㈠ 神经网络:卷积神经网络(CNN)
神经网络 最早是由心理学家和神经学家提出的,旨在寻求开发和测试神经的计算模拟。
粗略地说, 神经网络 是一组连接的 输入/输出单元 ,其中每个连接都与一个 权 相关联。在学习阶段,通过调整权值,使得神经网络的预测准确性逐步提高。由于单元之间的连接,神经网络学习又称 连接者学习。
神经网络是以模拟人脑神经元的数学模型为基础而建立的,它由一系列神经元组成,单元之间彼此连接。从信息处理角度看,神经元可以看作是一个多输入单输出的信息处理单元,根据神经元的特性和功能,可以把神经元抽象成一个简单的数学模型。
神经网络有三个要素: 拓扑结构、连接方式、学习规则
神经网络的拓扑结构 :神经网络的单元通常按照层次排列,根据网络的层次数,可以将神经网络分为单层神经网络、两层神经网络、三层神经网络等。结构简单的神经网络,在学习时收敛的速度快,但准确度低。
神经网络的层数和每层的单元数由问题的复杂程度而定。问题越复杂,神经网络的层数就越多。例如,两层神经网络常用来解决线性问题,而多层网络就可以解决多元非线性问题
神经网络的连接 :包括层次之间的连接和每一层内部的连接,连接的强度用权来表示。
根据层次之间的连接方式,分为:
1)前馈式网络:连接是单向的,上层单元的输出是下层单元的输入,如反向传播网络,Kohonen网络
2)反馈式网络:除了单项的连接外,还把最后一层单元的输出作为第一层单元的输入,如Hopfield网络
根据连接的范围,分为:
1)全连接神经网络:每个单元和相邻层上的所有单元相连
2)局部连接网络:每个单元只和相邻层上的部分单元相连
神经网络的学习
根据学习方法分:
感知器:有监督的学习方法,训练样本的类别是已知的,并在学习的过程中指导模型的训练
认知器:无监督的学习方法,训练样本类别未知,各单元通过竞争学习。
根据学习时间分:
离线网络:学习过程和使用过程是独立的
在线网络:学习过程和使用过程是同时进行的
根据学习规则分:
相关学习网络:根据连接间的激活水平改变权系数
纠错学习网络:根据输出单元的外部反馈改变权系数
自组织学习网络:对输入进行自适应地学习
摘自《数学之美》对人工神经网络的通俗理解:
神经网络种类很多,常用的有如下四种:
1)Hopfield网络,典型的反馈网络,结构单层,有相同的单元组成
2)反向传播网络,前馈网络,结构多层,采用最小均方差的纠错学习规则,常用于语言识别和分类等问题
3)Kohonen网络:典型的自组织网络,由输入层和输出层构成,全连接
4)ART网络:自组织网络
深度神经网络:
Convolutional Neural Networks(CNN)卷积神经网络
Recurrent neural Network(RNN)循环神经网络
Deep Belief Networks(DBN)深度信念网络
深度学习是指多层神经网络上运用各种机器学习算法解决图像,文本等各种问题的算法集合。深度学习从大类上可以归入神经网络,不过在具体实现上有许多变化。
深度学习的核心是特征学习,旨在通过分层网络获取分层次的特征信息,从而解决以往需要人工设计特征的重要难题。
Machine Learning vs. Deep Learning
神经网络(主要是感知器)经常用于 分类
神经网络的分类知识体现在网络连接上,被隐式地存储在连接的权值中。
神经网络的学习就是通过迭代算法,对权值逐步修改的优化过程,学习的目标就是通过改变权值使训练集的样本都能被正确分类。
神经网络特别适用于下列情况的分类问题:
1) 数据量比较小,缺少足够的样本建立模型
2) 数据的结构难以用传统的统计方法来描述
3) 分类模型难以表示为传统的统计模型
缺点:
1) 需要很长的训练时间,因而对于有足够长训练时间的应用更合适。
2) 需要大量的参数,这些通常主要靠经验确定,如网络拓扑或“结构”。
3) 可解释性差 。该特点使得神经网络在数据挖掘的初期并不看好。
优点:
1) 分类的准确度高
2)并行分布处理能力强
3)分布存储及学习能力高
4)对噪音数据有很强的鲁棒性和容错能力
最流行的基于神经网络的分类算法是80年代提出的 后向传播算法 。后向传播算法在多路前馈神经网络上学习。
定义网络拓扑
在开始训练之前,用户必须说明输入层的单元数、隐藏层数(如果多于一层)、每一隐藏层的单元数和输出层的单元数,以确定网络拓扑。
对训练样本中每个属性的值进行规格化将有助于加快学习过程。通常,对输入值规格化,使得它们落入0.0和1.0之间。
离散值属性可以重新编码,使得每个域值一个输入单元。例如,如果属性A的定义域为(a0,a1,a2),则可以分配三个输入单元表示A。即,我们可以用I0 ,I1 ,I2作为输入单元。每个单元初始化为0。如果A = a0,则I0置为1;如果A = a1,I1置1;如此下去。
一个输出单元可以用来表示两个类(值1代表一个类,而值0代表另一个)。如果多于两个类,则每个类使用一个输出单元。
隐藏层单元数设多少个“最好” ,没有明确的规则。
网络设计是一个实验过程,并可能影响准确性。权的初值也可能影响准确性。如果某个经过训练的网络的准确率太低,则通常需要采用不同的网络拓扑或使用不同的初始权值,重复进行训练。
后向传播算法学习过程:
迭代地处理一组训练样本,将每个样本的网络预测与实际的类标号比较。
每次迭代后,修改权值,使得网络预测和实际类之间的均方差最小。
这种修改“后向”进行。即,由输出层,经由每个隐藏层,到第一个隐藏层(因此称作后向传播)。尽管不能保证,一般地,权将最终收敛,学习过程停止。
算法终止条件:训练集中被正确分类的样本达到一定的比例,或者权系数趋近稳定。
后向传播算法分为如下几步:
1) 初始化权
网络的权通常被初始化为很小的随机数(例如,范围从-1.0到1.0,或从-0.5到0.5)。
每个单元都设有一个偏置(bias),偏置也被初始化为小随机数。
2) 向前传播输入
对于每一个样本X,重复下面两步:
向前传播输入,向后传播误差
计算各层每个单元的输入和输出。输入层:输出=输入=样本X的属性;即,对于单元j,Oj = Ij = Xj。隐藏层和输出层:输入=前一层的输出的线性组合,即,对于单元j, Ij =wij Oi + θj,输出=
3) 向后传播误差
计算各层每个单元的误差。
输出层单元j,误差:
Oj是单元j的实际输出,而Tj是j的真正输出。
隐藏层单元j,误差:
wjk是由j到下一层中单元k的连接的权,Errk是单元k的误差
更新 权 和 偏差 ,以反映传播的误差。
权由下式更新:
其中,△wij是权wij的改变。l是学习率,通常取0和1之间的值。
偏置由下式更新:
其中,△θj是偏置θj的改变。
Example
人类视觉原理:
深度学习的许多研究成果,离不开对大脑认知原理的研究,尤其是视觉原理的研究。1981 年的诺贝尔医学奖,颁发给了 David Hubel(出生于加拿大的美国神经生物学家) 和Torsten Wiesel,以及Roger Sperry。前两位的主要贡献,是“发现了视觉系统的信息处理”, 可视皮层是分级的 。
人类的视觉原理如下:从原始信号摄入开始(瞳孔摄入像素Pixels),接着做初步处理(大脑皮层某些细胞发现边缘和方向),然后抽象(大脑判定,眼前的物体的形状,是圆形的),然后进一步抽象(大脑进一步判定该物体是只气球)。
对于不同的物体,人类视觉也是通过这样逐层分级,来进行认知的:
在最底层特征基本上是类似的,就是各种边缘,越往上,越能提取出此类物体的一些特征(轮子、眼睛、躯干等),到最上层,不同的高级特征最终组合成相应的图像,从而能够让人类准确的区分不同的物体。
可以很自然的想到:可以不可以模仿人类大脑的这个特点,构造多层的神经网络,较低层的识别初级的图像特征,若干底层特征组成更上一层特征,最终通过多个层级的组合,最终在顶层做出分类呢?答案是肯定的,这也是许多深度学习算法(包括CNN)的灵感来源。
卷积神经网络是一种多层神经网络,擅长处理图像特别是大图像的相关机器学习问题。卷积网络通过一系列方法,成功将数据量庞大的图像识别问题不断降维,最终使其能够被训练。
CNN最早由Yann LeCun提出并应用在手写字体识别上。LeCun提出的网络称为LeNet,其网络结构如下:
这是一个最典型的卷积网络,由 卷积层、池化层、全连接层 组成。其中卷积层与池化层配合,组成多个卷积组,逐层提取特征,最终通过若干个全连接层完成分类。
CNN通过卷积来模拟特征区分,并且通过卷积的权值共享及池化,来降低网络参数的数量级,最后通过传统神经网络完成分类等任务。
降低参数量级:如果使用传统神经网络方式,对一张图片进行分类,那么,把图片的每个像素都连接到隐藏层节点上,对于一张1000x1000像素的图片,如果有1M隐藏层单元,一共有10^12个参数,这显然是不能接受的。
但是在CNN里,可以大大减少参数个数,基于以下两个假设:
1)最底层特征都是局部性的,也就是说,用10x10这样大小的过滤器就能表示边缘等底层特征
2)图像上不同小片段,以及不同图像上的小片段的特征是类似的,也就是说,能用同样的一组分类器来描述各种各样不同的图像
基于以上两个假设,就能把第一层网络结构简化
用100个10x10的小过滤器,就能够描述整幅图片上的底层特征。
卷积运算的定义如下图所示:
如上图所示,一个5x5的图像,用一个3x3的 卷积核 :
101
010
101
来对图像进行卷积操作(可以理解为有一个滑动窗口,把卷积核与对应的图像像素做乘积然后求和),得到了3x3的卷积结果。
这个过程可以理解为使用一个过滤器(卷积核)来过滤图像的各个小区域,从而得到这些小区域的特征值。在实际训练过程中, 卷积核的值是在学习过程中学到的。
在具体应用中,往往有多个卷积核,可以认为, 每个卷积核代表了一种图像模式 ,如果某个图像块与此卷积核卷积出的值大,则认为此图像块十分接近于此卷积核。如果设计了6个卷积核,可以理解为这个图像上有6种底层纹理模式,也就是用6种基础模式就能描绘出一副图像。以下就是24种不同的卷积核的示例:
池化 的过程如下图所示:
可以看到,原始图片是20x20的,对其进行采样,采样窗口为10x10,最终将其采样成为一个2x2大小的特征图。
之所以这么做,是因为即使做完了卷积,图像仍然很大(因为卷积核比较小),所以为了降低数据维度,就进行采样。
即使减少了许多数据,特征的统计属性仍能够描述图像,而且由于降低了数据维度,有效地避免了过拟合。
在实际应用中,分为最大值采样(Max-Pooling)与平均值采样(Mean-Pooling)。
LeNet网络结构:
注意,上图中S2与C3的连接方式并不是全连接,而是部分连接。最后,通过全连接层C5、F6得到10个输出,对应10个数字的概率。
卷积神经网络的训练过程与传统神经网络类似,也是参照了反向传播算法
第一阶段,向前传播阶段:
a)从样本集中取一个样本(X,Yp),将X输入网络;
b)计算相应的实际输出Op
第二阶段,向后传播阶段
a)计算实际输出Op与相应的理想输出Yp的差;
b)按极小化误差的方法反向传播调整权矩阵。
㈡ 理解神经网络卷积层、全连接层
https://zhuanlan.hu.com/p/32472241
卷积神经网络,这玩意儿乍一听像是生物和数学再带点计算机技术混合起来的奇怪东西。奇怪归奇怪,不得不说,卷积神经网络是计算机视觉领域最有影响力的创造之一。
2012年是卷积神经网络崛起之年。这一年,Alex Krizhevsky带着卷积神经网络参加了ImageNet竞赛(其重要程度相当于奥运会)并一鸣惊人,将识别错误率从26%降到了15%,。从那开始,很多公司开始使用深度学习作为他们服务的核心。比如,Facebook在他们的自动标记算法中使用了它,Google在照片搜索中使用了,Amazon在商品推荐中使用,Printerst应用于为他们的家庭饲养服务提供个性化定制,而Instagram应用于他们的搜索引擎。
然而,神经网络最开始也是最多的应用领域是图像处理。那我们就挑这块来聊聊,怎样使用卷积神经网络(下面简称CNN)来进行图像分类。
图像分类是指,向机器输入一张图片,然后机器告诉我们这张图片的类别(一只猫,一条狗等等),或者如果它不确定的话,它会告诉我们属于某个类别的可能性(很可能是条狗但是我不太确定)。对我们人类来说,这件事情简单的不能再简单了,从出生起,我们就可以很快地识别周围的物体是什么。当我们看到一个场景,我们总能快速地识别出所有物体,甚至是下意识的,没有经过有意的思考。但这种能力,机器并不具有。所以我们更加要好好珍惜自己的大脑呀! (:зゝ∠)
电脑和人看到的图片并不相同。当我们输入一张图片时,电脑得到的只是一个数组,记录着像素的信息。数组的大小由图像的清晰度和大小决定。假设我们有一张jpg格式的480 480大小的图片,那么表示它的数组便是480 480*3大小的。数组中所有数字都描述了在那个位置处的像素信息,大小在[0,255]之间。
这些数字对我们来说毫无意义,但这是电脑们可以得到的唯一的信息(也足够了)。抽象而简单的说,我们需要一个接受数组为输入,输出一个数组表示属于各个类别概率的模型。
既然问题我们已经搞明白了,现在我们得想想办法解决它。我们想让电脑做的事情是找出不同图片之间的差别,并可以识别狗狗(举个例子)的特征。
我们人类可以通过一些与众不同的特征来识别图片,比如狗狗的爪子和狗有四条腿。同样地,电脑也可以通过识别更低层次的特征(曲线,直线)来进行图像识别。电脑用卷积层识别这些特征,并通过更多层卷积层结合在一起,就可以像人类一样识别出爪子和腿之类的高层次特征,从而完成任务。这正是CNN所做的事情的大概脉络。下面,我们进行更具体的讨论。
在正式开始之前,我们先来聊聊CNN的背景故事。当你第一次听说卷积神经网络的时候,你可能就会联想到一些与神经学或者生物学有关的东西,不得不说,卷积神经网络还真的与他们有某种关系。
CNN的灵感的确来自大脑中的视觉皮层。视觉皮层某些区域中的神经元只对特定视野区域敏感。1962年,在一个Hubel与Wiesel进行的试验( 视频 )中,这一想法被证实并且拓展了。他们发现,一些独立的神经元只有在特定方向的边界在视野中出现时才会兴奋。比如,一些神经元在水平边出现时兴奋,而另一些只有垂直边出现时才会。并且所有这种类型的神经元都在一个柱状组织中,并且被认为有能力产生视觉。
在一个系统中,一些特定的组件发挥特定的作用(视觉皮层中的神经元寻找各自特定的特征)。这一想法应用于很多机器中,并且也是CNN背后的基本原理。 (译者注:作者没有说清楚。类比到CNN中,应是不同的卷积核寻找图像中不同的特征)
回到主题。
更详细的说,CNN的工作流程是这样的:你把一张图片传递给模型,经过一些卷积层,非线性化(激活函数),池化,以及全连层,最后得到结果。就像我们之前所说的那样,输出可以是单独的一个类型,也可以是一组属于不同类型的概率。现在,最不容易的部分来了:理解各个层的作用。
首先,你要搞清楚的是,什么样的数据输入了卷积层。就像我们之前提到的那样,输入是一个32 × 32 × 3(打个比方)的记录像素值的数组。现在,让我来解释卷积层是什么。解释卷积层最好的方法,是想象一个手电筒照在图片的左上角。让我们假设手电筒的光可以招到一个5 × 5的区域。现在,让我们想象这个手电筒照过了图片的所有区域。在机器学习术语中,这样一个手电筒被称为卷积核(或者说过滤器,神经元) (kernel, filter, neuron) 。而它照到的区域被称为感知域 (receptive field) 。卷积核同样也是一个数组(其中的数被称为权重或者参数)。很重要的一点就是卷积核的深度和输入图像的深度是一样的(这保证可它能正常工作),所以这里卷积核的大小是5 × 5 × 3。
现在,让我们拿卷积核的初始位置作为例子,它应该在图像的左上角。当卷积核扫描它的感知域(也就是这张图左上角5 × 5 × 3的区域)的时候,它会将自己保存的权重与图像中的像素值相乘(或者说,矩阵元素各自相乘,注意与矩阵乘法区分),所得的积会相加在一起(在这个位置,卷积核会得到5 × 5 × 3 = 75个积)。现在你得到了一个数字。然而,这个数字只表示了卷积核在图像左上角的情况。现在,我们重复这一过程,让卷积核扫描完整张图片,(下一步应该往右移动一格,再下一步就再往右一格,以此类推),每一个不同的位置都产生了一个数字。当扫描完整张图片以后,你会得到一组新的28 × 28 × 1的数。 (译者注:(32 - 5 + 1) × (32 - 5 + 1) × 1) 。这组数,我们称为激活图或者特征图 (activation map or feature map) 。
如果增加卷积核的数目,比如,我们现在有两个卷积核,那么我们就会得到一个28 × 28 × 2的数组。通过使用更多的卷积核,我们可以更好的保留数据的空间尺寸。
在数学层面上说,这就是卷积层所做的事情。
让我们来谈谈,从更高角度来说,卷积在做什么。每一个卷积核都可以被看做特征识别器。我所说的特征,是指直线、简单的颜色、曲线之类的东西。这些都是所有图片共有的特点。拿一个7 × 7 × 3的卷积核作为例子,它的作用是识别一种曲线。(在这一章节,简单起见,我们忽略卷积核的深度,只考虑第一层的情况)。作为一个曲线识别器,这个卷积核的结构中,曲线区域内的数字更大。(记住,卷积核是一个数组)
现在我们来直观的看看这个。举个例子,假设我们要把这张图片分类。让我们把我们手头的这个卷积核放在图片的左上角。
记住,我们要做的事情是把卷积核中的权重和输入图片中的像素值相乘。
(译者注:图中最下方应是由于很多都是0所以把0略过不写了。)
基本上,如果输入图像中有与卷积核代表的形状很相似的图形,那么所有乘积的和会很大。现在我们来看看,如果我们移动了卷积核呢?
可以看到,得到的值小多了!这是因为感知域中没有与卷积核表示的相一致的形状。还记得吗,卷积层的输出是一张激活图。所以,在单卷积核卷积的简单情况下,假设卷积核是一个曲线识别器,那么所得的激活图会显示出哪些地方最有可能有曲线。在这个例子中,我们所得激活图的左上角的值为6600。这样大的数字表明很有可能这片区域中有一些曲线,从而导致了卷积核的激活 (译者注:也就是产生了很大的数值。) 而激活图中右上角的数值是0,因为那里没有曲线来让卷积核激活(简单来说就是输入图像的那片区域没有曲线)。
但请记住,这只是一个卷积核的情况,只有一个找出向右弯曲的曲线的卷积核。我们可以添加其他卷积核,比如识别向左弯曲的曲线的。卷积核越多,激活图的深度就越深,我们得到的关于输入图像的信息就越多。
在传统的CNN结构中,还会有其他层穿插在卷积层之间。我强烈建议有兴趣的人去阅览并理解他们。但总的来说,他们提供了非线性化,保留了数据的维度,有助于提升网络的稳定度并且抑制过拟合。一个经典的CNN结构是这样的:
网络的最后一层很重要,我们稍后会讲到它。
现在,然我们回头看看我们已经学到了什么。
我们讲到了第一层卷积层的卷积核的目的是识别特征,他们识别像曲线和边这样的低层次特征。但可以想象,如果想预测一个图片的类别,必须让网络有能力识别高层次的特征,例如手、爪子或者耳朵。让我们想想网络第一层的输出是什么。假设我们有5个5 × 5 × 3的卷积核,输入图像是32 × 32 × 3的,那么我们会得到一个28 × 28 × 5的数组。来到第二层卷积层,第一层的输出便成了第二层的输入。这有些难以可视化。第一层的输入是原始图片,可第二层的输入只是第一层产生的激活图,激活图的每一层都表示了低层次特征的出现位置。如果用一些卷积核处理它,得到的会是表示高层次特征出现的激活图。这些特征的类型可能是半圆(曲线和边的组合)或者矩形(四条边的组合)。随着卷积层的增多,到最后,你可能会得到可以识别手写字迹、粉色物体等等的卷积核。
如果,你想知道更多关于可视化卷积核的信息,可以看这篇 研究报告 ,以及这个 视频 。
还有一件事情很有趣,当网络越来越深,卷积核会有越来越大的相对于输入图像的感知域。这意味着他们有能力考虑来自输入图像的更大范围的信息(或者说,他们对一片更大的像素区域负责)。
到目前为止,我们已经识别出了那些高层次的特征吧。网络最后的画龙点睛之笔是全连层。
简单地说,这一层接受输入(来自卷积层,池化层或者激活函数都可以),并输出一个N维向量,其中,N是所有有可能的类别的总数。例如,如果你想写一个识别数字的程序,那么N就是10,因为总共有10个数字。N维向量中的每一个数字都代表了属于某个类别的概率。打个比方,如果你得到了[0 0.1 0.1 0.75 0 0 0 0 0 0.05],这代表着这张图片是1的概率是10%,是2的概率是10%,是3的概率是75%,是9的概率5%(小贴士:你还有其他表示输出的方法,但现在我只拿softmax (译者注:一种常用于分类问题的激活函数) 来展示)。全连层的工作方式是根据上一层的输出(也就是之前提到的可以用来表示特征的激活图)来决定这张图片有可能属于哪个类别。例如,如果程序需要预测哪些图片是狗,那么全连层在接收到一个包含类似于一个爪子和四条腿的激活图时输出一个很大的值。同样的,如果要预测鸟,那么全连层会对含有翅膀和喙的激活图更感兴趣。
基本上,全连层寻找那些最符合特定类别的特征,并且具有相应的权重,来使你可以得到正确的概率。
现在让我们来说说我之前有意没有提到的神经网络的可能是最重要的一个方面。刚刚在你阅读的时候,可能会有一大堆问题想问。第一层卷积层的卷积核们是怎么知道自己该识别边还是曲线的?全连层怎么知道该找哪一种激活图?每一层中的参数是怎么确定的?机器确定参数(或者说权重)的方法叫做反向传播算法。
在讲反向传播之前,我们得回头看看一个神经网络需要什么才能工作。我们出生的时候并不知道一条狗或者一只鸟长什么样。同样的,在CNN开始之前,权重都是随机生成的。卷积核并不知道要找边还是曲线。更深的卷积层也不知道要找爪子还是喙。
等我们慢慢长大了,我们的老师和父母给我们看不同的图片,并且告诉我们那是什么(或者说,他们的类别)。这种输入一幅图像以及这幅图像所属的类别的想法,是CNN训练的基本思路。在细细讲反向传播之前,我们先假设我们有一个包含上千张不同种类的动物以及他们所属类别的训练集。
反向传播可以被分成四个不同的部分。前向传播、损失函数、反向传播和权重更新。
在前向传播的阶段,我们输入一张训练图片,并让它通过整个神经网络。对于第一个输入图像,由于所有权重都是随机生成的,网络的输出很有可能是类似于[.1 .1 .1 .1 .1 .1 .1 .1 .1 .1]的东西,一般来说并不对任一类别有偏好。具有当前权重的网络并没有能力找出低层次的特征并且总结出可能的类别。
下一步,是损失函数部分。注意,我们现在使用的是训练数据。这些数据又有图片又有类别。打个比方,第一张输入的图片是数字“3”。那么它的标签应该是[0 0 0 1 0 0 0 0 0 0]。一个损失函数可以有很多定义的方法,但比较常见的是MSE(均方误差)。被定义为(实际−预测)22(实际−预测)22。
记变量L为损失函数的值。正如你想象的那样,在第一组训练图片输入的时候,损失函数的值可能非常非常高。来直观地看看这个问题。我们想到达CNN的预测与数据标签完全一样的点(这意味着我们的网络预测的很对)。为了到达那里,我们想要最小化误差。如果把这个看成一个微积分问题,那我们只要找到哪些权重与网络的误差关系最大。
这就相当于数学中的δLδWδLδW (译者注:对L关于W求导) ,其中,W是某个层的权重。现在,我们要对网络进行 反向传播 。这决定了哪些权重与误差的关系最大,并且决定了怎样调整他们来让误差减小。计算完这些导数以后,我们就来到了最后一步: 更新权重 。在这里,我们以与梯度相反的方向调整层中的权重。
学习率是一个有程序员决定的参数。一个很高的学习率意味着权重调整的幅度会很大,这可能会让模型更快的拥有一组优秀的权重。然而,一个太高的学习率可能会让调整的步伐过大,而不能精确地到达最佳点。
前向传播、损失函数、反向传播和更新权重,这四个过程是一次迭代。程序会对每一组训练图片重复这一过程(一组图片通常称为一个batch)。当对每一张图片都训练完之后,很有可能你的网络就已经训练好了,权重已经被调整的很好。
最后,为了验证CNN是否工作的很好,我们还有另一组特殊的数据。我们把这组数据中的图片输入到网络中,得到输出并和标签比较,这样就能看出网络的表现如何了。
㈢ 34-卷积神经网络(Conv)
深度学习网络和普通神经网络的区别
全连接神经网络的缺点
卷积神经网络的错误率
卷积神经网络的发展历程
卷积神经网络的结构
结构特点:
神经网络(neural networks)的基本组成包括输入层、隐藏层、输出层。而卷积神经网络的特点在于隐藏层分为卷积层和池化层(pooling layer,又叫下采样层)。
卷积过程
纠正:卷积层的过滤器,就是一个矩阵,里面的元素是对应扫描时每个像素点的权重
即:每个过滤器会产生一张feature map
0填充的两种方式
卷积核在提取特征映射时的动作称之为padding(零填充),由于移动步长不一定能整出整张图的像素宽度。其中有两种方式,SAME和VALID
彩色图片的卷积过程
由于彩色图片有3个通道,即3张表,所以filter需要分3次去分别观察,每次观察的结果直接相加作为最后的结果
过滤器的个数
有几个过滤器,就会生成几张表。eg:
对于[28, 28, 1]的图片,如果有32个过滤器,就会卷积的结果就为[28, 28, 32],相当于图片被“拉长”了
观察结果大小的计算
面试可能考
注意:如果计算结果出现小数,需要结合情况具体考虑,而不是说直接四舍五入
卷积的api
在卷积神经网络中,主要使用Relu函数作为激活函数
即在这里使用relu函数去掉了像素中小于0的值
神经网络中为什么要使用激活函数
为什么使用relu而不再使用sigmoid函数?
api
卷积就是进行特征的提取,观察更加仔细,然而,观察仔细就意味着数据多,运算量增加,这就需要使用池化层以减少计算量
Pooling层主要的作用是特征提取,通过去掉Feature Map中不重要的样本,进一步减少参数数量。Pooling的方法很多,最常用的是Max Pooling。
池化层也有一个窗口大小(过滤器)
即:池化过程让图片变得更“窄”
即:卷积层使得图片变长,池化层使得图片变窄,所以经过卷积,图片越来越“细长”
api
池化中SAME的计算方式与卷积过程中SAME的计算方式一样。eg:
[None, 28, 28, 32]的数据,经过2x2,步长为2,padding为SAME的池化,变成了[None, 14, 14, 32]
分析:前面的卷积和池化相当于做特征工程,后面的全连接相当于做特征加权。最后的全连接层在整个卷积神经网络中起到“分类器”的作用。
所以神经网络也相当于是一个特征选择的方式
㈣ 一文看懂四种基本的神经网络架构
原文链接:
http://blackblog.tech/2018/02/23/Eight-Neural-Network/
更多干货就在我的个人博客 http://blackblog.tech 欢迎关注
刚刚入门神经网络,往往会对众多的神经网络架构感到困惑,神经网络看起来复杂多样,但是这么多架构无非也就是三类,前馈神经网络,循环网络,对称连接网络,本文将介绍四种常见的神经网络,分别是CNN,RNN,DBN,GAN。通过这四种基本的神经网络架构,我们来对神经网络进行一定的了解。
神经网络是机器学习中的一种模型,是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
一般来说,神经网络的架构可以分为三类:
前馈神经网络:
这是实际应用中最常见的神经网络类型。第一层是输入,最后一层是输出。如果有多个隐藏层,我们称之为“深度”神经网络。他们计算出一系列改变样本相似性的变换。各层神经元的活动是前一层活动的非线性函数。
循环网络:
循环网络在他们的连接图中定向了循环,这意味着你可以按照箭头回到你开始的地方。他们可以有复杂的动态,使其很难训练。他们更具有生物真实性。
循环网络的目的使用来处理序列数据。在传统的神经网络模型中,是从输入层到隐含层再到输出层,层与层之间是全连接的,每层之间的节点是无连接的。但是这种普通的神经网络对于很多问题却无能无力。例如,你要预测句子的下一个单词是什么,一般需要用到前面的单词,因为一个句子中前后单词并不是独立的。
循环神经网路,即一个序列当前的输出与前面的输出也有关。具体的表现形式为网络会对前面的信息进行记忆并应用于当前输出的计算中,即隐藏层之间的节点不再无连接而是有连接的,并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出。
对称连接网络:
对称连接网络有点像循环网络,但是单元之间的连接是对称的(它们在两个方向上权重相同)。比起循环网络,对称连接网络更容易分析。这个网络中有更多的限制,因为它们遵守能量函数定律。没有隐藏单元的对称连接网络被称为“Hopfield 网络”。有隐藏单元的对称连接的网络被称为玻尔兹曼机。
其实之前的帖子讲过一些关于感知机的内容,这里再复述一下。
首先还是这张图
这是一个M-P神经元
一个神经元有n个输入,每一个输入对应一个权值w,神经元内会对输入与权重做乘法后求和,求和的结果与偏置做差,最终将结果放入激活函数中,由激活函数给出最后的输出,输出往往是二进制的,0 状态代表抑制,1 状态代表激活。
可以把感知机看作是 n 维实例空间中的超平面决策面,对于超平面一侧的样本,感知器输出 1,对于另一侧的实例输出 0,这个决策超平面方程是 w⋅x=0。 那些可以被某一个超平面分割的正反样例集合称为线性可分(linearly separable)样例集合,它们就可以使用图中的感知机表示。
与、或、非问题都是线性可分的问题,使用一个有两输入的感知机能容易地表示,而异或并不是一个线性可分的问题,所以使用单层感知机是不行的,这时候就要使用多层感知机来解决疑惑问题了。
如果我们要训练一个感知机,应该怎么办呢?
我们会从随机的权值开始,反复地应用这个感知机到每个训练样例,只要它误分类样例就修改感知机的权值。重复这个过程,直到感知机正确分类所有的样例。每一步根据感知机训练法则来修改权值,也就是修改与输入 xi 对应的权 wi,法则如下:
这里 t 是当前训练样例的目标输出,o 是感知机的输出,η 是一个正的常数称为学习速率。学习速率的作用是缓和每一步调整权的程度,它通常被设为一个小的数值(例如 0.1),而且有时会使其随着权调整次数的增加而衰减。
多层感知机,或者说是多层神经网络无非就是在输入层与输出层之间加了多个隐藏层而已,后续的CNN,DBN等神经网络只不过是将重新设计了每一层的类型。感知机可以说是神经网络的基础,后续更为复杂的神经网络都离不开最简单的感知机的模型,
谈到机器学习,我们往往还会跟上一个词语,叫做模式识别,但是真实环境中的模式识别往往会出现各种问题。比如:
图像分割:真实场景中总是掺杂着其它物体。很难判断哪些部分属于同一个对象。对象的某些部分可以隐藏在其他对象的后面。
物体光照:像素的强度被光照强烈影响。
图像变形:物体可以以各种非仿射方式变形。例如,手写也可以有一个大的圆圈或只是一个尖头。
情景支持:物体所属类别通常由它们的使用方式来定义。例如,椅子是为了让人们坐在上面而设计的,因此它们具有各种各样的物理形状。
卷积神经网络与普通神经网络的区别在于,卷积神经网络包含了一个由卷积层和子采样层构成的特征抽取器。在卷积神经网络的卷积层中,一个神经元只与部分邻层神经元连接。在CNN的一个卷积层中,通常包含若干个特征平面(featureMap),每个特征平面由一些矩形排列的的神经元组成,同一特征平面的神经元共享权值,这里共享的权值就是卷积核。卷积核一般以随机小数矩阵的形式初始化,在网络的训练过程中卷积核将学习得到合理的权值。共享权值(卷积核)带来的直接好处是减少网络各层之间的连接,同时又降低了过拟合的风险。子采样也叫做池化(pooling),通常有均值子采样(mean pooling)和最大值子采样(max pooling)两种形式。子采样可以看作一种特殊的卷积过程。卷积和子采样大大简化了模型复杂度,减少了模型的参数。
卷积神经网络由三部分构成。第一部分是输入层。第二部分由n个卷积层和池化层的组合组成。第三部分由一个全连结的多层感知机分类器构成。
这里举AlexNet为例:
·输入:224×224大小的图片,3通道
·第一层卷积:11×11大小的卷积核96个,每个GPU上48个。
·第一层max-pooling:2×2的核。
·第二层卷积:5×5卷积核256个,每个GPU上128个。
·第二层max-pooling:2×2的核。
·第三层卷积:与上一层是全连接,3*3的卷积核384个。分到两个GPU上个192个。
·第四层卷积:3×3的卷积核384个,两个GPU各192个。该层与上一层连接没有经过pooling层。
·第五层卷积:3×3的卷积核256个,两个GPU上个128个。
·第五层max-pooling:2×2的核。
·第一层全连接:4096维,将第五层max-pooling的输出连接成为一个一维向量,作为该层的输入。
·第二层全连接:4096维
·Softmax层:输出为1000,输出的每一维都是图片属于该类别的概率。
卷积神经网络在模式识别领域有着重要应用,当然这里只是对卷积神经网络做了最简单的讲解,卷积神经网络中仍然有很多知识,比如局部感受野,权值共享,多卷积核等内容,后续有机会再进行讲解。
传统的神经网络对于很多问题难以处理,比如你要预测句子的下一个单词是什么,一般需要用到前面的单词,因为一个句子中前后单词并不是独立的。RNN之所以称为循环神经网路,即一个序列当前的输出与前面的输出也有关。具体的表现形式为网络会对前面的信息进行记忆并应用于当前输出的计算中,即隐藏层之间的节点不再无连接而是有连接的,并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出。理论上,RNN能够对任何长度的序列数据进行处理。
这是一个简单的RNN的结构,可以看到隐藏层自己是可以跟自己进行连接的。
那么RNN为什么隐藏层能够看到上一刻的隐藏层的输出呢,其实我们把这个网络展开来开就很清晰了。
从上面的公式我们可以看出,循环层和全连接层的区别就是循环层多了一个权重矩阵 W。
如果反复把式2带入到式1,我们将得到:
在讲DBN之前,我们需要对DBN的基本组成单位有一定的了解,那就是RBM,受限玻尔兹曼机。
首先什么是玻尔兹曼机?
[图片上传失败...(image-d36b31-1519636788074)]
如图所示为一个玻尔兹曼机,其蓝色节点为隐层,白色节点为输入层。
玻尔兹曼机和递归神经网络相比,区别体现在以下几点:
1、递归神经网络本质是学习一个函数,因此有输入和输出层的概念,而玻尔兹曼机的用处在于学习一组数据的“内在表示”,因此其没有输出层的概念。
2、递归神经网络各节点链接为有向环,而玻尔兹曼机各节点连接成无向完全图。
而受限玻尔兹曼机是什么呢?
最简单的来说就是加入了限制,这个限制就是将完全图变成了二分图。即由一个显层和一个隐层构成,显层与隐层的神经元之间为双向全连接。
h表示隐藏层,v表示显层
在RBM中,任意两个相连的神经元之间有一个权值w表示其连接强度,每个神经元自身有一个偏置系数b(对显层神经元)和c(对隐层神经元)来表示其自身权重。
具体的公式推导在这里就不展示了
DBN是一个概率生成模型,与传统的判别模型的神经网络相对,生成模型是建立一个观察数据和标签之间的联合分布,对P(Observation|Label)和 P(Label|Observation)都做了评估,而判别模型仅仅而已评估了后者,也就是P(Label|Observation)。
DBN由多个限制玻尔兹曼机(Restricted Boltzmann Machines)层组成,一个典型的神经网络类型如图所示。这些网络被“限制”为一个可视层和一个隐层,层间存在连接,但层内的单元间不存在连接。隐层单元被训练去捕捉在可视层表现出来的高阶数据的相关性。
生成对抗网络其实在之前的帖子中做过讲解,这里在说明一下。
生成对抗网络的目标在于生成,我们传统的网络结构往往都是判别模型,即判断一个样本的真实性。而生成模型能够根据所提供的样本生成类似的新样本,注意这些样本是由计算机学习而来的。
GAN一般由两个网络组成,生成模型网络,判别模型网络。
生成模型 G 捕捉样本数据的分布,用服从某一分布(均匀分布,高斯分布等)的噪声 z 生成一个类似真实训练数据的样本,追求效果是越像真实样本越好;判别模型 D 是一个二分类器,估计一个样本来自于训练数据(而非生成数据)的概率,如果样本来自于真实的训练数据,D 输出大概率,否则,D 输出小概率。
举个例子:生成网络 G 好比假币制造团伙,专门制造假币,判别网络 D 好比警察,专门检测使用的货币是真币还是假币,G 的目标是想方设法生成和真币一样的货币,使得 D 判别不出来,D 的目标是想方设法检测出来 G 生成的假币。
传统的判别网络:
生成对抗网络:
下面展示一个cDCGAN的例子(前面帖子中写过的)
生成网络
判别网络
最终结果,使用MNIST作为初始样本,通过学习后生成的数字,可以看到学习的效果还是不错的。
本文非常简单的介绍了四种神经网络的架构,CNN,RNN,DBN,GAN。当然也仅仅是简单的介绍,并没有深层次讲解其内涵。这四种神经网络的架构十分常见,应用也十分广泛。当然关于神经网络的知识,不可能几篇帖子就讲解完,这里知识讲解一些基础知识,帮助大家快速入(zhuang)门(bi)。后面的帖子将对深度自动编码器,Hopfield 网络长短期记忆网络(LSTM)进行讲解。
㈤ 卷积神经网络的 卷积层、激活层、池化层、全连接层
数据输入的是一张图片(输入层),CONV表示卷积层,RELU表示激励层,POOL表示池化层,Fc表示全连接层
全连接神经网络需要非常多的计算资源才能支撑它来做反向传播和前向传播,所以说全连接神经网络可以存储非常多的参数,如果你给它的样本如果没有达到它的量级的时候,它可以轻轻松松把你给他的样本全部都记下来,这会出现过拟合的情况。
所以我们应该把神经元和神经元之间的连接的权重个数降下来,但是降下来我们又不能保证它有较强的学习能力,所以这是一个纠结的地方,所以有一个方法就是 局部连接+权值共享 ,局部连接+权值共享不仅权重参数降下来了,而且学习能力并没有实质的降低,除此之外还有其它的好处,下来看一下,下面的这几张图片:
一个图像的不同表示方式
这几张图片描述的都是一个东西,但是有的大有的小,有的靠左边,有的靠右边,有的位置不同,但是我们构建的网络识别这些东西的时候应该是同一结果。为了能够达到这个目的,我们可以让图片的不同位置具有相同的权重(权值共享),也就是上面所有的图片,我们只需要在训练集中放一张,我们的神经网络就可以识别出上面所有的,这也是 权值共享 的好处。
而卷积神经网络就是局部连接+权值共享的神经网络。
现在我们对卷积神经网络有一个初步认识了,下面具体来讲解一下卷积神经网络,卷积神经网络依旧是层级结构,但层的功能和形式做了改变,卷积神经网络常用来处理图片数据,比如识别一辆汽车:
在图片输出到神经网络之前,常常先进行图像处理,有 三种 常见的图像的处理方式:
均值化和归一化
去相关和白化
图片有一个性质叫做局部关联性质,一个图片的像素点影响最大的是它周边的像素点,而距离这个像素点比较远的像素点二者之间关系不大。这个性质意味着每一个神经元我们不用处理全局的图片了(和上一层全连接),我们的每一个神经元只需要和上一层局部连接,相当于每一个神经元扫描一小区域,然后许多神经元(这些神经元权值共享)合起来就相当于扫描了全局,这样就构成一个特征图,n个特征图就提取了这个图片的n维特征,每个特征图是由很多神经元来完成的。
在卷积神经网络中,我们先选择一个局部区域(filter),用这个局部区域(filter)去扫描整张图片。 局部区域所圈起来的所有节点会被连接到下一层的 一个节点上 。我们拿灰度图(只有一维)来举例:
局部区域
图片是矩阵式的,将这些以矩阵排列的节点展成了向量。就能更好的看出来卷积层和输入层之间的连接,并不是全连接的,我们将上图中的红色方框称为filter,它是2*2的,这是它的尺寸,这不是固定的,我们可以指定它的尺寸。
我们可以看出来当前filter是2*2的小窗口,这个小窗口会将图片矩阵从左上角滑到右下角,每滑一次就会一下子圈起来四个,连接到下一层的一个神经元,然后产生四个权重,这四个权重(w1、w2、w3、w4)构成的矩阵就叫做卷积核。
卷积核是算法自己学习得到的,它会和上一层计算,比如,第二层的0节点的数值就是局部区域的线性组合(w1 0+w2 1+w3 4+w4 5),即被圈中节点的数值乘以对应的权重后相加。
卷积核计算
卷积操作
我们前面说过图片不用向量表示是为了保留图片平面结构的信息。 同样的,卷积后的输出若用上图的向量排列方式则丢失了平面结构信息。 所以我们依然用矩阵的方式排列它们,就得到了下图所展示的连接,每一个蓝色结点连接四个黄色的结点。
卷积层的连接方式
图片是一个矩阵然后卷积神经网络的下一层也是一个矩阵,我们用一个卷积核从图片矩阵左上角到右下角滑动,每滑动一次,当然被圈起来的神经元们就会连接下一层的一个神经元,形成参数矩阵这个就是卷积核,每次滑动虽然圈起来的神经元不同,连接下一层的神经元也不同,但是产生的参数矩阵确是一样的,这就是 权值共享 。
卷积核会和扫描的图片的那个局部矩阵作用产生一个值,比如第一次的时候,(w1 0+w2 1+w3 4+w4 5),所以,filter从左上到右下的这个过程中会得到一个矩阵(这就是下一层也是一个矩阵的原因),具体过程如下所示:
卷积计算过程
上图中左边是图矩阵,我们使用的filter的大小是3 3的,第一次滑动的时候,卷积核和图片矩阵作用(1 1+1 0+1 1+0 0+1 1+1 0+0 1+0 0+1 1)=4,会产生一个值,这个值就是右边矩阵的第一个值,filter滑动9次之后,会产生9个值,也就是说下一层有9个神经元,这9个神经元产生的值就构成了一个矩阵,这矩阵叫做特征图,表示image的某一维度的特征,当然具体哪一维度可能并不知道,可能是这个图像的颜色,也有可能是这个图像的轮廓等等。
单通道图片总结 :以上就是单通道的图片的卷积处理,图片是一个矩阵,我们用指定大小的卷积核从左上角到右下角来滑动,每次滑动所圈起来的结点会和下一层的一个结点相连,连接之后就会形成局部连接,每一条连接都会产生权重,这些权重就是卷积核,所以每次滑动都会产生一个卷积核,因为权值共享,所以这些卷积核都是一样的。卷积核会不断和当时卷积核所圈起来的局部矩阵作用,每次产生的值就是下一层结点的值了,这样多次产生的值组合起来就是一个特征图,表示某一维度的特征。也就是从左上滑动到右下这一过程中会形成一个特征图矩阵(共享一个卷积核),再从左上滑动到右下又会形成另一个特征图矩阵(共享另一个卷积核),这些特征图都是表示特征的某一维度。
三个通道的图片如何进行卷积操作?
至此我们应该已经知道了单通道的灰度图是如何处理的,实际上我们的图片都是RGB的图像,有三个通道,那么此时图像是如何卷积的呢?
彩色图像
filter窗口滑的时候,我们只是从width和height的角度来滑动的,并没有考虑depth,所以每滑动一次实际上是产生一个卷积核,共享这一个卷积核,而现在depth=3了,所以每滑动一次实际上产生了具有三个通道的卷积核(它们分别作用于输入图片的蓝色、绿色、红色通道),卷积核的一个通道核蓝色的矩阵作用产生一个值,另一个和绿色的矩阵作用产生一个值,最后一个和红色的矩阵作用产生一个值,然后这些值加起来就是下一层结点的值,结果也是一个矩阵,也就是一张特征图。
三通道的计算过程
要想有多张特征图的话,我们可以再用新的卷积核来进行左上到右下的滑动,这样就会形成 新的特征图 。
三通道图片的卷积过程
也就是说增加一个卷积核,就会产生一个特征图,总的来说就是输入图片有多少通道,我们的卷积核就需要对应多少通道,而本层中卷积核有多少个,就会产生多少个特征图。这样卷积后输出可以作为新的输入送入另一个卷积层中处理,有几个特征图那么depth就是几,那么下一层的每一个特征图就得用相应的通道的卷积核来对应处理,这个逻辑要清楚,我们需要先了解一下 基本的概念:
卷积计算的公式
4x4的图片在边缘Zero padding一圈后,再用3x3的filter卷积后,得到的Feature Map尺寸依然是4x4不变。
填充
当然也可以使用5x5的filte和2的zero padding可以保持图片的原始尺寸,3x3的filter考虑到了像素与其距离为1以内的所有其他像素的关系,而5x5则是考虑像素与其距离为2以内的所有其他像素的关系。
规律: Feature Map的尺寸等于
(input_size + 2 * padding_size − filter_size)/stride+1
我们可以把卷积层的作用 总结一点: 卷积层其实就是在提取特征,卷积层中最重要的是卷积核(训练出来的),不同的卷积核可以探测特定的形状、颜色、对比度等,然后特征图保持了抓取后的空间结构,所以不同卷积核对应的特征图表示某一维度的特征,具体什么特征可能我们并不知道。特征图作为输入再被卷积的话,可以则可以由此探测到"更大"的形状概念,也就是说随着卷积神经网络层数的增加,特征提取的越来越具体化。
激励层的作用可以理解为把卷积层的结果做 非线性映射 。
激励层
上图中的f表示激励函数,常用的激励函数几下几种:
常用的激励函数
我们先来看一下激励函数Sigmoid导数最小为0,最大为1/4,
激励函数Sigmoid
Tanh激活函数:和sigmoid相似,它会关于x轴上下对应,不至于朝某一方面偏向
Tanh激活函数
ReLU激活函数(修正线性单元):收敛快,求梯度快,但较脆弱,左边的梯度为0
ReLU激活函数
Leaky ReLU激活函数:不会饱和或者挂掉,计算也很快,但是计算量比较大
Leaky ReLU激活函数
一些激励函数的使用技巧 :一般不要用sigmoid,首先试RELU,因为快,但要小心点,如果RELU失效,请用Leaky ReLU,某些情况下tanh倒是有不错的结果。
这就是卷积神经网络的激励层,它就是将卷积层的线性计算的结果进行了非线性映射。可以从下面的图中理解。它展示的是将非线性操作应用到一个特征图中。这里的输出特征图也可以看作是"修正"过的特征图。如下所示:
非线性操作
池化层:降低了各个特征图的维度,但可以保持大分重要的信息。池化层夹在连续的卷积层中间,压缩数据和参数的量,减小过拟合,池化层并没有参数,它只不过是把上层给它的结果做了一个下采样(数据压缩)。下采样有 两种 常用的方式:
Max pooling :选取最大的,我们定义一个空间邻域(比如,2x2 的窗口),并从窗口内的修正特征图中取出最大的元素,最大池化被证明效果更好一些。
Average pooling :平均的,我们定义一个空间邻域(比如,2x2 的窗口),并从窗口内的修正特征图算出平均值
Max pooling
我们要注意一点的是:pooling在不同的depth上是分开执行的,也就是depth=5的话,pooling进行5次,产生5个池化后的矩阵,池化不需要参数控制。池化操作是分开应用到各个特征图的,我们可以从五个输入图中得到五个输出图。
池化操作
无论是max pool还是average pool都有分信息被舍弃,那么部分信息被舍弃后会损坏识别结果吗?
因为卷积后的Feature Map中有对于识别物体不必要的冗余信息,我们下采样就是为了去掉这些冗余信息,所以并不会损坏识别结果。
我们来看一下卷积之后的冗余信息是怎么产生的?
我们知道卷积核就是为了找到特定维度的信息,比如说某个形状,但是图像中并不会任何地方都出现这个形状,但卷积核在卷积过程中没有出现特定形状的图片位置卷积也会产生一个值,但是这个值的意义就不是很大了,所以我们使用池化层的作用,将这个值去掉的话,自然也不会损害识别结果了。
比如下图中,假如卷积核探测"横折"这个形状。 卷积后得到3x3的Feature Map中,真正有用的就是数字为3的那个节点,其余数值对于这个任务而言都是无关的。 所以用3x3的Max pooling后,并没有对"横折"的探测产生影响。 试想在这里例子中如果不使用Max pooling,而让网络自己去学习。 网络也会去学习与Max pooling近似效果的权重。因为是近似效果,增加了更多的参数的代价,却还不如直接进行最大池化处理。
最大池化处理
在全连接层中所有神经元都有权重连接,通常全连接层在卷积神经网络尾部。当前面卷积层抓取到足以用来识别图片的特征后,接下来的就是如何进行分类。 通常卷积网络的最后会将末端得到的长方体平摊成一个长长的向量,并送入全连接层配合输出层进行分类。比如,在下面图中我们进行的图像分类为四分类问题,所以卷积神经网络的输出层就会有四个神经元。
四分类问题
我们从卷积神经网络的输入层、卷积层、激活层、池化层以及全连接层来讲解卷积神经网络,我们可以认为全连接层之间的在做特征提取,而全连接层在做分类,这就是卷积神经网络的核心。
㈥ 卷积神经网络结构基本单元层有哪些
输入层:输出特征矩阵
卷积层:进行卷积运算
池化层:进行pooling缩小维度
中间激活层:可有可无,一般为ReLU类的计算简单的激活函数对特征值修正
这里卷积层、池化层、中间激活层可以重复
全连接层:将特征矩阵集合向量化
最后激活层:将向量化特征转换成标签
㈦ 卷积神经网络
关于花书中卷积网络的笔记记录于 https://www.jianshu.com/p/5a3c90ea0807 。
卷积神经网络(Convolutional Neural Network,CNN或ConvNet)是一种具有 局部连接、权重共享 等特性的深层前馈神经网络。卷积神经网络是受生物学上感受野的机制而提出。 感受野(Receptive Field) 主要是指听觉、视觉等神经系统中一些神经元的特性,即 神经元只接受其所支配的刺激区域内的信号 。
卷积神经网络最早是主要用来处理图像信息。如果用全连接前馈网络来处理图像时,会存在以下两个问题:
目前的卷积神经网络一般是由卷积层、汇聚层和全连接层交叉堆叠而成的前馈神经网络,使用反向传播算法进行训练。 卷积神经网络有三个结构上的特性:局部连接,权重共享以及汇聚 。这些特性使卷积神经网络具有一定程度上的平移、缩放和旋转不变性。
卷积(Convolution)是分析数学中一种重要的运算。在信号处理或图像处理中,经常使用一维或二维卷积。
一维卷积经常用在信号处理中,用于计算信号的延迟累积。假设一个信号发生器每个时刻t 产生一个信号 ,其信息的衰减率为 ,即在 个时间步长后,信息为原来的 倍。假设 ,那么在时刻t收到的信号 为当前时刻产生的信息和以前时刻延迟信息的叠加:
我们把 称为 滤波器(Filter)或卷积核(Convolution Kernel) 。假设滤波器长度为 ,它和一个信号序列 的卷积为:
信号序列 和滤波器 的卷积定义为:
一般情况下滤波器的长度 远小于信号序列长度 ,下图给出一个一维卷积示例,滤波器为 :
二维卷积经常用在图像处理中。因为图像为一个两维结构,所以需要将一维卷积进行扩展。给定一个图像 和滤波器 ,其卷积为:
下图给出一个二维卷积示例:
注意这里的卷积运算并不是在图像中框定卷积核大小的方框并将各像素值与卷积核各个元素相乘并加和,而是先把卷积核旋转180度,再做上述运算。
在图像处理中,卷积经常作为特征提取的有效方法。一幅图像在经过卷积操作后得到结果称为 特征映射(Feature Map) 。
最上面的滤波器是常用的高斯滤波器,可以用来对图像进行 平滑去噪 ;中间和最下面的过滤器可以用来 提取边缘特征 。
在机器学习和图像处理领域,卷积的主要功能是在一个图像(或某种特征)上滑动一个卷积核(即滤波器),通过卷积操作得到一组新的特征。在计算卷积的过程中,需要进行卷积核翻转(即上文提到的旋转180度)。 在具体实现上,一般会以互相关操作来代替卷积,从而会减少一些不必要的操作或开销。
互相关(Cross-Correlation)是一个衡量两个序列相关性的函数,通常是用滑动窗口的点积计算来实现 。给定一个图像 和卷积核 ,它们的互相关为:
互相关和卷积的区别仅在于卷积核是否进行翻转。因此互相关也可以称为不翻转卷积 。当卷积核是可学习的参数时,卷积和互相关是等价的。因此,为了实现上(或描述上)的方便起见,我们用互相关来代替卷积。事实上,很多深度学习工具中卷积操作其实都是互相关操作。
在卷积的标准定义基础上,还可以引入滤波器的 滑动步长 和 零填充 来增加卷积多样性,更灵活地进行特征抽取。
滤波器的步长(Stride)是指滤波器在滑动时的时间间隔。
零填充(Zero Padding)是在输入向量两端进行补零。
假设卷积层的输入神经元个数为 ,卷积大小为 ,步长为 ,神经元两端各填补 个零,那么该卷积层的神经元数量为 。
一般常用的卷积有以下三类:
因为卷积网络的训练也是基于反向传播算法,因此我们重点关注卷积的导数性质:
假设 。
, , 。函数 为一个标量函数。
则由 有:
可以看出, 关于 的偏导数为 和 的卷积 :
同理得到:
当 或 时, ,即相当于对 进行 的零填充。从而 关于 的偏导数为 和 的宽卷积 。
用互相关的“卷积”表示,即为(注意 宽卷积运算具有交换性性质 ):
在全连接前馈神经网络中,如果第 层有 个神经元,第 层有 个神经元,连接边有 个,也就是权重矩阵有 个参数。当 和 都很大时,权重矩阵的参数非常多,训练的效率会非常低。
如果采用卷积来代替全连接,第 层的净输入 为第 层活性值 和滤波器 的卷积,即:
根据卷积的定义,卷积层有两个很重要的性质:
由于局部连接和权重共享,卷积层的参数只有一个m维的权重 和1维的偏置 ,共 个参数。参数个数和神经元的数量无关。此外,第 层的神经元个数不是任意选择的,而是满足 。
卷积层的作用是提取一个局部区域的特征,不同的卷积核相当于不同的特征提取器。
特征映射(Feature Map)为一幅图像(或其它特征映射)在经过卷积提取到的特征,每个特征映射可以作为一类抽取的图像特征。 为了提高卷积网络的表示能力,可以在每一层使用多个不同的特征映射,以更好地表示图像的特征。
在输入层,特征映射就是图像本身。如果是灰度图像,就是有一个特征映射,深度 ;如果是彩色图像,分别有RGB三个颜色通道的特征映射,深度 。
不失一般性,假设一个卷积层的结构如下:
为了计算输出特征映射 ,用卷积核 分别对输入特征映射 进行卷积,然后将卷积结果相加,并加上一个标量偏置 得到卷积层的净输入 再经过非线性激活函数后得到输出特征映射 。
在输入为 ,输出为 的卷积层中,每个输出特征映射都需要 个滤波器以及一个偏置。假设每个滤波器的大小为 ,那么共需要 个参数。
汇聚层(Pooling Layer)也叫子采样层(Subsampling Layer),其作用是进行特征选择,降低特征数量,并从而减少参数数量。
常用的汇聚函数有两种:
其中 为区域 内每个神经元的激活值。
可以看出,汇聚层不但可以有效地减少神经元的数量,还可以使得网络对一些小的局部形态改变保持不变性,并拥有更大的感受野。
典型的汇聚层是将每个特征映射划分为 大小的不重叠区域,然后使用最大汇聚的方式进行下采样。汇聚层也可以看做是一个特殊的卷积层,卷积核大小为 ,步长为 ,卷积核为 函数或 函数。过大的采样区域会急剧减少神经元的数量,会造成过多的信息损失。
一个典型的卷积网络是由卷积层、汇聚层、全连接层交叉堆叠而成。
目前常用卷积网络结构如图所示,一个卷积块为连续 个卷积层和 个汇聚层( 通常设置为 , 为 或 )。一个卷积网络中可以堆叠 个连续的卷积块,然后在后面接着 个全连接层( 的取值区间比较大,比如 或者更大; 一般为 )。
目前,整个网络结构 趋向于使用更小的卷积核(比如 和 )以及更深的结构(比如层数大于50) 。此外,由于卷积的操作性越来越灵活(比如不同的步长),汇聚层的作用变得也越来越小,因此目前比较流行的卷积网络中, 汇聚层的比例也逐渐降低,趋向于全卷积网络 。
在全连接前馈神经网络中,梯度主要通过每一层的误差项 进行反向传播,并进一步计算每层参数的梯度。在卷积神经网络中,主要有两种不同功能的神经层:卷积层和汇聚层。而参数为卷积核以及偏置,因此 只需要计算卷积层中参数的梯度。
不失一般性,第 层为卷积层,第 层的输入特征映射为 ,通过卷积计算得到第 层的特征映射净输入 ,第 层的第 个特征映射净输入
由 得:
同理可得,损失函数关于第 层的第 个偏置 的偏导数为:
在卷积网络中,每层参数的梯度依赖其所在层的误差项 。
卷积层和汇聚层中,误差项的计算有所不同,因此我们分别计算其误差项。
第 层的第 个特征映射的误差项 的具体推导过程如下:
其中 为第 层使用的激活函数导数, 为上采样函数(upsampling),与汇聚层中使用的下采样操作刚好相反。如果下采样是最大汇聚(max pooling),误差项 中每个值会直接传递到上一层对应区域中的最大值所对应的神经元,该区域中其它神经元的误差项的都设为0。如果下采样是平均汇聚(meanpooling),误差项 中每个值会被平均分配到上一层对应区域中的所有神经元上。
第 层的第 个特征映射的误差项 的具体推导过程如下:
其中 为宽卷积。
LeNet-5虽然提出的时间比较早,但是是一个非常成功的神经网络模型。基于LeNet-5 的手写数字识别系统在90年代被美国很多银行使用,用来识别支票上面的手写数字。LeNet-5 的网络结构如图:
不计输入层,LeNet-5共有7层,每一层的结构为:
AlexNet是第一个现代深度卷积网络模型,其首次使用了很多现代深度卷积网络的一些技术方法,比如采用了ReLU作为非线性激活函数,使用Dropout防止过拟合,使用数据增强来提高模型准确率等。AlexNet 赢得了2012 年ImageNet 图像分类竞赛的冠军。
AlexNet的结构如图,包括5个卷积层、3个全连接层和1个softmax层。因为网络规模超出了当时的单个GPU的内存限制,AlexNet 将网络拆为两半,分别放在两个GPU上,GPU间只在某些层(比如第3层)进行通讯。
AlexNet的具体结构如下:
在卷积网络中,如何设置卷积层的卷积核大小是一个十分关键的问题。 在Inception网络中,一个卷积层包含多个不同大小的卷积操作,称为Inception模块。Inception网络是由有多个inception模块和少量的汇聚层堆叠而成 。
v1版本的Inception模块,采用了4组平行的特征抽取方式,分别为1×1、3× 3、5×5的卷积和3×3的最大汇聚。同时,为了提高计算效率,减少参数数量,Inception模块在进行3×3、5×5的卷积之前、3×3的最大汇聚之后,进行一次1×1的卷积来减少特征映射的深度。如果输入特征映射之间存在冗余信息, 1×1的卷积相当于先进行一次特征抽取 。
㈧ 神经网络的全连接层
全连接层(fully connected layers,FC)在整个神经网络中起到“分类器”的作用。
如果说卷积层、池化层和激活函数层等操作是将原始数据映射到隐层特征空间的话,全连接层将学到的“分布式特征表示”映射到“样本标记空间”。
在实际使用中,全连接层可由卷积操作实现:对前层是全连接的全连接层可以转化为卷积核为1x1的卷积;而前层是卷积层的全连接层可以转化为卷积核为h*w的全局卷积,h和w分别为前层卷积结果的高和宽。
由于全连接层的参数冗余(仅全连接层参数就可占整个网络参数80%左右),有些性能优异的网络模型如ResNet和GoogLeNet等均用全局平均池化(global average pooling,GAP)取代全连接层,来融合学到的深度特征,最后仍用softmax等损失函数作为网络目标函数来指导学习过程。
㈨ (7)卷积神经网络的基本结构
卷积神经网络主要结构有:卷积层、池化层、和全连接层。通过堆叠这些层结构形成一个卷积神经网络。将原始图像转化为类别得分,其中卷积层和全连接层拥有参数,激活层和池化层没有参数。参数更新通过反向传播实现。
(1)卷积层
卷积核是一系列的滤波器,用来提取某一种特征
我们用它来处理一个图片,当图像特征与过滤器表示的特征相似时,卷积操作可以得到一个比较大的值。
当图像特征与过滤器不相似时,卷积操作可以得到一个比较小的值,实际上,卷积的结果特征映射图显示的是对应卷积核所代表的特征在原始特征图上的分布情况。
每个滤波器在空间上(宽度和高度)都比较小,但是深度和输入数据保持一致(特征图的通道数),当卷积核在原图像滑动时,会生成一个二维激活图,激活图上每个空间位置代表原图像对该卷积核的反应。每个卷积层,会有一整个集合的卷积核,有多少个卷积核,输出就有多少个通道。每个卷积核生成一个特征图,这些特征图堆叠起来组成整个输出结果。
卷积核体现了参数共享和局部连接的模式。每个卷积核的大小代表了一个感受野的大小。
卷积后的特征图大小为(W-F+2*P)/s+1 ;P 为填充 s 为步长
(2)池化层
池化层本质上是下采样,利用图像局部相关性的原理(认为最大值或者均值代表了这个局部的特征),对图像进行子抽样,可以减少数据处理量同时保留有用信息。这里池化有平均池化,L2范式池化,最大池化,经过实践,最大池化的效果要好于平均池化(平均池化一般放在卷积神经网络的最后一层),最大池化有利于保存纹理信息,平均池化有利于保存背景信息。实际上(因为信息损失的原因)我们可以看到,通过在卷积时使用更大的步长也可以缩小特征映射的尺寸,并不一定要用池化,有很多人不建议使用池化层。32*32在5*5卷积核步长为1下可得到28*28。
池化操作可以逐渐降低数据体的空间尺寸,这样的话就能减少网络中参数的数量,使得计算资源耗费变少,也能有效控制过拟合。
(3)全连接层
通过全连接层将特征图转化为类别输出。全连接层不止一层,在这个过程中为了防止过拟合会引入DropOut。最新研究表明,在进入全连接层之前,使用全局平均池化可以有效降低过拟合。
(4)批归一化BN——Batch Normal
随着神经网络训练的进行,每个隐层的参数变化使得后一层的输入发生变化,从而每一批的训练数据的分布也随之改变,致使网络在每次迭代中都需要拟合不同的数据分布,增大训练复杂度和过拟合的风险,只能采用较小的学习率去解决。
通常卷积层后就是BN层加Relu。BN已经是卷积神经网络中的一个标准技术。标准化的过程是可微的,因此可以将BN应用到每一层中做前向和反向传播,同在接在卷积或者全连接层后,非线性层前。它对于不好的初始化有很强的鲁棒性,同时可以加快网络收敛速度。
(5)DropOut
Dropout对于某一层神经元,通过定义的概率来随机删除一些神经元,同时保持输入层与输出层神经元的个数不变,然后按照神经网络的学习方法进行参数更新,下一次迭代中,重新随机删除一些神经元,直至训练结束。
(6)softmax层
Softmax层也不属于CNN中单独的层,一般要用CNN做分类的话,我们习惯的方式是将神经元的输出变成概率的形式,Softmax就是做这个的: 。显然Softmax层所有的输出相加为1,按照这个概率的大小确定到底属于哪一类。
㈩ 卷积神经网络的结构
卷积神经网络的基本结构由以下几个部分组成:输入层,卷积层,池化层,激活函数层和全连接层。
卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一。
卷积神经网络具有表征学习(representation learning)能力,能够按其阶层结构对输入信息进行平移不变分类(shift-invariant classification),因此也被称为“平移不变人工神经网络(Shift-Invariant Artificial Neural Networks, SIANN)”。
连接性
卷积神经网络中卷积层间的连接被称为稀疏连接(sparse connection),即相比于前馈神经网络中的全连接,卷积层中的神经元仅与其相邻层的部分,宴闭轮而晌信非全部神经元相连。
具体地,卷积神经网络第l层特征图中的任意一个像素都仅是l-1层中卷积核所定义的感受野内的像素的线性组态塌合。卷积神经网络的稀疏连接具有正则化的效果,提高了网络结构的稳定性和泛化能力,避免过度拟合。