金属表面的浮雕一样,轮廓似乎凸出于其表面。
要进行水彩处理,首先要对图像中的色彩进行平滑处理,把每个像素的颜色值和它周围的二十四个相邻的像素颜色值放在一个表中,然后由小到大排序,把表中间的一个颜色值作为这个像素的颜色值。然后用锐化卷积核对图像中的每个像素进行处理,以使得轮廓更加突出,最后得到的图像很像一幅水彩画。
我们把一些图像处理技术结合起来使用,就能产生一些不常见的光学效果,例如光晕等等。
希望我能帮助你解疑释惑。

⑽ 深度卷积网络

LeNet网络的结构如下图所示,可以看出,LeNet网络并没有使用padding,每进行一次卷积,图像的高度和宽度都会缩小,而通道数会一直增加。在全连接层中有400个节点,每个极点都有120个神经元,有时还会从这400个节点抽取一部分节点构建一个全连接层,即有两个全连接层。在该网络中,最后一步就是利用84个特征得到最后的输出,该网络刚开始使用的是 sigmoid 函数 tanh 函数,而现在常常倾向于使用 softmax 函数。需要注意的是,LeNet-5网络进行图像分类时,输入的图像是单通道的灰度图像。

AlexNet是以论文第一作者的名字命名的,该网络的结构,如下图所示,该网络的输出层使用了 softmax 函数。AlexNet网络比LeNet网络规模更大,大约有6000万个参数,用于训练图像和数据集时,能够处理非常相似的基本构造模块,这些模块中包含着大量的隐藏单元,并且与LeNet网络不同的是,该网络使用了ReLu的激活函数。

VGG-16网络没有太多的超参数,这是一种专注于构建卷积层的简单网络。如下图所示,该网络首先利用64个过滤器进行了两次卷积,接着在池化层将输入图像压缩,接着又是128个过滤器进行两次卷积,接着载池化。继续用256个过滤器进行3次卷积,再池化,接着再利用512个过滤器卷积3次,再池化,将稍后得到的特征图进行全连接操作,再进 softmax 激活。

由于存在梯度消失和梯度爆炸的原因,深层次的神经网络是很难训练的,如果采用一种跳跃连接的方式,即从某一层网络层获取激活,然后迅速反馈给另外一层,甚至是神经网络的更深层。这种利用跳跃连接构建的深度神经网络ResNets,深度能够超过100层

一个简单的两层神经网络示例,如下图所示:

常规的输出和输出之间的关系可以用如下的公式表示:

如上公式所述,这是一条神经网络的主路径。如果将 的输入直接到深层的激活函数之前,此时,神经网络有了一条副路径,其对应输出将有公式(5)变成如下所示的公式(6)

此时的输入除了原先的输入 外,多了一个 项,即由于 产生了一个残差块。

构建一个ResNet网络就是将很多这样的残差块堆积在一起,形成一个深度神经网络,如下所示:

使用传统的标准优化算法训练一个网络,随着网络深度的增加,训练误差会先减小再增加,随着网络层数的增加,优化算法会越难以训练,训练误差也会越来越多。但是,使用ResNet网络,能够有效地避免这种情况。

如上所述,加入残差网络之后,其输出计算公式如公式(6)所示,展开这个公式,则有:

如果使用L2正则化或者权重衰减,则会压缩权重参数 的值,如果参数 和参数 等于0,其输出将由公式(7)变成 ,假定使用ReLU激活函数,则有:

由于残差网络存在的这种跳跃连接,很容易得出以上等式,这意味着,即使给神经网络增加两层,但是其效率并不逊色与更简单的神经网络。并且由于存在以上恒等式,使得网络学习隐藏层的单元的信息更加容易。而普通网络,随着网络层数的增加,学习参数会变得很困难。

此外,关于残差网络,如公式(6)所示,假设 与 具有相同的维度,由于ResNets使用了许多same卷积, 的维度等于输出层的维度。如果输入和输出具有不同的维度,可以再增加一个矩阵 ,使得 和 具有相同的维度。而 的维度可以通过0值填充调节。

在卷积网络的架构设计中,一种有趣的想法是会使用到1×1的过滤矩阵,实际上,对于单通道的图像而言,1×1的过滤矩阵,意义不大,但是,对于多通道的图像而言,1×1的过滤矩阵能够有效减少图像卷积之后的通道数量。

根据卷积和池化的基本知识,随着神经网络层数的增加,图像的通道数量会逐渐增加,采用1×1的过滤矩阵卷积之后,可以有效减少图像的通道数量,一个简单的示例,如下所示:

假设有一个6×6×32的图片,使用1×1×32的过滤矩阵进行卷积运算,整个运算过程将会遍历36个单元格,并计算过滤矩阵所覆盖区域的元素积之和,将其应用到ReLu非线性函数,会得到一个输出值。此计算过程中,可能会用到多个1×1×32的过滤器,那么,通过以上计算会得到一个 6×6×过滤器数量 的矩阵。

构建卷积神经网络时,有时会很难决定过滤器的大小,而Inception网络的引入,却能很好的解决这个问题。

Inception网络的作用就是代替人工确定选择卷积层的过滤器类型。如下图所示,对于一个多通道图像,可以使用不同的过滤矩阵或者池化层,得到不同的输出,将这些输出堆积起来。

有了如上图所示的Inception块,最终输出为32+32+64+128=256,而Inception模块的输入为28×28×192,其整个计算成本,以5×5的过滤矩阵为例,其乘法的计算次数为:28×28×32×5×5×192,整个计算次数超过了1.2亿次。而如果使用如下所示的优化计算方法,则可以有效减少计算量。

如果利用1×1的过滤器,将输入矩阵的通道减少至16,则可以有效减少计算量,如下所示:

如上图所示的价格中,整个网络的运算次数为:28×28×192×16+28×28×32×5×5×16=1240万,整个计算成本降低至原来的十分之一。而,通过1×1×192过滤器卷积得到的这个网络层被称之为瓶颈层。

如上,所示,可以给每一个非1×1的卷积层之前,加入一个1×1的瓶颈层,就可以构建一个基本的inception模块了,如下图所示:

而一个inception网络就是多个Inception模块连接起来,如下图所示:

事实上,以上网络中,还存在一些分支,如编号1所示,这些分支就是全连接层,而全连接层之后就是一个softmax层用于预测。又如分支2所示,包含一些隐藏层(编号3),通过全连接层和softmax进行预测。这些分支结构能够确保,即使是隐藏层和中间层也参与了特征计算,并且也能够预测图片的分类。这种做法能够有效避免网络过拟合。

对于计算机视觉领域而言,神经网络的训练可能需要大量的数据,但是当数据量有限时,可以通过数据增强来实现数据量的扩充,以提高系统的鲁棒性,具体的数据增强方法如下所示:

除了以上三种数据增强的方法外,更多的数据增强方法和实现可以参考 图像数据增强

数据增强可以利用计算机多线程实现,一个线程用来实现加载数据,实现数据增强,其他线程可以训练这些数据以加快整体的运算速度。

阅读全文

与深度神经网络非全连接相关的资料

热点内容
网络共享中心没有网卡 浏览:495
电脑无法检测到网络代理 浏览:1351
笔记本电脑一天会用多少流量 浏览:478
苹果电脑整机转移新机 浏览:1349
突然无法连接工作网络 浏览:962
联通网络怎么设置才好 浏览:1195
小区网络电脑怎么连接路由器 浏览:934
p1108打印机网络共享 浏览:1188
怎么调节台式电脑护眼 浏览:604
深圳天虹苹果电脑 浏览:842
网络总是异常断开 浏览:584
中级配置台式电脑 浏览:896
中国网络安全的战士 浏览:607
同志网站在哪里 浏览:1382
版观看完整完结免费手机在线 浏览:1433
怎样切换默认数据网络设置 浏览:1082
肯德基无线网无法访问网络 浏览:1256
光纤猫怎么连接不上网络 浏览:1378
神武3手游网络连接 浏览:938
局网打印机网络共享 浏览:977