1. 请问如何实现不同神经网络层之间的连接
输出的数量取决于你的target怎么设置,比如你的输入是一个5行n列的数据,输出是一个4行n列的数据,你用这个数据初始化并且训练神经网络,得到的当然是5个输入值4个输出值的神经网络。
函数怎么写的话,去看matlab 帮助,搜索newff,你就能看到用法了。
2. neural是什么意思
neural的意思是:神经的。
neural,英语单词,名词、形容词,作名词时意为“人名;(捷)诺伊拉尔”,作形容词时意为“神经的;神经系统的;背的;神经中枢的”。单词发音:英[ˈnjʊərəl]美[ˈnʊrəl]。
双语例句
1、According to the neural cable model, this dissertation deced a stable solution.根据神经的电缆模型,论文导出直流稳态解;
2、Neural structures and mechanisms mediating the detection, localization and recognition of sounds.神经的结构和机制调节着声音的侦测、定位和辨识。
3、Neural networks are computer systems which mimic the workings of the brain.神经网络是模拟大脑工作方式的计算机系统。
4、The information transmission in neural system depends on neurotransmitters.信息传递的神经途径有赖于神经递质。
3. (七)神经网络基本结构
目前为止,我们已经学习了2个机器学习模型。线性回归一般用来处理线性问题,逻辑回归用来处理2分类问题。虽然逻辑回归也可以处理非线性的分类问题,但是当我们有非常多的特征时,例如大于100个变量,将会有数量非常惊人的特征组合。这对于一般的逻辑回归来说需要计算的特征太多了,负荷太大。而神经网络既可以答衫解决复杂的非线性分类问题,又可以避免庞大的计算量。
人工神经网络是由很多神经元(激活单元)构成的,神经元是神经网络的基本元素。
实际上,可以这样理解神经元工作过程,当将输入送进神经元后,神经元将输入与权值线性组合(实际上就是θ T X)输出一个线性表达式,再将这个表达式送哗举拿入激活函数中,便得到了神经元的真实输出。
神经网络由好多个激活单元构成,如下图所示:
激活函数的选择是构建神经网络过程中的重要环节,下面简要介绍常用的激活函数。
(1) 线性函数( Liner Function )
(2) 斜面函数( Ramp Function )**
(3) 阈值函数( Threshold Function )**
以上3个激活函数都属于线性函数,下面介绍两个常用的非线性激活函数。
(4) S形函数( Sigmoid Function )
S形函数与双极S形函数的图像如下:
双极S形函数与S形函数主要区别在于函数的值域,双极S形函数值域是(-1,1),而S形函数值域是(0,1)。由于S形函数与双极S形函数都是 可导的 (导函数是连续函数),因此适合用在BP神经乱搭网络中。(BP算法要求激活函数可导)
人工神经网络中,最常用的激活函数就是sigmoid函数
神经网络是由大量的神经元互联而构成的网络。根据网络中神经元的互联方式,常见网络结构主要可以分为下面3类:
前馈网络也称前向网络,是最常见的神经网络,前文提到的都是前馈网络。称之为前馈是因为它在输出和模型本身之间没有反馈,数据只能向前传送,直到到达输出层,层间没有向后的反馈信号。
反馈型神经网络是一种从输出到输入具有反馈连接的神经网络,其结构比前馈网络要复杂得多。
自组织神经网络是一种无监督学习网络。它通过自动寻找样本中的内在规律和本质属性,自组织、自适应地改变网络参数与结构。
4. 一文看懂四种基本的神经网络架构
原文链接:
http://blackblog.tech/2018/02/23/Eight-Neural-Network/
更多干货就在我的个人博客 http://blackblog.tech 欢迎关注
刚刚入门神经网络,往往会对众多的神经网络架构感到困惑,神经网络看起来复杂多样,但是这么多架构无非也就是三类,前馈神经网络,循环网络,对称连接网络,本文将介绍四种常见的神经网络,分别是CNN,RNN,DBN,GAN。通过这四种基本的神经网络架构,我们来对神经网络进行一定的了解。
神经网络是机器学习中的一种模型,是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
一般来说,神经网络的架构可以分为三类:
前馈神经网络:
这是实际应用中最常见的神经网络类型。第一层是输入,最后一层是输出。如果有多个隐藏层,我们称之为“深度”神经网络。他们计算出一系列改变样本相似性的变换。各层神经元的活动是前一层活动的非线性函数。
循环网络:
循环网络在他们的连接图中定向了循环,这意味着你可以按照箭头回到你开始的地方。他们可以有复杂的动态,使其很难训练。他们更具有生物真实性。
循环网络的目的使用来处理序列数据。在传统的神经网络模型中,是从输入层到隐含层再到输出层,层与层之间是全连接的,每层之间的节点是无连接的。但是这种普通的神经网络对于很多问题却无能无力。例如,你要预测句子的下一个单词是什么,一般需要用到前面的单词,因为一个句子中前后单词并不是独立的。
循环神经网路,即一个序列当前的输出与前面的输出也有关。具体的表现形式为网络会对前面的信息进行记忆并应用于当前输出的计算中,即隐藏层之间的节点不再无连接而是有连接的,并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出。
对称连接网络:
对称连接网络有点像循环网络,但是单元之间的连接是对称的(它们在两个方向上权重相同)。比起循环网络,对称连接网络更容易分析。这个网络中有更多的限制,因为它们遵守能量函数定律。没有隐藏单元的对称连接网络被称为“Hopfield 网络”。有隐藏单元的对称连接的网络被称为玻尔兹曼机。
其实之前的帖子讲过一些关于感知机的内容,这里再复述一下。
首先还是这张图
这是一个M-P神经元
一个神经元有n个输入,每一个输入对应一个权值w,神经元内会对输入与权重做乘法后求和,求和的结果与偏置做差,最终将结果放入激活函数中,由激活函数给出最后的输出,输出往往是二进制的,0 状态代表抑制,1 状态代表激活。
可以把感知机看作是 n 维实例空间中的超平面决策面,对于超平面一侧的样本,感知器输出 1,对于另一侧的实例输出 0,这个决策超平面方程是 w⋅x=0。 那些可以被某一个超平面分割的正反样例集合称为线性可分(linearly separable)样例集合,它们就可以使用图中的感知机表示。
与、或、非问题都是线性可分的问题,使用一个有两输入的感知机能容易地表示,而异或并不是一个线性可分的问题,所以使用单层感知机是不行的,这时候就要使用多层感知机来解决疑惑问题了。
如果我们要训练一个感知机,应该怎么办呢?
我们会从随机的权值开始,反复地应用这个感知机到每个训练样例,只要它误分类样例就修改感知机的权值。重复这个过程,直到感知机正确分类所有的样例。每一步根据感知机训练法则来修改权值,也就是修改与输入 xi 对应的权 wi,法则如下:
这里 t 是当前训练样例的目标输出,o 是感知机的输出,η 是一个正的常数称为学习速率。学习速率的作用是缓和每一步调整权的程度,它通常被设为一个小的数值(例如 0.1),而且有时会使其随着权调整次数的增加而衰减。
多层感知机,或者说是多层神经网络无非就是在输入层与输出层之间加了多个隐藏层而已,后续的CNN,DBN等神经网络只不过是将重新设计了每一层的类型。感知机可以说是神经网络的基础,后续更为复杂的神经网络都离不开最简单的感知机的模型,
谈到机器学习,我们往往还会跟上一个词语,叫做模式识别,但是真实环境中的模式识别往往会出现各种问题。比如:
图像分割:真实场景中总是掺杂着其它物体。很难判断哪些部分属于同一个对象。对象的某些部分可以隐藏在其他对象的后面。
物体光照:像素的强度被光照强烈影响。
图像变形:物体可以以各种非仿射方式变形。例如,手写也可以有一个大的圆圈或只是一个尖头。
情景支持:物体所属类别通常由它们的使用方式来定义。例如,椅子是为了让人们坐在上面而设计的,因此它们具有各种各样的物理形状。
卷积神经网络与普通神经网络的区别在于,卷积神经网络包含了一个由卷积层和子采样层构成的特征抽取器。在卷积神经网络的卷积层中,一个神经元只与部分邻层神经元连接。在CNN的一个卷积层中,通常包含若干个特征平面(featureMap),每个特征平面由一些矩形排列的的神经元组成,同一特征平面的神经元共享权值,这里共享的权值就是卷积核。卷积核一般以随机小数矩阵的形式初始化,在网络的训练过程中卷积核将学习得到合理的权值。共享权值(卷积核)带来的直接好处是减少网络各层之间的连接,同时又降低了过拟合的风险。子采样也叫做池化(pooling),通常有均值子采样(mean pooling)和最大值子采样(max pooling)两种形式。子采样可以看作一种特殊的卷积过程。卷积和子采样大大简化了模型复杂度,减少了模型的参数。
卷积神经网络由三部分构成。第一部分是输入层。第二部分由n个卷积层和池化层的组合组成。第三部分由一个全连结的多层感知机分类器构成。
这里举AlexNet为例:
·输入:224×224大小的图片,3通道
·第一层卷积:11×11大小的卷积核96个,每个GPU上48个。
·第一层max-pooling:2×2的核。
·第二层卷积:5×5卷积核256个,每个GPU上128个。
·第二层max-pooling:2×2的核。
·第三层卷积:与上一层是全连接,3*3的卷积核384个。分到两个GPU上个192个。
·第四层卷积:3×3的卷积核384个,两个GPU各192个。该层与上一层连接没有经过pooling层。
·第五层卷积:3×3的卷积核256个,两个GPU上个128个。
·第五层max-pooling:2×2的核。
·第一层全连接:4096维,将第五层max-pooling的输出连接成为一个一维向量,作为该层的输入。
·第二层全连接:4096维
·Softmax层:输出为1000,输出的每一维都是图片属于该类别的概率。
卷积神经网络在模式识别领域有着重要应用,当然这里只是对卷积神经网络做了最简单的讲解,卷积神经网络中仍然有很多知识,比如局部感受野,权值共享,多卷积核等内容,后续有机会再进行讲解。
传统的神经网络对于很多问题难以处理,比如你要预测句子的下一个单词是什么,一般需要用到前面的单词,因为一个句子中前后单词并不是独立的。RNN之所以称为循环神经网路,即一个序列当前的输出与前面的输出也有关。具体的表现形式为网络会对前面的信息进行记忆并应用于当前输出的计算中,即隐藏层之间的节点不再无连接而是有连接的,并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出。理论上,RNN能够对任何长度的序列数据进行处理。
这是一个简单的RNN的结构,可以看到隐藏层自己是可以跟自己进行连接的。
那么RNN为什么隐藏层能够看到上一刻的隐藏层的输出呢,其实我们把这个网络展开来开就很清晰了。
从上面的公式我们可以看出,循环层和全连接层的区别就是循环层多了一个权重矩阵 W。
如果反复把式2带入到式1,我们将得到:
在讲DBN之前,我们需要对DBN的基本组成单位有一定的了解,那就是RBM,受限玻尔兹曼机。
首先什么是玻尔兹曼机?
[图片上传失败...(image-d36b31-1519636788074)]
如图所示为一个玻尔兹曼机,其蓝色节点为隐层,白色节点为输入层。
玻尔兹曼机和递归神经网络相比,区别体现在以下几点:
1、递归神经网络本质是学习一个函数,因此有输入和输出层的概念,而玻尔兹曼机的用处在于学习一组数据的“内在表示”,因此其没有输出层的概念。
2、递归神经网络各节点链接为有向环,而玻尔兹曼机各节点连接成无向完全图。
而受限玻尔兹曼机是什么呢?
最简单的来说就是加入了限制,这个限制就是将完全图变成了二分图。即由一个显层和一个隐层构成,显层与隐层的神经元之间为双向全连接。
h表示隐藏层,v表示显层
在RBM中,任意两个相连的神经元之间有一个权值w表示其连接强度,每个神经元自身有一个偏置系数b(对显层神经元)和c(对隐层神经元)来表示其自身权重。
具体的公式推导在这里就不展示了
DBN是一个概率生成模型,与传统的判别模型的神经网络相对,生成模型是建立一个观察数据和标签之间的联合分布,对P(Observation|Label)和 P(Label|Observation)都做了评估,而判别模型仅仅而已评估了后者,也就是P(Label|Observation)。
DBN由多个限制玻尔兹曼机(Restricted Boltzmann Machines)层组成,一个典型的神经网络类型如图所示。这些网络被“限制”为一个可视层和一个隐层,层间存在连接,但层内的单元间不存在连接。隐层单元被训练去捕捉在可视层表现出来的高阶数据的相关性。
生成对抗网络其实在之前的帖子中做过讲解,这里在说明一下。
生成对抗网络的目标在于生成,我们传统的网络结构往往都是判别模型,即判断一个样本的真实性。而生成模型能够根据所提供的样本生成类似的新样本,注意这些样本是由计算机学习而来的。
GAN一般由两个网络组成,生成模型网络,判别模型网络。
生成模型 G 捕捉样本数据的分布,用服从某一分布(均匀分布,高斯分布等)的噪声 z 生成一个类似真实训练数据的样本,追求效果是越像真实样本越好;判别模型 D 是一个二分类器,估计一个样本来自于训练数据(而非生成数据)的概率,如果样本来自于真实的训练数据,D 输出大概率,否则,D 输出小概率。
举个例子:生成网络 G 好比假币制造团伙,专门制造假币,判别网络 D 好比警察,专门检测使用的货币是真币还是假币,G 的目标是想方设法生成和真币一样的货币,使得 D 判别不出来,D 的目标是想方设法检测出来 G 生成的假币。
传统的判别网络:
生成对抗网络:
下面展示一个cDCGAN的例子(前面帖子中写过的)
生成网络
判别网络
最终结果,使用MNIST作为初始样本,通过学习后生成的数字,可以看到学习的效果还是不错的。
本文非常简单的介绍了四种神经网络的架构,CNN,RNN,DBN,GAN。当然也仅仅是简单的介绍,并没有深层次讲解其内涵。这四种神经网络的架构十分常见,应用也十分广泛。当然关于神经网络的知识,不可能几篇帖子就讲解完,这里知识讲解一些基础知识,帮助大家快速入(zhuang)门(bi)。后面的帖子将对深度自动编码器,Hopfield 网络长短期记忆网络(LSTM)进行讲解。
5. 人工智能时代,神经网络的原理及使用方法 | 微课堂
人工智能时代已经悄然来临,在计算机技术高速发展的未来,机器是否能代替人脑?也许有些读者会说,永远不可能,因为散盯扮人脑的思考包含感性逻辑。事实上,神经网络算法正是在模仿人脑的思考方式。想不想知道神经网络是如何“思考”的呢?下面我向大家简单介绍一下神经网络的原理及使用方法。
所谓人工智能,就是让机器具备人的思维和意识。人工智能主要有三个学派——行为主义、符号主义和连接主义。
行为主义是基于控制论,是在构建感知动作的控制系统。理解行为主义有个很好的例子,就是让机器人单脚站立,通过感知要摔倒的方向控制两只手的动作,保持身体的平衡,这就构建了一个感知动作控制系统。
符号主义是基于算数逻辑和表达式。求解问题时,先把问题描述为表达式,再求解表达式。如果你在求解某个问题时,可以用if case这样的条件语句,和若干计算公式描述出来,这就使用了符号主义的方法,比如“专家系统”。符号主义可以认为是用公式描述的人工智能,它让计算机具备了理性思维。但是人类不仅具备理性思维,还具备无法用公式描述的感性思维。比如,如果你看过这篇推送,下回再见到“符号主义”几个字,你会觉得眼熟,会想到这是人工智能相关的知识,这是人的直觉,是感性的。
连接主义就是在模拟人的这种感性思维,是在仿造人脑内的神经元连接关系。这张图给出了人脑中的一根神经元,左侧是神经元的输入,“轴突”部分是神经元的输出。人脑就是由860亿个这样的神经元首尾相接组成的网络。
神经网络可以让计算机具备感性思维。我们首先理解一下基于连接主义的神经网络设计过程。这张图给出了人类从出生到24个月神经网络的变化:
随着我们的成长,大量的数据通过视觉、听觉涌入大脑,使我们的神经网络连接,也就是这些神经元连线上的权重发生了变化,有些线上的权重增强了,有些线上的权重减弱了。
我们要用计算机仿出这些神经网络连接关系,让计算机具备感性思维。
首先需要准备数据,数据量越大越好,以构成特征和标签对。如果想识别猫,就要有大量猫的图片和这张图片是猫的标签构成特征标签对,然后搭建神经网络的网络结构,再通过反向传播优化连接的权重,直到模型的识别准确率达到要求,得到最优的连线权重,把这个模型保存起来。最后用保存的模型输入从未见过的新数据,它会通过前向传播输出概率值,概率值最大的一个就是分类和预测的结果。
我们举个例子来感受一下神经网络的设计过程。鸢尾花可以分为三类:狗尾鸢尾、杂色鸢尾和佛吉尼亚鸢尾。我们拿出一张图,需要让计算机判断这是哪类鸢尾花。人们通过经验总结出了规律:通过测量花的花萼长、花萼宽、花瓣长、花瓣宽分辨出鸢尾花的类别,比如花萼长>花萼宽,并且花瓣长/花瓣宽>2,则可以判定为这是第一种,杂色鸢尾。看到这里,也许有些读者已经想到用if、case这样的条件语句来实现鸢尾花的分类。没错,条件语句根据这些信息可以判断鸢尾花分类,这是一个非常典型的专家系统,这个过程是理性计算。只要有了这些数据,就可以通过条件判定公式计算出是哪类鸢尾花。但是我们发现鸢尾花的种植者在识别鸢尾花的时候并不需要这么理性的计算,因为他们见识了太多的鸢尾花,一看就知道是哪种,而且随着经验的增加,识别的准确率会提高。这就是直觉,是感性思维,也是我们这篇文章想要和大家分享的神经网络方法。
这种神经网络设计过程首先需要采集大量的花萼长、花萼宽、花瓣长、花瓣宽,和它们所对应的是哪种鸢尾花。花萼长、花萼宽、花瓣长、花瓣宽叫做输入特征,它们对应的分类叫做标签。大量的输入特征和标签对构建出数据集,再把这个数据集喂入搭建好的神经网络结构,网络通过反向传播优化参数,得到模型。当有新的、从未见过的输入特征,送入神经网络时,神经网络会输出识别的结果。
展望21世纪初,在近十年神经网络理论研究趋向的背景下,神经网络理论的主要前沿领域包括:
一、对智能和机器关系问题的认识进一步增长。
研究人类智力一直是科学发展中最有意义,也是空前困难的挑冲灶战性问题。人脑是我们所知道的唯一则带智能系统,具有感知识别、学习、联想、记忆、推理等智能。我们通过不断 探索 人类智能的本质以及联结机制,并用人工系统复现或部分复现,制造各种智能机器,这样可使人类有更多的时间和机会从事更为复杂、更富创造性的工作。
神经网络是由大量处理单元组成的非线性、自适应、自组织系统,是在现代神经科学研究成果的基础上提出的,试图模拟神经网络加工、记忆信息的方式,设计一种新的机器,使之具有人脑风格的信息处理能力。智能理论所面对的课题来自“环境——问题——目的”,有极大的诱惑力与压力,它的发展方向将是把基于连接主义的神经网络理论、基于符号主义的人工智能专家系统理论和基于进化论的人工生命这三大研究领域,在共同追求的总目标下,自发而有机地结合起来。
二、神经计算和进化计算的重大发展。
计算和算法是人类自古以来十分重视的研究领域,本世纪30年代,符号逻辑方面的研究非常活跃。近年来,神经计算和进化计算领域很活跃,有新的发展动向,在从系统层次向细胞层次转化里,正在建立数学理论基础。随着人们不断 探索 新的计算和算法,将推动计算理论向计算智能化方向发展,在21世纪人类将全面进入信息 社会 ,对信息的获取、处理和传输问题,对网络路由优化问题,对数据安全和保密问题等等将有新的要求,这些将成为 社会 运行的首要任务。因此,神经计算和进化计算与高速信息网络理论联系将更加密切,并在计算机网络领域中发挥巨大的作用,例如大范围计算机网络的自组织功能实现就要进行进化计算。
人类的思维方式正在转变,从线性思维转到非线性思维神经元,神经网络都有非线性、非局域性、非定常性、非凸性和混沌等特性。我们在计算智能的层次上研究非线性动力系统、混沌神经网络以及对神经网络的数理研究,进一步研究自适应性子波、非线性神经场的兴奋模式、神经集团的宏观力学等。因为,非线性问题的研究是神经网络理论发展的一个最大动力,也是它面临的最大挑战。
以上就是有关神经网络的相关内容,希望能为读者带来帮助。
以上内容由苏州空天信息研究院谢雨宏提供。
6. 人工神经元网络的拓扑结构主要有哪几种谢谢大侠~~~
神经网络的拓扑结构包括网络层数、各层神经元数量以及各神经元之间相互连接的方式。
人工神经网络的模型从其拓扑结构角度去看,可分为层次型和互连型。层次型模型是将神经网络分为输入层(Input Layer)、隐层(Hidden Layer)和输出层(Output Layer),各层顺序连接。其中,输入层神经元负责接收来自外界的输入信息,并将其传递给隐层神经元。隐层负责神经网络内部的信息处理、信息变换。通常会根据变换的需要,将隐层设计为一层或多层。
(6)神经网络连接装置扩展阅读:
人工神经网络模型主要考虑网络连接的拓扑结构、神经元的特征、学习规则等。目前,已有近40种神经网络模型,其中有反传网络、感知器、自组织映射、Hopfield网络、波耳兹曼机、适应谐振理论等。
人工神经网络采用了与传统人工智能和信息处理技术完全不同的机理,克服了传统的基于逻辑符号的人工智能在处理直觉、非结构化信息方面的缺陷,具有自适应、自组织和实时学习的特点。
7. 什么是全连接神经网络,怎么理解“全连接”
1、全连接神经网络解析:对n-1层和n层而言,n-1层的任意一个节点,都和第n层所有节点有连接。即第n层的每个节点在进行计算的时候,激活函数的输入是n-1层所有节点的加权。
2、全连接的神经网络示意图:
3、“全连接”是一种不错的模式,但是网络很大的时候,训练速度回很慢。部分连接就是认为的切断某两个节点直接的连接,这样训练时计算量大大减小。
8. 神经网络连接方式分为哪几类每一类有哪些特点
神经网络模型的分类
人工神经网络的模型很多,可以按照不同的方法进行分类。其中,常见的两种分类方法是,按照网络连接的拓朴结构分类和按照网络内部的信息流向分类。
1 按照网络拓朴结构分类
网络的拓朴结构,即神经元之间的连接方式。按此划分,可将神经网络结构分为两大类:层次型结构和互联型结构。
层次型结构的神经网络将神经元按功能和顺序的不同分为输出层、中间层(隐层)、输出层。输出层各神经元负责接收来自外界的输入信息,并传给中间各隐层神经元;隐层是神经网络的内部信息处理层,负责信息变换。根据需要可设计为一层或多层;最后一个隐层将信息传递给输出层神经元经进一步处理后向外界输出信息处理结果。
而互连型网络结构中,任意两个节点之间都可能存在连接路径,因此可以根据网络中节点的连接程度将互连型网络细分为三种情况:全互连型、局部互连型和稀疏连接型
2 按照网络信息流向分类
从神经网络内部信息传递方向来看,可以分为两种类型:前馈型网络和反馈型网络。
单纯前馈网络的结构与分层网络结构相同,前馈是因网络信息处理的方向是从输入层到各隐层再到输出层逐层进行而得名的。前馈型网络中前一层的输出是下一层的输入,信息的处理具有逐层传递进行的方向性,一般不存在反馈环路。因此这类网络很容易串联起来建立多层前馈网络。
反馈型网络的结构与单层全互连结构网络相同。在反馈型网络中的所有节点都具有信息处理功能,而且每个节点既可以从外界接受输入,同时又可以向外界输出。
9. nervous的名词,动词及用法
nervous的名词是:nervousness,没有动词形式。用法如下:
1、nervous的基本意思是指人或物的神经系统因为某种病变而失常。引申可表示一个人由于担心或害怕而产生精神上的“不安,紧张”。
2、nervous在句中可用作定语或表语,无比较级和最高级形式。
3、nervous同anxious的比较:前者表示“紧张的,害怕的,焦虑的”,后者表示“担心的,着急的,焦虑的”,更强调一种担忧。
(9)神经网络连接装置扩展阅读
近义词
1、neural
英 ['njʊər(ə)l] 美 ['nʊrəl]
adj. 神高销经的;神经系统的;背的;神经中枢的
短语
neural networks神经网络 ; 类神经网路轿源 ; 神经网络系统 ; 类神经网络
Neural Linker神经连结装置 ; 神经连接装置 ; 神经连结安装
neural analyzer[解剖]神经分析器
2、jittery
英 ['dʒɪt(ə)rɪ] 美 ['dʒɪ闭念态təri]
adj. 神经过敏的;战战兢兢的;紧张不安的
短语
market jittery市场情绪将十分敏感
jittery detail战战兢兢的
Jittery clock含有抖动的实际信号
10. 【神经网络原理】神经网络结构 & 符号约定
神经元模型的符号约定:输入: ,权重(weight): ,偏置(bias): ,未激活值: ,激活输出值:
神经元可用于解决部分二分类问题 ——当有一个类别未知的 输入感知机,若 输出值a = 1时,感知机被激活 ,代表 x 属于第一类;若 输出值a = 0时,感知机未激活 ,则代表 x 属于第二类。而对于sigmoid神经元,若输出值a ≥ 0.5时,代表 x 属于第一类,否则为第二类。
不难看出,感知机可以轻松实现“与非”逻辑,而与非逻辑可以组合成其他任意的逻辑,但对于一些过于复杂的问题,我们难以写出其背后地逻辑结构。 这时候神经网络就能大显身手 :它可以自适应的学习规律,调节网络地权重和偏置等参数,我们只需要用大量的数据对其正确地训练,即可得到我们想要的效果!
那有一个很有意思的问题:相比于阶跃函数,为什么我们在神经网络中更愿意采用sigmoid函数作为激活函数呢?
首先,由于感知机的激活函数为阶跃函数(在0处突变),权重的一个小的变化就可能导致输出值的突变,而如果将激活函数替换为sigmoid函数,输出值的变化就能发生相应的小的变化,有利于网络学习;另外,由于采用二次代价函数作为损失函数时,利用BP算法求梯度值需要对冲激函数求导,sigmoid函数正好时连续可导的,而且导数很好求。
为了便于理解,先画一个三层的全连接神经网络示意图,激活函数都选用sigmoid函数。 全连接神经网络 指除输出层外,每一个神经元都与下一层中的各神经元相连接。网络的第一层为 输入层 ,最后一层为 输出层 ,中间的所有层统称为 隐藏层 。其中,输入层的神经元比较特殊,不含偏置 ,也没有激活函数 。
神经网络结构的符号约定 : 代表第 层的第 个神经元与第 层的第 个神经元连线上的权重; 代表第 层与第 层之间的所有权重 构成的权重矩阵。 分别代表第 层的第 个神经元对应的偏置、未激活值、激活值; 则分别代表第 层的所有偏置组成的列向量、所有未激活值组成的列向量以及所有激活值组成的列向量。
下面展示了一个手写体识别的三层全连接神经网络结构:
隐藏层的功能可以看作是各种特征检测器的组合:检测到相应特征时,相应的隐藏层神经元就会被激活,从而使输出层相应的神经元也被激活。