导航:首页 > 异常信息 > 哪种神经网络结构有自反馈连接

哪种神经网络结构有自反馈连接

发布时间:2023-05-10 14:28:22

1. (七)神经网络基本结构

目前为止,我们已经学习了2个机器学习模型。线性回归一般用来处理线性问题,逻辑回归用来处理2分类问题。虽然逻辑回归也可以处理非线性的分类问题,但是当我们有非常多的特征时,例如大于100个变量,将会有数量非常惊人的特征组合。这对于一般的逻辑回归来说需要计算的特征太多了,负荷太大。而神经网络既可以答衫解决复杂的非线性分类问题,又可以避免庞大的计算量。

人工神经网络是由很多神经元(激活单元)构成的,神经元是神经网络的基本元素。

实际上,可以这样理解神经元工作过程,当将输入送进神经元后,神经元将输入与权值线性组合(实际上就是θ T X)输出一个线性表达式,再将这个表达式送哗举拿入激活函数中,便得到了神经元的真实输出。

神经网络由好多个激活单元构成,如下图所示:

激活函数的选择是构建神经网络过程中的重要环节,下面简要介绍常用的激活函数。

(1) 线性函数( Liner Function )

(2) 斜面函数( Ramp Function )**

(3) 阈值函数( Threshold Function )**

以上3个激活函数都属于线性函数,下面介绍两个常用的非线性激活函数。
(4) S形函数( Sigmoid Function )

S形函数与双极S形函数的图像如下:

双极S形函数与S形函数主要区别在于函数的值域,双极S形函数值域是(-1,1),而S形函数值域是(0,1)。由于S形函数与双极S形函数都是 可导的 (导函数是连续函数),因此适合用在BP神经乱搭网络中。(BP算法要求激活函数可导)

人工神经网络中,最常用的激活函数就是sigmoid函数

神经网络是由大量的神经元互联而构成的网络。根据网络中神经元的互联方式,常见网络结构主要可以分为下面3类:

前馈网络也称前向网络,是最常见的神经网络,前文提到的都是前馈网络。称之为前馈是因为它在输出和模型本身之间没有反馈,数据只能向前传送,直到到达输出层,层间没有向后的反馈信号。

反馈型神经网络是一种从输出到输入具有反馈连接的神经网络,其结构比前馈网络要复杂得多。

自组织神经网络是一种无监督学习网络。它通过自动寻找样本中的内在规律和本质属性,自组织、自适应地改变网络参数与结构。

2. 神经网络Hopfield模型

一、Hopfield模型概述

1982年,美国加州工学院J.Hopfield发表一篇对人工神经网络研究颇有影响的论文。他提出了一种具有相互连接的反馈型人工神经网络模型——Hopfield人工神经网络。

Hopfield人工神经网络是一种反馈网络(Recurrent Network),又称自联想记忆网络。其目的是为了设计一个网络,存储一组平衡点,使得当给网络一组初始值时,网络通过自行运行而最终收敛到所存储的某个平衡点上。

Hopfield网络是单层对称全反馈网络,根据其激活函数的选取不同,可分为离散型Hopfield网络(Discrete Hopfield Neural Network,简称 DHNN)和连续型 Hopfield 网络(Continue Hopfield Neural Network,简称CHNN)。离散型Hopfield网络的激活函数为二值型阶跃函数,主要用于联想记忆、模式分类、模式识别。这个软件为离散型Hopfield网络的设计、应用。

二、Hopfield模型原理

离散型Hopfield网络的设计目的是使任意输入矢量经过网络循环最终收敛到网络所记忆的某个样本上。

正交化的权值设计

这一方法的基本思想和出发点是为了满足下面4个要求:

1)保证系统在异步工作时的稳定性,即它的权值是对称的,满足

wij=wji,i,j=1,2…,N;

2)保证所有要求记忆的稳定平衡点都能收敛到自己;

3)使伪稳定点的数目尽可能地少;

4)使稳定点的吸引力尽可能地大。

正交化权值的计算公式推导如下:

1)已知有P个需要存储的稳定平衡点x1,x2…,xP-1,xP,xp∈RN,计算N×(P-1)阶矩阵A∈RN×(P-1)

A=(x1-xPx2-xP…xP-1-xP)T

2)对A做奇异值分解

A=USVT

U=(u1u2…uN),

V=(υ1υ2…υP-1),

中国矿产资源评价新技术与评价新模型

Σ=diαg(λ1,λ2,…,λK),O为零矩阵。

K维空间为N维空间的子空间,它由K个独立的基组成:

K=rαnk(A),

设{u1u2…uK}为A的正交基,而{uK+1uK+2…uN}为N维空间的补充正交基。下面利用U矩阵来设计权值。

3)构造

中国矿产资源评价新技术与评价新模型

总的连接权矩阵为:

Wt=Wp-T·Wm

其中,T为大于-1的参数,缺省值为10。

Wp和Wm均满足对称条件,即

(wp)ij=(wp)ji

(wm)ij=(wm)ji

因而Wt中分量也满足对称条件。这就保证了系统在异步时能够收敛并且不会出现极限环。

4)网络的偏差构造为

bt=xP-Wt·xP

下面推导记忆样本能够收敛到自己的有效性。

(1)对于输入样本中的任意目标矢量xp,p=1,2,…,P,因为(xp-xP)是A中的一个矢量,它属于A的秩所定义的K个基空间的矢量,所以必存在系数α1,α2,…,αK,使

xp-xP1u12u2+…+αKuK

xp1u12u2+…+αKuK+xP

对于U中任意一个ui,有

中国矿产资源评价新技术与评价新模型

由正交性质可知,上式中

当i=j,

当i≠j,

对于输入模式xi,其网络输出为

yi=sgn(Wtxi+bt)

=sgn(Wpxi-T·Wmxi+xP-WpxP+T·WmxP)

=sgn[Wp(xi-xP)-T·Wm(xi-xP)+xP]

=sgn[(Wp-T·Wm)(xi-xP)+xP]

=sgn[Wt(xi-xP)+xP]

=sgn[(xi-xP)+xP]

=xi

(2)对于输入模式xP,其网络输出为

yP=sgn(WtxP+bt)

=sgn(WtxP+xP-WtxP)

=sgn(xP)

=xP

(3)如果输入一个不是记忆样本的x,网络输出为

y=sgn(Wtx+bt)

=sgn[(Wp-T·Wm)(x-xP)+xP]

=sgn[Wt(x-xP)+xP]。

因为x不是已学习过的记忆样本,x-xP不是A中的矢量,则必然有

Wt(x-xP)≠x-xP

并且再设计过程中可以通过调节Wt=Wp-T·Wm中的参数T的大小来控制(x-xP)与xP的符号,以保证输入矢量x与记忆样本之间存在足够的大小余额,从而使sgn(Wtx+bt)≠x,使x不能收敛到自身。

用输入模式给出一组目标平衡点,函数HopfieldDesign( )可以设计出 Hopfield 网络的权值和偏差,保证网络对给定的目标矢量能收敛到稳定的平衡点。

设计好网络后,可以应用函数HopfieldSimu( ),对输入矢量进行分类,这些输入矢量将趋近目标平衡点,最终找到他们的目标矢量,作为对输入矢量进行分类。

三、总体算法

1.Hopfield网络权值W[N][N]、偏差b[N]设计总体算法

应用正交化权值设计方法,设计Hopfield网络;

根据给定的目标矢量设计产生权值W[N][N],偏差b[N];

使Hopfield网络的稳定输出矢量与给定的目标矢量一致。

1)输入P个输入模式X=(x[1],x[2],…,x[P-1],x[P])

输入参数,包括T、h;

2)由X[N][P]构造A[N][P-1]=(x[1]-x[P],x[2]-x[P],…,x[P-1]-x[P]);

3)对A[N][P-1]作奇异值分解A=USVT

4)求A[N][P-1]的秩rank;

5)由U=(u[1],u[2],…,u[K])构造Wp[N][N];

6)由U=(u[K+1],…,u[N])构造Wm[N][N];

7)构造Wt[N][N]=Wp[N][N]-T*Wm[N][N];

8)构造bt[N]=X[N][P]-Wt[N][N]*X[N][P];

9)构造W[N][N](9~13),

构造W1[N][N]=h*Wt[N][N];

10)求W1[N][N]的特征值矩阵Val[N][N](对角线元素为特征值,其余为0),特征向量矩阵Vec[N][N];

11)求Eval[N][N]=diag{exp[diag(Val)]}[N][N];

12)求Vec[N][N]的逆Invec[N][N];

13)构造W[N][N]=Vec[N][N]*Eval[N][N]*Invec[N][N];

14)构造b[N],(14~15),

C1=exp(h)-1,

C2=-(exp(-T*h)-1)/T;

15)构造

中国矿产资源评价新技术与评价新模型

Uˊ——U的转置;

16)输出W[N][N],b[N];

17)结束。

2.Hopfield网络预测应用总体算法

Hopfield网络由一层N个斜坡函数神经元组成。

应用正交化权值设计方法,设计Hopfield网络。

根据给定的目标矢量设计产生权值W[N][N],偏差b[N]。

初始输出为X[N][P],

计算X[N][P]=f(W[N][N]*X[N][P]+b[N]),

进行T次迭代,

返回最终输出X[N][P],可以看作初始输出的分类。

3.斜坡函数

中国矿产资源评价新技术与评价新模型

输出范围[-1,1]。

四、数据流图

Hopfield网数据流图见附图3。

五、调用函数说明

1.一般实矩阵奇异值分解

(1)功能

用豪斯荷尔德(Householder)变换及变形QR算法对一般实矩阵进行奇异值分解。

(2)方法说明

设A为m×n的实矩阵,则存在一个m×m的列正交矩阵U和n×n的列正交矩阵V,使

中国矿产资源评价新技术与评价新模型

成立。其中

Σ=diag(σ0,σ1,…σp)p⩽min(m,n)-1,

且σ0≥σ1≥…≥σp>0,

上式称为实矩阵A的奇异值分解式,σi(i=0,1,…,p)称为A的奇异值。

奇异值分解分两大步:

第一步:用豪斯荷尔德变换将A约化为双对角线矩阵。即

中国矿产资源评价新技术与评价新模型

其中

中国矿产资源评价新技术与评价新模型

中的每一个变换Uj(j=0,1,…,k-1)将A中的第j列主对角线以下的元素变为0,而

中的每一个变换Vj(j=0,1,…,l-1)将A中的第j行主对角线紧邻的右次对角线元素右边的元素变为0。]]

j具有如下形式:

中国矿产资源评价新技术与评价新模型

其中ρ为一个比例因子,以避免计算过程中的溢出现象与误差的累积,Vj是一个列向量。即

Vj=(υ0,υ1,…,υn-1),

中国矿产资源评价新技术与评价新模型

其中

中国矿产资源评价新技术与评价新模型

第二步:用变形的QR算法进行迭代,计算所有的奇异值。即:用一系列的平面旋转变换对双对角线矩阵B逐步变换成对角矩阵。

在每一次的迭代中,用变换

中国矿产资源评价新技术与评价新模型

其中变换

将B中第j列主对角线下的一个非0元素变为0,同时在第j行的次对角线元素的右边出现一个非0元素;而变换Vj,j+1将第j-1行的次对角线元素右边的一个0元素变为0,同时在第j列的主对角线元素的下方出现一个非0元素。由此可知,经过一次迭代(j=0,1,…,p-1)后,B′仍为双对角线矩阵。但随着迭代的进行。最后收敛为对角矩阵,其对角线上的元素为奇异值。

在每次迭代时,经过初始化变换V01后,将在第0列的主对角线下方出现一个非0元素。在变换V01中,选择位移植u的计算公式如下:

中国矿产资源评价新技术与评价新模型

最后还需要对奇异值按非递增次序进行排列。

在上述变换过程中,若对于某个次对角线元素ej满足

|ej|⩽ε(|sj+1|+|sj|)

则可以认为ej为0。

若对角线元素sj满足

|sj|⩽ε(|ej-1|+|ej|)

则可以认为sj为0(即为0奇异值)。其中ε为给定的精度要求。

(3)调用说明

int bmuav(double*a,int m,int n,double*u,double*v,double eps,int ka),

本函数返回一个整型标志值,若返回的标志值小于0,则表示出现了迭代60次还未求得某个奇异值的情况。此时,矩阵的分解式为UAVT;若返回的标志值大于0,则表示正常返回。

形参说明:

a——指向双精度实型数组的指针,体积为m×n。存放m×n的实矩阵A;返回时,其对角线给出奇异值(以非递增次序排列),其余元素为0;

m——整型变量,实矩阵A的行数;

n——整型变量,实矩阵A的列数;

u——指向双精度实型数组的指针,体积为m×m。返回时存放左奇异向量U;

υ——指向双精度实型数组的指针,体积为n×n。返回时存放右奇异向量VT

esp——双精度实型变量,给定的精度要求;

ka——整型变量,其值为max(m,n)+1。

2.求实对称矩阵特征值和特征向量的雅可比过关法

(1)功能

用雅可比(Jacobi)方法求实对称矩阵的全部特征值与相应的特征向量。

(2)方法说明

雅可比方法的基本思想如下。

设n阶矩阵A为对称矩阵。在n阶对称矩阵A的非对角线元素中选取一个绝对值最大的元素,设为apq。利用平面旋转变换矩阵R0(p,q,θ)对A进行正交相似变换:

A1=R0(p,q,θ)TA,

其中R0(p,q,θ)的元素为

rpp=cosθ,rqq=cosθ,rpq=sinθ,

rqp=sinθ,rij=0,i,j≠p,q。

如果按下式确定角度θ,

中国矿产资源评价新技术与评价新模型

则对称矩阵A经上述变换后,其非对角线元素的平方和将减少

,对角线元素的平方和增加

,而矩阵中所有元素的平方和保持不变。由此可知,对称矩阵A每次经过一次变换,其非对角线元素的平方和“向零接近一步”。因此,只要反复进行上述变换,就可以逐步将矩阵A变为对角矩阵。对角矩阵中对角线上的元素λ0,λ1,…,λn-1即为特征值,而每一步中的平面旋转矩阵的乘积的第i列(i=0,1,…,n-1)即为与λi相应的特征向量。

综上所述,用雅可比方法求n阶对称矩阵A的特征值及相应特征向量的步骤如下:

1)令S=In(In为单位矩阵);

2)在A中选取非对角线元素中绝对值最大者,设为apq

3)若|apq|<ε,则迭代过程结束。此时对角线元素aii(i=0,1,…,n-1)即为特征值λi,矩阵S的第i列为与λi相应的特征向量。否则,继续下一步;

4)计算平面旋转矩阵的元素及其变换后的矩阵A1的元素。其计算公式如下

中国矿产资源评价新技术与评价新模型

5)S=S·R(p,q,θ),转(2)。

在选取非对角线上的绝对值最大的元素时用如下方法:

首先计算实对称矩阵A的非对角线元素的平方和的平方根

中国矿产资源评价新技术与评价新模型

然后设置关口υ10/n,在非对角线元素中按行扫描选取第一个绝对值大于或等于υ1的元素αpq进行平面旋转变换,直到所有非对角线元素的绝对值均小于υ1为止。再设关口υ21/n,重复这个过程。以此类推,这个过程一直作用到对于某个υk<ε为止。

(3)调用说明

void cjcbj(double*a,int n,double*v,double eps)。

形参说明:

a——指向双精度实型数组的指针,体积为n×n,存放n阶实对称矩阵A;返回时,其对角线存放n个特征值;

n——整型变量,实矩阵A的阶数;

υ——指向双精度实型数组的指针,体积为n×n,返回特征向量,其中第i列为与λi(即返回的αii,i=0,1,……,n-1)对应的特征向量;

esp——双精度实型变量。给定的精度要求。

3.矩阵求逆

(1)功能

用全选主元高斯-约当(Gauss-Jordan)消去法求n阶实矩阵A的逆矩阵。

(2)方法说明

高斯-约当法(全选主元)求逆的步骤如下:

首先,对于k从0到n-1做如下几步:

1)从第k行、第k列开始的右下角子阵中选取绝对值最大的元素,并记住此元素所在的行号和列号,再通过行交换和列交换将它交换到主元素位置上,这一步称为全选主元;

2)

3)

,i,j=0,1,…,n-1(i,j≠k);

4)αij-

,i,j=0,1,…,n-1(i,j≠k);

5)-

,i,j=0,1,…,n-1(i≠k);

最后,根据在全选主元过程中所记录的行、列交换的信息进行恢复,恢复原则如下:在全选主元过程中,先交换的行、列后进行恢复;原来的行(列)交换用列(行)交换来恢复。

图8-4 东昆仑—柴北缘地区基于HOPFIELD模型的铜矿分类结果图

(3)调用说明

int brinv(double*a,int n)。

本函数返回一个整型标志位。若返回的标志位为0,则表示矩阵A奇异,还输出信息“err**not inv”;若返回的标志位不为0,则表示正常返回。

形参说明:

a——指向双精度实型数组的指针,体积为n×n。存放原矩阵A;返回时,存放其逆矩阵A-1

n——整型变量,矩阵的阶数。

六、实例

实例:柴北缘—东昆仑地区铜矿分类预测。

选取8种因素,分别是重砂异常存在标志、水化异常存在标志、化探异常峰值、地质图熵值、Ms存在标志、Gs存在标志、Shdadlie到区的距离、构造线线密度。

构置原始变量,并根据原始数据构造预测模型。

HOPFIELD模型参数设置:训练模式维数8,预测样本个数774,参数个数8,迭代次数330。

结果分44类(图8-4,表8-5)。

表8-5 原始数据表及分类结果(部分)

续表

3. 2.前馈型神经网络与反馈型神经网络

       随着神经网络的不断发展,越来越多的人工神经网络模型也被创造出来了,其中,具有代表性的就是前馈型神经网络模型以及反馈型神经网络模型。

      1.前馈型神经网络模型

      前馈神经网络(Feedforward Neural Network),简称前馈网络,是人工神经网络的一种。在此种神经网络中,各神经元从输入层开始,接收前一级输入,并输出到下一级,直至输出层。整个网络中无反馈,可用一个有向无环图表示。

      前馈神经网络采用一种单向多层结构,其拓扑结构如图1所示。其中每一层包含若干个神经元,同一层的神经元之间没有互相连接,层间信息的传送只沿一个方向进行。其中第一层称为输入层。最后一层为输出层.中间为隐含层,简称隐层。隐层可以是一层。也可以是多层

      2.反馈型神经神经网络

       反馈神经网络是一种反馈动力学系统。在这种网络中,每个神经元同时将自身的输出信号作为输入信号反馈给其他神经元,它需要工作一段时间才能达到稳定。Hopfield神经网络是反馈网络中最简单且应用广泛的模型,它具有联想记忆的功能,如果将李雅普诺夫函数定义为巡游函数,Hopfield神经网络还可以用来解决快速寻优问题,Hopfield网络可以分为离散型Hopfield网络和连续型Hopfield网络,其中,离散型Hopfield网络拓扑结构如图2所示。

4. 前馈式神经网络与反馈式神经网络有何不同

前馈式神经网络和反馈式神经网络是两种主要的神经网络架构。

前馈式神经网络是信息在网络中单向流动的结构,它的信息只能从输入层流向输出层。常见的迟掘慎前馈式神经网络有多层感知器和卷积神经网络。

反馈散镇式神经网络是信息在网络中双码敬向流动的结构,信息可以从输入层流向输出层,也可以从输出层流回输入层。常见的反馈式神经网络有循环神经网络和递归神经网络。

前馈式神经网络适用于静态任务,而反馈式神经网络适用于动态任务。

5. 神经网络:卷积神经网络(CNN)

神经网络 最早是由心理学家和神经学家提出的,旨在寻求开发和测试神经的计算模拟。

粗略地说, 神经网络 是一组连接的 输入/输出单元 ,其中每个连接都与一个 权 相关联。在学习阶段,通过调整权值,使得神经网络的预测准确性逐步提高。由于单元之间的连接,神经网络学习又称 连接者学习。

神经网络是以模拟人脑神经元的数学模型为基础而建立的,它由一系列神经元组成,单元之间彼此连接。从信息处理角度看,神经元可以看作是一个多输入单输出的信息处理单元,根据神经元的特性和功能,可以把神经元抽象成一个简单的数学模型。

神经网络有三个要素: 拓扑结构、连接方式、学习规则

神经网络的拓扑结构 :神经网络的单元通常按照层次排列,根据网络的层次数,可以将神经网络分为单层神经网络、两层神经网络、三层神经网络等。结构简单的神经网络,在学习时收敛的速度快,但准确度低。

神经网络的层数和每层的单元数由问题的复杂程度而定。问题越复杂,神经网络的层数就越多。例如,两层神经网络常用来解决线性问题,而多层网络就可以解决多元非线性问题

神经网络的连接 :包括层次之间的连接和每一层内部的连接,连接的强度用权来表示。

根据层次之间的连接方式,分为:

1)前馈式网络:连接是单向的,上层单元的输出是下层单元的输入,如反向传播网络,Kohonen网络

2)反馈式网络:除了单项的连接外,还把最后一层单元的输出作为第一层单元的输入,如Hopfield网络

根据连接的范围,分为:

1)全连接神经网络:每个单元和相邻层上的所有单元相连

2)局部连接网络:每个单元只和相邻层上的部分单元相连

神经网络的学习

根据学习方法分:

感知器:有监督的学习方法,训练样本的类别是已知的,并在学习的过程中指导模型的训练

认知器:无监督的学习方法,训练样本类别未知,各单元通过竞争学习。

根据学习时间分:

离线网络:学习过程和使用过程是独立的

在线网络:学习过程和使用过程是同时进行的

根据学习规则分:

相关学习网络:根据连接间的激活水平改变权系数

纠错学习网络:根据输出单元的外部反馈改变权系数

自组织学习网络:对输入进行自适应地学习

摘自《数学之美》对人工神经网络的通俗理解:

神经网络种类很多,常用的有如下四种:

1)Hopfield网络,典型的反馈网络,结构单层,有相同的单元组成

2)反向传播网络,前馈网络,结构多层,采用最小均方差的纠错学习规则,常用于语言识别和分类等问题

3)Kohonen网络:典型的自组织网络,由输入层和输出层构成,全连接

4)ART网络:自组织网络

深度神经网络:

Convolutional Neural Networks(CNN)卷积神经网络

Recurrent neural Network(RNN)循环神经网络

Deep Belief Networks(DBN)深度信念网络

深度学习是指多层神经网络上运用各种机器学习算法解决图像,文本等各种问题的算法集合。深度学习从大类上可以归入神经网络,不过在具体实现上有许多变化。

深度学习的核心是特征学习,旨在通过分层网络获取分层次的特征信息,从而解决以往需要人工设计特征的重要难题。

Machine Learning vs. Deep Learning 

神经网络(主要是感知器)经常用于 分类

神经网络的分类知识体现在网络连接上,被隐式地存储在连接的权值中。

神经网络的学习就是通过迭代算法,对权值逐步修改的优化过程,学习的目标就是通过改变权值使训练集的样本都能被正确分类。

神经网络特别适用于下列情况的分类问题:

1) 数据量比较小,缺少足够的样本建立模型

2) 数据的结构难以用传统的统计方法来描述

3) 分类模型难以表示为传统的统计模型

缺点:

1) 需要很长的训练时间,因而对于有足够长训练时间的应用更合适。

2) 需要大量的参数,这些通常主要靠经验确定,如网络拓扑或“结构”。

3)  可解释性差 。该特点使得神经网络在数据挖掘的初期并不看好。

优点:

1) 分类的准确度高

2)并行分布处理能力强

3)分布存储及学习能力高

4)对噪音数据有很强的鲁棒性和容错能力

最流行的基于神经网络的分类算法是80年代提出的 后向传播算法 。后向传播算法在多路前馈神经网络上学习。 

定义网络拓扑

在开始训练之前,用户必须说明输入层的单元数、隐藏层数(如果多于一层)、每一隐藏层的单元数和输出层的单元数,以确定网络拓扑。

对训练样本中每个属性的值进行规格化将有助于加快学习过程。通常,对输入值规格化,使得它们落入0.0和1.0之间。

离散值属性可以重新编码,使得每个域值一个输入单元。例如,如果属性A的定义域为(a0,a1,a2),则可以分配三个输入单元表示A。即,我们可以用I0 ,I1 ,I2作为输入单元。每个单元初始化为0。如果A = a0,则I0置为1;如果A = a1,I1置1;如此下去。

一个输出单元可以用来表示两个类(值1代表一个类,而值0代表另一个)。如果多于两个类,则每个类使用一个输出单元。

隐藏层单元数设多少个“最好” ,没有明确的规则。

网络设计是一个实验过程,并可能影响准确性。权的初值也可能影响准确性。如果某个经过训练的网络的准确率太低,则通常需要采用不同的网络拓扑或使用不同的初始权值,重复进行训练。

后向传播算法学习过程:

迭代地处理一组训练样本,将每个样本的网络预测与实际的类标号比较。

每次迭代后,修改权值,使得网络预测和实际类之间的均方差最小。

这种修改“后向”进行。即,由输出层,经由每个隐藏层,到第一个隐藏层(因此称作后向传播)。尽管不能保证,一般地,权将最终收敛,学习过程停止。

算法终止条件:训练集中被正确分类的样本达到一定的比例,或者权系数趋近稳定。

后向传播算法分为如下几步:

1) 初始化权

网络的权通常被初始化为很小的随机数(例如,范围从-1.0到1.0,或从-0.5到0.5)。

每个单元都设有一个偏置(bias),偏置也被初始化为小随机数。

2) 向前传播输入

对于每一个样本X,重复下面两步:

向前传播输入,向后传播误差

计算各层每个单元的输入和输出。输入层:输出=输入=样本X的属性;即,对于单元j,Oj = Ij = Xj。隐藏层和输出层:输入=前一层的输出的线性组合,即,对于单元j, Ij =wij Oi + θj,输出=

3) 向后传播误差

计算各层每个单元的误差。

输出层单元j,误差:

Oj是单元j的实际输出,而Tj是j的真正输出。

隐藏层单元j,误差:

wjk是由j到下一层中单元k的连接的权,Errk是单元k的误差

更新 权 和 偏差 ,以反映传播的误差。

权由下式更新:

 其中,△wij是权wij的改变。l是学习率,通常取0和1之间的值。

 偏置由下式更新:

  其中,△θj是偏置θj的改变。

Example

人类视觉原理:

深度学习的许多研究成果,离不开对大脑认知原理的研究,尤其是视觉原理的研究。1981 年的诺贝尔医学奖,颁发给了 David Hubel(出生于加拿大的美国神经生物学家) 和Torsten Wiesel,以及Roger Sperry。前两位的主要贡献,是“发现了视觉系统的信息处理”, 可视皮层是分级的 。

人类的视觉原理如下:从原始信号摄入开始(瞳孔摄入像素Pixels),接着做初步处理(大脑皮层某些细胞发现边缘和方向),然后抽象(大脑判定,眼前的物体的形状,是圆形的),然后进一步抽象(大脑进一步判定该物体是只气球)。

对于不同的物体,人类视觉也是通过这样逐层分级,来进行认知的:

在最底层特征基本上是类似的,就是各种边缘,越往上,越能提取出此类物体的一些特征(轮子、眼睛、躯干等),到最上层,不同的高级特征最终组合成相应的图像,从而能够让人类准确的区分不同的物体。

可以很自然的想到:可以不可以模仿人类大脑的这个特点,构造多层的神经网络,较低层的识别初级的图像特征,若干底层特征组成更上一层特征,最终通过多个层级的组合,最终在顶层做出分类呢?答案是肯定的,这也是许多深度学习算法(包括CNN)的灵感来源。

卷积神经网络是一种多层神经网络,擅长处理图像特别是大图像的相关机器学习问题。卷积网络通过一系列方法,成功将数据量庞大的图像识别问题不断降维,最终使其能够被训练。

CNN最早由Yann LeCun提出并应用在手写字体识别上。LeCun提出的网络称为LeNet,其网络结构如下:

这是一个最典型的卷积网络,由 卷积层、池化层、全连接层 组成。其中卷积层与池化层配合,组成多个卷积组,逐层提取特征,最终通过若干个全连接层完成分类。

CNN通过卷积来模拟特征区分,并且通过卷积的权值共享及池化,来降低网络参数的数量级,最后通过传统神经网络完成分类等任务。

降低参数量级:如果使用传统神经网络方式,对一张图片进行分类,那么,把图片的每个像素都连接到隐藏层节点上,对于一张1000x1000像素的图片,如果有1M隐藏层单元,一共有10^12个参数,这显然是不能接受的。

但是在CNN里,可以大大减少参数个数,基于以下两个假设:

1)最底层特征都是局部性的,也就是说,用10x10这样大小的过滤器就能表示边缘等底层特征

2)图像上不同小片段,以及不同图像上的小片段的特征是类似的,也就是说,能用同样的一组分类器来描述各种各样不同的图像

基于以上两个假设,就能把第一层网络结构简化

用100个10x10的小过滤器,就能够描述整幅图片上的底层特征。

卷积运算的定义如下图所示:

如上图所示,一个5x5的图像,用一个3x3的 卷积核 :

   101

   010

   101

来对图像进行卷积操作(可以理解为有一个滑动窗口,把卷积核与对应的图像像素做乘积然后求和),得到了3x3的卷积结果。

这个过程可以理解为使用一个过滤器(卷积核)来过滤图像的各个小区域,从而得到这些小区域的特征值。在实际训练过程中, 卷积核的值是在学习过程中学到的。

在具体应用中,往往有多个卷积核,可以认为, 每个卷积核代表了一种图像模式 ,如果某个图像块与此卷积核卷积出的值大,则认为此图像块十分接近于此卷积核。如果设计了6个卷积核,可以理解为这个图像上有6种底层纹理模式,也就是用6种基础模式就能描绘出一副图像。以下就是24种不同的卷积核的示例:

池化 的过程如下图所示:

可以看到,原始图片是20x20的,对其进行采样,采样窗口为10x10,最终将其采样成为一个2x2大小的特征图。

之所以这么做,是因为即使做完了卷积,图像仍然很大(因为卷积核比较小),所以为了降低数据维度,就进行采样。

即使减少了许多数据,特征的统计属性仍能够描述图像,而且由于降低了数据维度,有效地避免了过拟合。

在实际应用中,分为最大值采样(Max-Pooling)与平均值采样(Mean-Pooling)。

LeNet网络结构:

注意,上图中S2与C3的连接方式并不是全连接,而是部分连接。最后,通过全连接层C5、F6得到10个输出,对应10个数字的概率。

卷积神经网络的训练过程与传统神经网络类似,也是参照了反向传播算法

第一阶段,向前传播阶段:

a)从样本集中取一个样本(X,Yp),将X输入网络;

b)计算相应的实际输出Op

第二阶段,向后传播阶段

a)计算实际输出Op与相应的理想输出Yp的差;

b)按极小化误差的方法反向传播调整权矩阵。

6. 人工神经网络有哪些类型

人工神经网络模型主要考虑网络连接的拓扑结构、神经元的特征、学习规则等。目前,已有近40种神经网络模型,其中有反传网络、感知器、自组织映射、Hopfield网络、波耳兹曼机、适应谐振理论等。根据连接的拓扑结构,神经网络模型可以分为:

(1)前向网络 网络中各个神经元接受前一级的输入,并输出到下一级,网络中没有反馈,可以用一个有向无环路图表示。这种网络实现信号从输入空间到输出空间的变换,它的信息处理能力来自于简单非线性函数的多次复合。网络结构简单,易于实现。反传网络是一种典型的前向网络。

(2)反馈网络 网络内神经元间有反馈,可以用一个无向的完备图表示。这种神经网络的信息处理是状态的变换,可以用动力学系统理论处理。系统的稳定性与联想记忆功能有密切关系。Hopfield网络、波耳兹曼机均属于这种类型。

学习是神经网络研究的一个重要内容,它的适应性是通过学习实现的。根据环境的变化,对权值进行调整,改善系统的行为。由Hebb提出的Hebb学习规则为神经网络的学习算法奠定了基础。Hebb规则认为学习过程最终发生在神经元之间的突触部位,突触的联系强度随着突触前后神经元的活动而变化。在此基础上,人们提出了各种学习规则和算法,以适应不同网络模型的需要。有效的学习算法,使得神经网络能够通过连接权值的调整,构造客观世界的内在表示,形成具有特色的信息处理方法,信息存储和处理体现在网络的连接中。
根据学习环境不同,神经网络的学习方式可分为监督学习和非监督学习。在监督学习中,将训练样本的数据加到网络输入端,同时将相应的期望输出与网络输出相比较,得到误差信号,以此控制权值连接强度的调整,经多次训练后收敛到一个确定的权值。当样本情况发生变化时,经学习可以修改权值以适应新的环境。使用监督学习的神经网络模型有反传网络、感知器等。非监督学习时,事先不给定标准样本,直接将网络置于环境之中,学习阶段与工作阶段成为一体。此时,学习规律的变化服从连接权值的演变方程。非监督学习最简单的例子是Hebb学习规则。竞争学习规则是一个更复杂的非监督学习的例子,它是根据已建立的聚类进行权值调整。自组织映射、适应谐振理论网络等都是与竞争学习有关的典型模型。
研究神经网络的非线性动力学性质,主要采用动力学系统理论、非线性规划理论和统计理论,来分析神经网络的演化过程和吸引子的性质,探索神经网络的协同行为和集体计算功能,了解神经信息处理机制。为了探讨神经网络在整体性和模糊性方面处理信息的可能,混沌理论的概念和方法将会发挥作用。混沌是一个相当难以精确定义的数学概念。一般而言,“混沌”是指由确定性方程描述的动力学系统中表现出的非确定性行为,或称之为确定的随机性。“确定性”是因为它由内在的原因而不是外来的噪声或干扰所产生,而“随机性”是指其不规则的、不能预测的行为,只可能用统计的方法描述。混沌动力学系统的主要特征是其状态对初始条件的灵敏依赖性,混沌反映其内在的随机性。混沌理论是指描述具有混沌行为的非线性动力学系统的基本理论、概念、方法,它把动力学系统的复杂行为理解为其自身与其在同外界进行物质、能量和信息交换过程中内在的有结构的行为,而不是外来的和偶然的行为,混沌状态是一种定态。混沌动力学系统的定态包括:静止、平稳量、周期性、准同期性和混沌解。混沌轨线是整体上稳定与局部不稳定相结合的结果,称之为奇异吸引子。

7. 神经网络连接方式分为哪几类每一类有哪些特点

神经网络模型的分类
人工神经网络的模型很多,可以按照不同的方法进行分类。其中,常见的两种分类方法是,按照网络连接的拓朴结构分类和按照网络内部的信息流向分类。
1 按照网络拓朴结构分类
网络的拓朴结构,即神经元之间的连接方式。按此划分,可将神经网络结构分为两大类:层次型结构和互联型结构。
层次型结构的神经网络将神经元按功能和顺序的不同分为输出层、中间层(隐层)、输出层。输出层各神经元负责接收来自外界的输入信息,并传给中间各隐层神经元;隐层是神经网络的内部信息处理层,负责信息变换。根据需要可设计为一层或多层;最后一个隐层将信息传递给输出层神经元经进一步处理后向外界输出信息处理结果。

而互连型网络结构中,任意两个节点之间都可能存在连接路径,因此可以根据网络中节点的连接程度将互连型网络细分为三种情况:全互连型、局部互连型和稀疏连接型
2 按照网络信息流向分类
从神经网络内部信息传递方向来看,可以分为两种类型:前馈型网络和反馈型网络。
单纯前馈网络的结构与分层网络结构相同,前馈是因网络信息处理的方向是从输入层到各隐层再到输出层逐层进行而得名的。前馈型网络中前一层的输出是下一层的输入,信息的处理具有逐层传递进行的方向性,一般不存在反馈环路。因此这类网络很容易串联起来建立多层前馈网络。
反馈型网络的结构与单层全互连结构网络相同。在反馈型网络中的所有节点都具有信息处理功能,而且每个节点既可以从外界接受输入,同时又可以向外界输出。

8. 一文看懂四种基本的神经网络架构

原文链接:
http://blackblog.tech/2018/02/23/Eight-Neural-Network/

更多干货就在我的个人博客 http://blackblog.tech 欢迎关注

刚刚入门神经网络,往往会对众多的神经网络架构感到困惑,神经网络看起来复杂多样,但是这么多架构无非也就是三类,前馈神经网络,循环网络,对称连接网络,本文将介绍四种常见的神经网络,分别是CNN,RNN,DBN,GAN。通过这四种基本的神经网络架构,我们来对神经网络进行一定的了解。

神经网络是机器学习中的一种模型,是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
一般来说,神经网络的架构可以分为三类:

前馈神经网络:
这是实际应用中最常见的神经网络类型。第一层是输入,最后一层是输出。如果有多个隐藏层,我们称之为“深度”神经网络。他们计算出一系列改变样本相似性的变换。各层神经元的活动是前一层活动的非线性函数。

循环网络:
循环网络在他们的连接图中定向了循环,这意味着你可以按照箭头回到你开始的地方。他们可以有复杂的动态,使其很难训练。他们更具有生物真实性。
循环网络的目的使用来处理序列数据。在传统的神经网络模型中,是从输入层到隐含层再到输出层,层与层之间是全连接的,每层之间的节点是无连接的。但是这种普通的神经网络对于很多问题却无能无力。例如,你要预测句子的下一个单词是什么,一般需要用到前面的单词,因为一个句子中前后单词并不是独立的。
循环神经网路,即一个序列当前的输出与前面的输出也有关。具体的表现形式为网络会对前面的信息进行记忆并应用于当前输出的计算中,即隐藏层之间的节点不再无连接而是有连接的,并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出。

对称连接网络:
对称连接网络有点像循环网络,但是单元之间的连接是对称的(它们在两个方向上权重相同)。比起循环网络,对称连接网络更容易分析。这个网络中有更多的限制,因为它们遵守能量函数定律。没有隐藏单元的对称连接网络被称为“Hopfield 网络”。有隐藏单元的对称连接的网络被称为玻尔兹曼机。

其实之前的帖子讲过一些关于感知机的内容,这里再复述一下。
首先还是这张图
这是一个M-P神经元

一个神经元有n个输入,每一个输入对应一个权值w,神经元内会对输入与权重做乘法后求和,求和的结果与偏置做差,最终将结果放入激活函数中,由激活函数给出最后的输出,输出往往是二进制的,0 状态代表抑制,1 状态代表激活。

可以把感知机看作是 n 维实例空间中的超平面决策面,对于超平面一侧的样本,感知器输出 1,对于另一侧的实例输出 0,这个决策超平面方程是 w⋅x=0。 那些可以被某一个超平面分割的正反样例集合称为线性可分(linearly separable)样例集合,它们就可以使用图中的感知机表示。
与、或、非问题都是线性可分的问题,使用一个有两输入的感知机能容易地表示,而异或并不是一个线性可分的问题,所以使用单层感知机是不行的,这时候就要使用多层感知机来解决疑惑问题了。

如果我们要训练一个感知机,应该怎么办呢?
我们会从随机的权值开始,反复地应用这个感知机到每个训练样例,只要它误分类样例就修改感知机的权值。重复这个过程,直到感知机正确分类所有的样例。每一步根据感知机训练法则来修改权值,也就是修改与输入 xi 对应的权 wi,法则如下:

这里 t 是当前训练样例的目标输出,o 是感知机的输出,η 是一个正的常数称为学习速率。学习速率的作用是缓和每一步调整权的程度,它通常被设为一个小的数值(例如 0.1),而且有时会使其随着权调整次数的增加而衰减。

多层感知机,或者说是多层神经网络无非就是在输入层与输出层之间加了多个隐藏层而已,后续的CNN,DBN等神经网络只不过是将重新设计了每一层的类型。感知机可以说是神经网络的基础,后续更为复杂的神经网络都离不开最简单的感知机的模型,

谈到机器学习,我们往往还会跟上一个词语,叫做模式识别,但是真实环境中的模式识别往往会出现各种问题。比如:
图像分割:真实场景中总是掺杂着其它物体。很难判断哪些部分属于同一个对象。对象的某些部分可以隐藏在其他对象的后面。
物体光照:像素的强度被光照强烈影响。
图像变形:物体可以以各种非仿射方式变形。例如,手写也可以有一个大的圆圈或只是一个尖头。
情景支持:物体所属类别通常由它们的使用方式来定义。例如,椅子是为了让人们坐在上面而设计的,因此它们具有各种各样的物理形状。
卷积神经网络与普通神经网络的区别在于,卷积神经网络包含了一个由卷积层和子采样层构成的特征抽取器。在卷积神经网络的卷积层中,一个神经元只与部分邻层神经元连接。在CNN的一个卷积层中,通常包含若干个特征平面(featureMap),每个特征平面由一些矩形排列的的神经元组成,同一特征平面的神经元共享权值,这里共享的权值就是卷积核。卷积核一般以随机小数矩阵的形式初始化,在网络的训练过程中卷积核将学习得到合理的权值。共享权值(卷积核)带来的直接好处是减少网络各层之间的连接,同时又降低了过拟合的风险。子采样也叫做池化(pooling),通常有均值子采样(mean pooling)和最大值子采样(max pooling)两种形式。子采样可以看作一种特殊的卷积过程。卷积和子采样大大简化了模型复杂度,减少了模型的参数。
卷积神经网络由三部分构成。第一部分是输入层。第二部分由n个卷积层和池化层的组合组成。第三部分由一个全连结的多层感知机分类器构成。
这里举AlexNet为例:

·输入:224×224大小的图片,3通道
·第一层卷积:11×11大小的卷积核96个,每个GPU上48个。
·第一层max-pooling:2×2的核。
·第二层卷积:5×5卷积核256个,每个GPU上128个。
·第二层max-pooling:2×2的核。
·第三层卷积:与上一层是全连接,3*3的卷积核384个。分到两个GPU上个192个。
·第四层卷积:3×3的卷积核384个,两个GPU各192个。该层与上一层连接没有经过pooling层。
·第五层卷积:3×3的卷积核256个,两个GPU上个128个。
·第五层max-pooling:2×2的核。
·第一层全连接:4096维,将第五层max-pooling的输出连接成为一个一维向量,作为该层的输入。
·第二层全连接:4096维
·Softmax层:输出为1000,输出的每一维都是图片属于该类别的概率。

卷积神经网络在模式识别领域有着重要应用,当然这里只是对卷积神经网络做了最简单的讲解,卷积神经网络中仍然有很多知识,比如局部感受野,权值共享,多卷积核等内容,后续有机会再进行讲解。

传统的神经网络对于很多问题难以处理,比如你要预测句子的下一个单词是什么,一般需要用到前面的单词,因为一个句子中前后单词并不是独立的。RNN之所以称为循环神经网路,即一个序列当前的输出与前面的输出也有关。具体的表现形式为网络会对前面的信息进行记忆并应用于当前输出的计算中,即隐藏层之间的节点不再无连接而是有连接的,并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出。理论上,RNN能够对任何长度的序列数据进行处理。
这是一个简单的RNN的结构,可以看到隐藏层自己是可以跟自己进行连接的。

那么RNN为什么隐藏层能够看到上一刻的隐藏层的输出呢,其实我们把这个网络展开来开就很清晰了。

从上面的公式我们可以看出,循环层和全连接层的区别就是循环层多了一个权重矩阵 W。
如果反复把式2带入到式1,我们将得到:

在讲DBN之前,我们需要对DBN的基本组成单位有一定的了解,那就是RBM,受限玻尔兹曼机。
首先什么是玻尔兹曼机?
[图片上传失败...(image-d36b31-1519636788074)]
如图所示为一个玻尔兹曼机,其蓝色节点为隐层,白色节点为输入层。
玻尔兹曼机和递归神经网络相比,区别体现在以下几点:
1、递归神经网络本质是学习一个函数,因此有输入和输出层的概念,而玻尔兹曼机的用处在于学习一组数据的“内在表示”,因此其没有输出层的概念。
2、递归神经网络各节点链接为有向环,而玻尔兹曼机各节点连接成无向完全图。

而受限玻尔兹曼机是什么呢?
最简单的来说就是加入了限制,这个限制就是将完全图变成了二分图。即由一个显层和一个隐层构成,显层与隐层的神经元之间为双向全连接。

h表示隐藏层,v表示显层
在RBM中,任意两个相连的神经元之间有一个权值w表示其连接强度,每个神经元自身有一个偏置系数b(对显层神经元)和c(对隐层神经元)来表示其自身权重。
具体的公式推导在这里就不展示了

DBN是一个概率生成模型,与传统的判别模型的神经网络相对,生成模型是建立一个观察数据和标签之间的联合分布,对P(Observation|Label)和 P(Label|Observation)都做了评估,而判别模型仅仅而已评估了后者,也就是P(Label|Observation)。
DBN由多个限制玻尔兹曼机(Restricted Boltzmann Machines)层组成,一个典型的神经网络类型如图所示。这些网络被“限制”为一个可视层和一个隐层,层间存在连接,但层内的单元间不存在连接。隐层单元被训练去捕捉在可视层表现出来的高阶数据的相关性。

生成对抗网络其实在之前的帖子中做过讲解,这里在说明一下。
生成对抗网络的目标在于生成,我们传统的网络结构往往都是判别模型,即判断一个样本的真实性。而生成模型能够根据所提供的样本生成类似的新样本,注意这些样本是由计算机学习而来的。
GAN一般由两个网络组成,生成模型网络,判别模型网络。
生成模型 G 捕捉样本数据的分布,用服从某一分布(均匀分布,高斯分布等)的噪声 z 生成一个类似真实训练数据的样本,追求效果是越像真实样本越好;判别模型 D 是一个二分类器,估计一个样本来自于训练数据(而非生成数据)的概率,如果样本来自于真实的训练数据,D 输出大概率,否则,D 输出小概率。
举个例子:生成网络 G 好比假币制造团伙,专门制造假币,判别网络 D 好比警察,专门检测使用的货币是真币还是假币,G 的目标是想方设法生成和真币一样的货币,使得 D 判别不出来,D 的目标是想方设法检测出来 G 生成的假币。
传统的判别网络:

生成对抗网络:

下面展示一个cDCGAN的例子(前面帖子中写过的)
生成网络

判别网络

最终结果,使用MNIST作为初始样本,通过学习后生成的数字,可以看到学习的效果还是不错的。

本文非常简单的介绍了四种神经网络的架构,CNN,RNN,DBN,GAN。当然也仅仅是简单的介绍,并没有深层次讲解其内涵。这四种神经网络的架构十分常见,应用也十分广泛。当然关于神经网络的知识,不可能几篇帖子就讲解完,这里知识讲解一些基础知识,帮助大家快速入(zhuang)门(bi)。后面的帖子将对深度自动编码器,Hopfield 网络长短期记忆网络(LSTM)进行讲解。

阅读全文

与哪种神经网络结构有自反馈连接相关的资料

热点内容
网络共享中心没有网卡 浏览:513
电脑无法检测到网络代理 浏览:1364
笔记本电脑一天会用多少流量 浏览:550
苹果电脑整机转移新机 浏览:1368
突然无法连接工作网络 浏览:1032
联通网络怎么设置才好 浏览:1213
小区网络电脑怎么连接路由器 浏览:1009
p1108打印机网络共享 浏览:1203
怎么调节台式电脑护眼 浏览:669
深圳天虹苹果电脑 浏览:908
网络总是异常断开 浏览:603
中级配置台式电脑 浏览:966
中国网络安全的战士 浏览:623
同志网站在哪里 浏览:1404
版观看完整完结免费手机在线 浏览:1449
怎样切换默认数据网络设置 浏览:1099
肯德基无线网无法访问网络 浏览:1275
光纤猫怎么连接不上网络 浏览:1448
神武3手游网络连接 浏览:956
局网打印机网络共享 浏览:991