导航:首页 > 异常信息 > 情感分析之多层全连接神经网络

情感分析之多层全连接神经网络

发布时间:2023-08-02 22:17:49

❶ 理解神经网络卷积层、全连接层

https://zhuanlan.hu.com/p/32472241

卷积神经网络,这玩意儿乍一听像是生物和数学再带点计算机技术混合起来的奇怪东西。奇怪归奇怪,不得不说,卷积神经网络是计算机视觉领域最有影响力的创造之一。

2012年是卷积神经网络崛起之年。这一年,Alex Krizhevsky带着卷积神经网络参加了ImageNet竞赛(其重要程度相当于奥运会)并一鸣惊人,将识别错误率从26%降到了15%,。从那开始,很多公司开始使用深度学习作为他们服务的核心。比如,Facebook在他们的自动标记算法中使用了它,Google在照片搜索中使用了,Amazon在商品推荐中使用,Printerst应用于为他们的家庭饲养服务提供个性化定制,而Instagram应用于他们的搜索引擎。

然而,神经网络最开始也是最多的应用领域是图像处理。那我们就挑这块来聊聊,怎样使用卷积神经网络(下面简称CNN)来进行图像分类。

图像分类是指,向机器输入一张图片,然后机器告诉我们这张图片的类别(一只猫,一条狗等等),或者如果它不确定的话,它会告诉我们属于某个类别的可能性(很可能是条狗但是我不太确定)。对我们人类来说,这件事情简单的不能再简单了,从出生起,我们就可以很快地识别周围的物体是什么。当我们看到一个场景,我们总能快速地识别出所有物体,甚至是下意识的,没有经过有意的思考。但这种能力,机器并不具有。所以我们更加要好好珍惜自己的大脑呀! (:зゝ∠)

电脑和人看到的图片并不相同。当我们输入一张图片时,电脑得到的只是一个数组,记录着像素的信息。数组的大小由图像的清晰度和大小决定。假设我们有一张jpg格式的480 480大小的图片,那么表示它的数组便是480 480*3大小的。数组中所有数字都描述了在那个位置处的像素信息,大小在[0,255]之间。

这些数字对我们来说毫无意义,但这是电脑们可以得到的唯一的信息(也足够了)。抽象而简单的说,我们需要一个接受数组为输入,输出一个数组表示属于各个类别概率的模型。

既然问题我们已经搞明白了,现在我们得想想办法解决它。我们想让电脑做的事情是找出不同图片之间的差别,并可以识别狗狗(举个例子)的特征。

我们人类可以通过一些与众不同的特征来识别图片,比如狗狗的爪子和狗有四条腿。同样地,电脑也可以通过识别更低层次的特征(曲线,直线)来进行图像识别。电脑用卷积层识别这些特征,并通过更多层卷积层结合在一起,就可以像人类一样识别出爪子和腿之类的高层次特征,从而完成任务。这正是CNN所做的事情的大概脉络。下面,我们进行更具体的讨论。

在正式开始之前,我们先来聊聊CNN的背景故事。当你第一次听说卷积神经网络的时候,你可能就会联想到一些与神经学或者生物学有关的东西,不得不说,卷积神经网络还真的与他们有某种关系。

CNN的灵感的确来自大脑中的视觉皮层。视觉皮层某些区域中的神经元只对特定视野区域敏感。1962年,在一个Hubel与Wiesel进行的试验( 视频 )中,这一想法被证实并且拓展了。他们发现,一些独立的神经元只有在特定方向的边界在视野中出现时才会兴奋。比如,一些神经元在水平边出现时兴奋,而另一些只有垂直边出现时才会。并且所有这种类型的神经元都在一个柱状组织中,并且被认为有能力产生视觉。

在一个系统中,一些特定的组件发挥特定的作用(视觉皮层中的神经元寻找各自特定的特征)。这一想法应用于很多机器中,并且也是CNN背后的基本原理。 (译者注:作者没有说清楚。类比到CNN中,应是不同的卷积核寻找图像中不同的特征)

回到主题。

更详细的说,CNN的工作流程是这样的:你把一张图片传递给模型,经过一些卷积层,非线性化(激活函数),池化,以及全连层,最后得到结果。就像我们之前所说的那样,输出可以是单独的一个类型,也可以是一组属于不同类型的概率。现在,最不容易的部分来了:理解各个层的作用。

首先,你要搞清楚的是,什么样的数据输入了卷积层。就像我们之前提到的那样,输入是一个32 × 32 × 3(打个比方)的记录像素值的数组。现在,让我来解释卷积层是什么。解释卷积层最好的方法,是想象一个手电筒照在图片的左上角。让我们假设手电筒的光可以招到一个5 × 5的区域。现在,让我们想象这个手电筒照过了图片的所有区域。在机器学习术语中,这样一个手电筒被称为卷积核(或者说过滤器,神经元) (kernel, filter, neuron) 。而它照到的区域被称为感知域 (receptive field) 。卷积核同样也是一个数组(其中的数被称为权重或者参数)。很重要的一点就是卷积核的深度和输入图像的深度是一样的(这保证可它能正常工作),所以这里卷积核的大小是5 × 5 × 3。

现在,让我们拿卷积核的初始位置作为例子,它应该在图像的左上角。当卷积核扫描它的感知域(也就是这张图左上角5 × 5 × 3的区域)的时候,它会将自己保存的权重与图像中的像素值相乘(或者说,矩阵元素各自相乘,注意与矩阵乘法区分),所得的积会相加在一起(在这个位置,卷积核会得到5 × 5 × 3 = 75个积)。现在你得到了一个数字。然而,这个数字只表示了卷积核在图像左上角的情况。现在,我们重复这一过程,让卷积核扫描完整张图片,(下一步应该往右移动一格,再下一步就再往右一格,以此类推),每一个不同的位置都产生了一个数字。当扫描完整张图片以后,你会得到一组新的28 × 28 × 1的数。 (译者注:(32 - 5 + 1) × (32 - 5 + 1) × 1) 。这组数,我们称为激活图或者特征图 (activation map or feature map) 。

如果增加卷积核的数目,比如,我们现在有两个卷积核,那么我们就会得到一个28 × 28 × 2的数组。通过使用更多的卷积核,我们可以更好的保留数据的空间尺寸。

在数学层面上说,这就是卷积层所做的事情。

让我们来谈谈,从更高角度来说,卷积在做什么。每一个卷积核都可以被看做特征识别器。我所说的特征,是指直线、简单的颜色、曲线之类的东西。这些都是所有图片共有的特点。拿一个7 × 7 × 3的卷积核作为例子,它的作用是识别一种曲线。(在这一章节,简单起见,我们忽略卷积核的深度,只考虑第一层的情况)。作为一个曲线识别器,这个卷积核的结构中,曲线区域内的数字更大。(记住,卷积核是一个数组)

现在我们来直观的看看这个。举个例子,假设我们要把这张图片分类。让我们把我们手头的这个卷积核放在图片的左上角。

记住,我们要做的事情是把卷积核中的权重和输入图片中的像素值相乘。

(译者注:图中最下方应是由于很多都是0所以把0略过不写了。)

基本上,如果输入图像中有与卷积核代表的形状很相似的图形,那么所有乘积的和会很大。现在我们来看看,如果我们移动了卷积核呢?

可以看到,得到的值小多了!这是因为感知域中没有与卷积核表示的相一致的形状。还记得吗,卷积层的输出是一张激活图。所以,在单卷积核卷积的简单情况下,假设卷积核是一个曲线识别器,那么所得的激活图会显示出哪些地方最有可能有曲线。在这个例子中,我们所得激活图的左上角的值为6600。这样大的数字表明很有可能这片区域中有一些曲线,从而导致了卷积核的激活 (译者注:也就是产生了很大的数值。) 而激活图中右上角的数值是0,因为那里没有曲线来让卷积核激活(简单来说就是输入图像的那片区域没有曲线)。

但请记住,这只是一个卷积核的情况,只有一个找出向右弯曲的曲线的卷积核。我们可以添加其他卷积核,比如识别向左弯曲的曲线的。卷积核越多,激活图的深度就越深,我们得到的关于输入图像的信息就越多。

在传统的CNN结构中,还会有其他层穿插在卷积层之间。我强烈建议有兴趣的人去阅览并理解他们。但总的来说,他们提供了非线性化,保留了数据的维度,有助于提升网络的稳定度并且抑制过拟合。一个经典的CNN结构是这样的:

网络的最后一层很重要,我们稍后会讲到它。

现在,然我们回头看看我们已经学到了什么。

我们讲到了第一层卷积层的卷积核的目的是识别特征,他们识别像曲线和边这样的低层次特征。但可以想象,如果想预测一个图片的类别,必须让网络有能力识别高层次的特征,例如手、爪子或者耳朵。让我们想想网络第一层的输出是什么。假设我们有5个5 × 5 × 3的卷积核,输入图像是32 × 32 × 3的,那么我们会得到一个28 × 28 × 5的数组。来到第二层卷积层,第一层的输出便成了第二层的输入。这有些难以可视化。第一层的输入是原始图片,可第二层的输入只是第一层产生的激活图,激活图的每一层都表示了低层次特征的出现位置。如果用一些卷积核处理它,得到的会是表示高层次特征出现的激活图。这些特征的类型可能是半圆(曲线和边的组合)或者矩形(四条边的组合)。随着卷积层的增多,到最后,你可能会得到可以识别手写字迹、粉色物体等等的卷积核。

如果,你想知道更多关于可视化卷积核的信息,可以看这篇 研究报告 ,以及这个 视频 。

还有一件事情很有趣,当网络越来越深,卷积核会有越来越大的相对于输入图像的感知域。这意味着他们有能力考虑来自输入图像的更大范围的信息(或者说,他们对一片更大的像素区域负责)。

到目前为止,我们已经识别出了那些高层次的特征吧。网络最后的画龙点睛之笔是全连层。

简单地说,这一层接受输入(来自卷积层,池化层或者激活函数都可以),并输出一个N维向量,其中,N是所有有可能的类别的总数。例如,如果你想写一个识别数字的程序,那么N就是10,因为总共有10个数字。N维向量中的每一个数字都代表了属于某个类别的概率。打个比方,如果你得到了[0 0.1 0.1 0.75 0 0 0 0 0 0.05],这代表着这张图片是1的概率是10%,是2的概率是10%,是3的概率是75%,是9的概率5%(小贴士:你还有其他表示输出的方法,但现在我只拿softmax (译者注:一种常用于分类问题的激活函数) 来展示)。全连层的工作方式是根据上一层的输出(也就是之前提到的可以用来表示特征的激活图)来决定这张图片有可能属于哪个类别。例如,如果程序需要预测哪些图片是狗,那么全连层在接收到一个包含类似于一个爪子和四条腿的激活图时输出一个很大的值。同样的,如果要预测鸟,那么全连层会对含有翅膀和喙的激活图更感兴趣。

基本上,全连层寻找那些最符合特定类别的特征,并且具有相应的权重,来使你可以得到正确的概率。

现在让我们来说说我之前有意没有提到的神经网络的可能是最重要的一个方面。刚刚在你阅读的时候,可能会有一大堆问题想问。第一层卷积层的卷积核们是怎么知道自己该识别边还是曲线的?全连层怎么知道该找哪一种激活图?每一层中的参数是怎么确定的?机器确定参数(或者说权重)的方法叫做反向传播算法。

在讲反向传播之前,我们得回头看看一个神经网络需要什么才能工作。我们出生的时候并不知道一条狗或者一只鸟长什么样。同样的,在CNN开始之前,权重都是随机生成的。卷积核并不知道要找边还是曲线。更深的卷积层也不知道要找爪子还是喙。

等我们慢慢长大了,我们的老师和父母给我们看不同的图片,并且告诉我们那是什么(或者说,他们的类别)。这种输入一幅图像以及这幅图像所属的类别的想法,是CNN训练的基本思路。在细细讲反向传播之前,我们先假设我们有一个包含上千张不同种类的动物以及他们所属类别的训练集。

反向传播可以被分成四个不同的部分。前向传播、损失函数、反向传播和权重更新。

在前向传播的阶段,我们输入一张训练图片,并让它通过整个神经网络。对于第一个输入图像,由于所有权重都是随机生成的,网络的输出很有可能是类似于[.1 .1 .1 .1 .1 .1 .1 .1 .1 .1]的东西,一般来说并不对任一类别有偏好。具有当前权重的网络并没有能力找出低层次的特征并且总结出可能的类别。

下一步,是损失函数部分。注意,我们现在使用的是训练数据。这些数据又有图片又有类别。打个比方,第一张输入的图片是数字“3”。那么它的标签应该是[0 0 0 1 0 0 0 0 0 0]。一个损失函数可以有很多定义的方法,但比较常见的是MSE(均方误差)。被定义为(实际−预测)22(实际−预测)22。

记变量L为损失函数的值。正如你想象的那样,在第一组训练图片输入的时候,损失函数的值可能非常非常高。来直观地看看这个问题。我们想到达CNN的预测与数据标签完全一样的点(这意味着我们的网络预测的很对)。为了到达那里,我们想要最小化误差。如果把这个看成一个微积分问题,那我们只要找到哪些权重与网络的误差关系最大。

这就相当于数学中的δLδWδLδW (译者注:对L关于W求导) ,其中,W是某个层的权重。现在,我们要对网络进行 反向传播 。这决定了哪些权重与误差的关系最大,并且决定了怎样调整他们来让误差减小。计算完这些导数以后,我们就来到了最后一步: 更新权重 。在这里,我们以与梯度相反的方向调整层中的权重。

学习率是一个有程序员决定的参数。一个很高的学习率意味着权重调整的幅度会很大,这可能会让模型更快的拥有一组优秀的权重。然而,一个太高的学习率可能会让调整的步伐过大,而不能精确地到达最佳点。

前向传播、损失函数、反向传播和更新权重,这四个过程是一次迭代。程序会对每一组训练图片重复这一过程(一组图片通常称为一个batch)。当对每一张图片都训练完之后,很有可能你的网络就已经训练好了,权重已经被调整的很好。

最后,为了验证CNN是否工作的很好,我们还有另一组特殊的数据。我们把这组数据中的图片输入到网络中,得到输出并和标签比较,这样就能看出网络的表现如何了。

❷ 神经网络连接方式分为哪几类每一类有哪些特点

神经网络模型的分类
人工神经网络的模型很多,可以按照不同的方法进行分类。其中,常见的两种分类方法是,按照网络连接的拓朴结构分类和按照网络内部的信息流向分类。
1 按照网络拓朴结构分类
网络的拓朴结构,即神经元之间的连接方式。按此划分,可将神经网络结构分为两大类:层次型结构和互联型结构。
层次型结构的神经网络将神经元按功能和顺序的不同分为输出层、中间层(隐层)、输出层。输出层各神经元负责接收来自外界的输入信息,并传给中间各隐层神经元;隐层是神经网络的内部信息处理层,负责信息变换。根据需要可设计为一层或多层;最后一个隐层将信息传递给输出层神经元经进一步处理后向外界输出信息处理结果。

而互连型网络结构中,任意两个节点之间都可能存在连接路径,因此可以根据网络中节点的连接程度将互连型网络细分为三种情况:全互连型、局部互连型和稀疏连接型
2 按照网络信息流向分类
从神经网络内部信息传递方向来看,可以分为两种类型:前馈型网络和反馈型网络。
单纯前馈网络的结构与分层网络结构相同,前馈是因网络信息处理的方向是从输入层到各隐层再到输出层逐层进行而得名的。前馈型网络中前一层的输出是下一层的输入,信息的处理具有逐层传递进行的方向性,一般不存在反馈环路。因此这类网络很容易串联起来建立多层前馈网络。
反馈型网络的结构与单层全互连结构网络相同。在反馈型网络中的所有节点都具有信息处理功能,而且每个节点既可以从外界接受输入,同时又可以向外界输出。

❸ 一文看懂四种基本的神经网络架构

原文链接:
http://blackblog.tech/2018/02/23/Eight-Neural-Network/

更多干货就在我的个人博客 http://blackblog.tech 欢迎关注

刚刚入门神经网络,往往会对众多的神经网络架构感到困惑,神经网络看起来复杂多样,但是这么多架构无非也就是三类,前馈神经网络,循环网络,对称连接网络,本文将介绍四种常见的神经网络,分别是CNN,RNN,DBN,GAN。通过这四种基本的神经网络架构,我们来对神经网络进行一定的了解。

神经网络是机器学习中的一种模型,是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
一般来说,神经网络的架构可以分为三类:

前馈神经网络:
这是实际应用中最常见的神经网络类型。第一层是输入,最后一层是输出。如果有多个隐藏层,我们称之为“深度”神经网络。他们计算出一系列改变样本相似性的变换。各层神经元的活动是前一层活动的非线性函数。

循环网络:
循环网络在他们的连接图中定向了循环,这意味着你可以按照箭头回到你开始的地方。他们可以有复杂的动态,使其很难训练。他们更具有生物真实性。
循环网络的目的使用来处理序列数据。在传统的神经网络模型中,是从输入层到隐含层再到输出层,层与层之间是全连接的,每层之间的节点是无连接的。但是这种普通的神经网络对于很多问题却无能无力。例如,你要预测句子的下一个单词是什么,一般需要用到前面的单词,因为一个句子中前后单词并不是独立的。
循环神经网路,即一个序列当前的输出与前面的输出也有关。具体的表现形式为网络会对前面的信息进行记忆并应用于当前输出的计算中,即隐藏层之间的节点不再无连接而是有连接的,并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出。

对称连接网络:
对称连接网络有点像循环网络,但是单元之间的连接是对称的(它们在两个方向上权重相同)。比起循环网络,对称连接网络更容易分析。这个网络中有更多的限制,因为它们遵守能量函数定律。没有隐藏单元的对称连接网络被称为“Hopfield 网络”。有隐藏单元的对称连接的网络被称为玻尔兹曼机。

其实之前的帖子讲过一些关于感知机的内容,这里再复述一下。
首先还是这张图
这是一个M-P神经元

一个神经元有n个输入,每一个输入对应一个权值w,神经元内会对输入与权重做乘法后求和,求和的结果与偏置做差,最终将结果放入激活函数中,由激活函数给出最后的输出,输出往往是二进制的,0 状态代表抑制,1 状态代表激活。

可以把感知机看作是 n 维实例空间中的超平面决策面,对于超平面一侧的样本,感知器输出 1,对于另一侧的实例输出 0,这个决策超平面方程是 w⋅x=0。 那些可以被某一个超平面分割的正反样例集合称为线性可分(linearly separable)样例集合,它们就可以使用图中的感知机表示。
与、或、非问题都是线性可分的问题,使用一个有两输入的感知机能容易地表示,而异或并不是一个线性可分的问题,所以使用单层感知机是不行的,这时候就要使用多层感知机来解决疑惑问题了。

如果我们要训练一个感知机,应该怎么办呢?
我们会从随机的权值开始,反复地应用这个感知机到每个训练样例,只要它误分类样例就修改感知机的权值。重复这个过程,直到感知机正确分类所有的样例。每一步根据感知机训练法则来修改权值,也就是修改与输入 xi 对应的权 wi,法则如下:

这里 t 是当前训练样例的目标输出,o 是感知机的输出,η 是一个正的常数称为学习速率。学习速率的作用是缓和每一步调整权的程度,它通常被设为一个小的数值(例如 0.1),而且有时会使其随着权调整次数的增加而衰减。

多层感知机,或者说是多层神经网络无非就是在输入层与输出层之间加了多个隐藏层而已,后续的CNN,DBN等神经网络只不过是将重新设计了每一层的类型。感知机可以说是神经网络的基础,后续更为复杂的神经网络都离不开最简单的感知机的模型,

谈到机器学习,我们往往还会跟上一个词语,叫做模式识别,但是真实环境中的模式识别往往会出现各种问题。比如:
图像分割:真实场景中总是掺杂着其它物体。很难判断哪些部分属于同一个对象。对象的某些部分可以隐藏在其他对象的后面。
物体光照:像素的强度被光照强烈影响。
图像变形:物体可以以各种非仿射方式变形。例如,手写也可以有一个大的圆圈或只是一个尖头。
情景支持:物体所属类别通常由它们的使用方式来定义。例如,椅子是为了让人们坐在上面而设计的,因此它们具有各种各样的物理形状。
卷积神经网络与普通神经网络的区别在于,卷积神经网络包含了一个由卷积层和子采样层构成的特征抽取器。在卷积神经网络的卷积层中,一个神经元只与部分邻层神经元连接。在CNN的一个卷积层中,通常包含若干个特征平面(featureMap),每个特征平面由一些矩形排列的的神经元组成,同一特征平面的神经元共享权值,这里共享的权值就是卷积核。卷积核一般以随机小数矩阵的形式初始化,在网络的训练过程中卷积核将学习得到合理的权值。共享权值(卷积核)带来的直接好处是减少网络各层之间的连接,同时又降低了过拟合的风险。子采样也叫做池化(pooling),通常有均值子采样(mean pooling)和最大值子采样(max pooling)两种形式。子采样可以看作一种特殊的卷积过程。卷积和子采样大大简化了模型复杂度,减少了模型的参数。
卷积神经网络由三部分构成。第一部分是输入层。第二部分由n个卷积层和池化层的组合组成。第三部分由一个全连结的多层感知机分类器构成。
这里举AlexNet为例:

·输入:224×224大小的图片,3通道
·第一层卷积:11×11大小的卷积核96个,每个GPU上48个。
·第一层max-pooling:2×2的核。
·第二层卷积:5×5卷积核256个,每个GPU上128个。
·第二层max-pooling:2×2的核。
·第三层卷积:与上一层是全连接,3*3的卷积核384个。分到两个GPU上个192个。
·第四层卷积:3×3的卷积核384个,两个GPU各192个。该层与上一层连接没有经过pooling层。
·第五层卷积:3×3的卷积核256个,两个GPU上个128个。
·第五层max-pooling:2×2的核。
·第一层全连接:4096维,将第五层max-pooling的输出连接成为一个一维向量,作为该层的输入。
·第二层全连接:4096维
·Softmax层:输出为1000,输出的每一维都是图片属于该类别的概率。

卷积神经网络在模式识别领域有着重要应用,当然这里只是对卷积神经网络做了最简单的讲解,卷积神经网络中仍然有很多知识,比如局部感受野,权值共享,多卷积核等内容,后续有机会再进行讲解。

传统的神经网络对于很多问题难以处理,比如你要预测句子的下一个单词是什么,一般需要用到前面的单词,因为一个句子中前后单词并不是独立的。RNN之所以称为循环神经网路,即一个序列当前的输出与前面的输出也有关。具体的表现形式为网络会对前面的信息进行记忆并应用于当前输出的计算中,即隐藏层之间的节点不再无连接而是有连接的,并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出。理论上,RNN能够对任何长度的序列数据进行处理。
这是一个简单的RNN的结构,可以看到隐藏层自己是可以跟自己进行连接的。

那么RNN为什么隐藏层能够看到上一刻的隐藏层的输出呢,其实我们把这个网络展开来开就很清晰了。

从上面的公式我们可以看出,循环层和全连接层的区别就是循环层多了一个权重矩阵 W。
如果反复把式2带入到式1,我们将得到:

在讲DBN之前,我们需要对DBN的基本组成单位有一定的了解,那就是RBM,受限玻尔兹曼机。
首先什么是玻尔兹曼机?
[图片上传失败...(image-d36b31-1519636788074)]
如图所示为一个玻尔兹曼机,其蓝色节点为隐层,白色节点为输入层。
玻尔兹曼机和递归神经网络相比,区别体现在以下几点:
1、递归神经网络本质是学习一个函数,因此有输入和输出层的概念,而玻尔兹曼机的用处在于学习一组数据的“内在表示”,因此其没有输出层的概念。
2、递归神经网络各节点链接为有向环,而玻尔兹曼机各节点连接成无向完全图。

而受限玻尔兹曼机是什么呢?
最简单的来说就是加入了限制,这个限制就是将完全图变成了二分图。即由一个显层和一个隐层构成,显层与隐层的神经元之间为双向全连接。

h表示隐藏层,v表示显层
在RBM中,任意两个相连的神经元之间有一个权值w表示其连接强度,每个神经元自身有一个偏置系数b(对显层神经元)和c(对隐层神经元)来表示其自身权重。
具体的公式推导在这里就不展示了

DBN是一个概率生成模型,与传统的判别模型的神经网络相对,生成模型是建立一个观察数据和标签之间的联合分布,对P(Observation|Label)和 P(Label|Observation)都做了评估,而判别模型仅仅而已评估了后者,也就是P(Label|Observation)。
DBN由多个限制玻尔兹曼机(Restricted Boltzmann Machines)层组成,一个典型的神经网络类型如图所示。这些网络被“限制”为一个可视层和一个隐层,层间存在连接,但层内的单元间不存在连接。隐层单元被训练去捕捉在可视层表现出来的高阶数据的相关性。

生成对抗网络其实在之前的帖子中做过讲解,这里在说明一下。
生成对抗网络的目标在于生成,我们传统的网络结构往往都是判别模型,即判断一个样本的真实性。而生成模型能够根据所提供的样本生成类似的新样本,注意这些样本是由计算机学习而来的。
GAN一般由两个网络组成,生成模型网络,判别模型网络。
生成模型 G 捕捉样本数据的分布,用服从某一分布(均匀分布,高斯分布等)的噪声 z 生成一个类似真实训练数据的样本,追求效果是越像真实样本越好;判别模型 D 是一个二分类器,估计一个样本来自于训练数据(而非生成数据)的概率,如果样本来自于真实的训练数据,D 输出大概率,否则,D 输出小概率。
举个例子:生成网络 G 好比假币制造团伙,专门制造假币,判别网络 D 好比警察,专门检测使用的货币是真币还是假币,G 的目标是想方设法生成和真币一样的货币,使得 D 判别不出来,D 的目标是想方设法检测出来 G 生成的假币。
传统的判别网络:

生成对抗网络:

下面展示一个cDCGAN的例子(前面帖子中写过的)
生成网络

判别网络

最终结果,使用MNIST作为初始样本,通过学习后生成的数字,可以看到学习的效果还是不错的。

本文非常简单的介绍了四种神经网络的架构,CNN,RNN,DBN,GAN。当然也仅仅是简单的介绍,并没有深层次讲解其内涵。这四种神经网络的架构十分常见,应用也十分广泛。当然关于神经网络的知识,不可能几篇帖子就讲解完,这里知识讲解一些基础知识,帮助大家快速入(zhuang)门(bi)。后面的帖子将对深度自动编码器,Hopfield 网络长短期记忆网络(LSTM)进行讲解。

❹ 神经网络的全连接层

全连接层(fully connected layers,FC)在整个神经网络中起到“分类器”的作用。

如果说卷积层、池化层和激活函数层等操作是将原始数据映射到隐层特征空间的话,全连接层将学到的“分布式特征表示”映射到“样本标记空间”。

在实际使用中,全连接层可由卷积操作实现:对前层是全连接的全连接层可以转化为卷积核为1x1的卷积;而前层是卷积层的全连接层可以转化为卷积核为h*w的全局卷积,h和w分别为前层卷积结果的高和宽。

由于全连接层的参数冗余(仅全连接层参数就可占整个网络参数80%左右),有些性能优异的网络模型如ResNet和GoogLeNet等均用全局平均池化(global average pooling,GAP)取代全连接层,来融合学到的深度特征,最后仍用softmax等损失函数作为网络目标函数来指导学习过程。

❺ 什么是全连接神经网络,怎么理解“全连接”

1、全连接神经网络解析:对n-1层和n层而言,n-1层的任意一个节点,都和第n层所有节点有连接。即第n层的每个节点在进行计算的时候,激活函数的输入是n-1层所有节点的加权。

2、全连接的神经网络示意图:


3、“全连接”是一种不错的模式,但是网络很大的时候,训练速度回很慢。部分连接就是认为的切断某两个节点直接的连接,这样训练时计算量大大减小。

❻ 神经网络:卷积神经网络(CNN)

神经网络 最早是由心理学家和神经学家提出的,旨在寻求开发和测试神经的计算模拟。

粗略地说, 神经网络 是一组连接的 输入/输出单元 ,其中每个连接都与一个 权 相关联。在学习阶段,通过调整权值,使得神经网络的预测准确性逐步提高。由于单元之间的连接,神经网络学习又称 连接者学习。

神经网络是以模拟人脑神经元的数学模型为基础而建立的,它由一系列神经元组成,单元之间彼此连接。从信息处理角度看,神经元可以看作是一个多输入单输出的信息处理单元,根据神经元的特性和功能,可以把神经元抽象成一个简单的数学模型。

神经网络有三个要素: 拓扑结构、连接方式、学习规则

神经网络的拓扑结构 :神经网络的单元通常按照层次排列,根据网络的层次数,可以将神经网络分为单层神经网络、两层神经网络、三层神经网络等。结构简单的神经网络,在学习时收敛的速度快,但准确度低。

神经网络的层数和每层的单元数由问题的复杂程度而定。问题越复杂,神经网络的层数就越多。例如,两层神经网络常用来解决线性问题,而多层网络就可以解决多元非线性问题

神经网络的连接 :包括层次之间的连接和每一层内部的连接,连接的强度用权来表示。

根据层次之间的连接方式,分为:

1)前馈式网络:连接是单向的,上层单元的输出是下层单元的输入,如反向传播网络,Kohonen网络

2)反馈式网络:除了单项的连接外,还把最后一层单元的输出作为第一层单元的输入,如Hopfield网络

根据连接的范围,分为:

1)全连接神经网络:每个单元和相邻层上的所有单元相连

2)局部连接网络:每个单元只和相邻层上的部分单元相连

神经网络的学习

根据学习方法分:

感知器:有监督的学习方法,训练样本的类别是已知的,并在学习的过程中指导模型的训练

认知器:无监督的学习方法,训练样本类别未知,各单元通过竞争学习。

根据学习时间分:

离线网络:学习过程和使用过程是独立的

在线网络:学习过程和使用过程是同时进行的

根据学习规则分:

相关学习网络:根据连接间的激活水平改变权系数

纠错学习网络:根据输出单元的外部反馈改变权系数

自组织学习网络:对输入进行自适应地学习

摘自《数学之美》对人工神经网络的通俗理解:

神经网络种类很多,常用的有如下四种:

1)Hopfield网络,典型的反馈网络,结构单层,有相同的单元组成

2)反向传播网络,前馈网络,结构多层,采用最小均方差的纠错学习规则,常用于语言识别和分类等问题

3)Kohonen网络:典型的自组织网络,由输入层和输出层构成,全连接

4)ART网络:自组织网络

深度神经网络:

Convolutional Neural Networks(CNN)卷积神经网络

Recurrent neural Network(RNN)循环神经网络

Deep Belief Networks(DBN)深度信念网络

深度学习是指多层神经网络上运用各种机器学习算法解决图像,文本等各种问题的算法集合。深度学习从大类上可以归入神经网络,不过在具体实现上有许多变化。

深度学习的核心是特征学习,旨在通过分层网络获取分层次的特征信息,从而解决以往需要人工设计特征的重要难题。

Machine Learning vs. Deep Learning 

神经网络(主要是感知器)经常用于 分类

神经网络的分类知识体现在网络连接上,被隐式地存储在连接的权值中。

神经网络的学习就是通过迭代算法,对权值逐步修改的优化过程,学习的目标就是通过改变权值使训练集的样本都能被正确分类。

神经网络特别适用于下列情况的分类问题:

1) 数据量比较小,缺少足够的样本建立模型

2) 数据的结构难以用传统的统计方法来描述

3) 分类模型难以表示为传统的统计模型

缺点:

1) 需要很长的训练时间,因而对于有足够长训练时间的应用更合适。

2) 需要大量的参数,这些通常主要靠经验确定,如网络拓扑或“结构”。

3)  可解释性差 。该特点使得神经网络在数据挖掘的初期并不看好。

优点:

1) 分类的准确度高

2)并行分布处理能力强

3)分布存储及学习能力高

4)对噪音数据有很强的鲁棒性和容错能力

最流行的基于神经网络的分类算法是80年代提出的 后向传播算法 。后向传播算法在多路前馈神经网络上学习。 

定义网络拓扑

在开始训练之前,用户必须说明输入层的单元数、隐藏层数(如果多于一层)、每一隐藏层的单元数和输出层的单元数,以确定网络拓扑。

对训练样本中每个属性的值进行规格化将有助于加快学习过程。通常,对输入值规格化,使得它们落入0.0和1.0之间。

离散值属性可以重新编码,使得每个域值一个输入单元。例如,如果属性A的定义域为(a0,a1,a2),则可以分配三个输入单元表示A。即,我们可以用I0 ,I1 ,I2作为输入单元。每个单元初始化为0。如果A = a0,则I0置为1;如果A = a1,I1置1;如此下去。

一个输出单元可以用来表示两个类(值1代表一个类,而值0代表另一个)。如果多于两个类,则每个类使用一个输出单元。

隐藏层单元数设多少个“最好” ,没有明确的规则。

网络设计是一个实验过程,并可能影响准确性。权的初值也可能影响准确性。如果某个经过训练的网络的准确率太低,则通常需要采用不同的网络拓扑或使用不同的初始权值,重复进行训练。

后向传播算法学习过程:

迭代地处理一组训练样本,将每个样本的网络预测与实际的类标号比较。

每次迭代后,修改权值,使得网络预测和实际类之间的均方差最小。

这种修改“后向”进行。即,由输出层,经由每个隐藏层,到第一个隐藏层(因此称作后向传播)。尽管不能保证,一般地,权将最终收敛,学习过程停止。

算法终止条件:训练集中被正确分类的样本达到一定的比例,或者权系数趋近稳定。

后向传播算法分为如下几步:

1) 初始化权

网络的权通常被初始化为很小的随机数(例如,范围从-1.0到1.0,或从-0.5到0.5)。

每个单元都设有一个偏置(bias),偏置也被初始化为小随机数。

2) 向前传播输入

对于每一个样本X,重复下面两步:

向前传播输入,向后传播误差

计算各层每个单元的输入和输出。输入层:输出=输入=样本X的属性;即,对于单元j,Oj = Ij = Xj。隐藏层和输出层:输入=前一层的输出的线性组合,即,对于单元j, Ij =wij Oi + θj,输出=

3) 向后传播误差

计算各层每个单元的误差。

输出层单元j,误差:

Oj是单元j的实际输出,而Tj是j的真正输出。

隐藏层单元j,误差:

wjk是由j到下一层中单元k的连接的权,Errk是单元k的误差

更新 权 和 偏差 ,以反映传播的误差。

权由下式更新:

 其中,△wij是权wij的改变。l是学习率,通常取0和1之间的值。

 偏置由下式更新:

  其中,△θj是偏置θj的改变。

Example

人类视觉原理:

深度学习的许多研究成果,离不开对大脑认知原理的研究,尤其是视觉原理的研究。1981 年的诺贝尔医学奖,颁发给了 David Hubel(出生于加拿大的美国神经生物学家) 和Torsten Wiesel,以及Roger Sperry。前两位的主要贡献,是“发现了视觉系统的信息处理”, 可视皮层是分级的 。

人类的视觉原理如下:从原始信号摄入开始(瞳孔摄入像素Pixels),接着做初步处理(大脑皮层某些细胞发现边缘和方向),然后抽象(大脑判定,眼前的物体的形状,是圆形的),然后进一步抽象(大脑进一步判定该物体是只气球)。

对于不同的物体,人类视觉也是通过这样逐层分级,来进行认知的:

在最底层特征基本上是类似的,就是各种边缘,越往上,越能提取出此类物体的一些特征(轮子、眼睛、躯干等),到最上层,不同的高级特征最终组合成相应的图像,从而能够让人类准确的区分不同的物体。

可以很自然的想到:可以不可以模仿人类大脑的这个特点,构造多层的神经网络,较低层的识别初级的图像特征,若干底层特征组成更上一层特征,最终通过多个层级的组合,最终在顶层做出分类呢?答案是肯定的,这也是许多深度学习算法(包括CNN)的灵感来源。

卷积神经网络是一种多层神经网络,擅长处理图像特别是大图像的相关机器学习问题。卷积网络通过一系列方法,成功将数据量庞大的图像识别问题不断降维,最终使其能够被训练。

CNN最早由Yann LeCun提出并应用在手写字体识别上。LeCun提出的网络称为LeNet,其网络结构如下:

这是一个最典型的卷积网络,由 卷积层、池化层、全连接层 组成。其中卷积层与池化层配合,组成多个卷积组,逐层提取特征,最终通过若干个全连接层完成分类。

CNN通过卷积来模拟特征区分,并且通过卷积的权值共享及池化,来降低网络参数的数量级,最后通过传统神经网络完成分类等任务。

降低参数量级:如果使用传统神经网络方式,对一张图片进行分类,那么,把图片的每个像素都连接到隐藏层节点上,对于一张1000x1000像素的图片,如果有1M隐藏层单元,一共有10^12个参数,这显然是不能接受的。

但是在CNN里,可以大大减少参数个数,基于以下两个假设:

1)最底层特征都是局部性的,也就是说,用10x10这样大小的过滤器就能表示边缘等底层特征

2)图像上不同小片段,以及不同图像上的小片段的特征是类似的,也就是说,能用同样的一组分类器来描述各种各样不同的图像

基于以上两个假设,就能把第一层网络结构简化

用100个10x10的小过滤器,就能够描述整幅图片上的底层特征。

卷积运算的定义如下图所示:

如上图所示,一个5x5的图像,用一个3x3的 卷积核 :

   101

   010

   101

来对图像进行卷积操作(可以理解为有一个滑动窗口,把卷积核与对应的图像像素做乘积然后求和),得到了3x3的卷积结果。

这个过程可以理解为使用一个过滤器(卷积核)来过滤图像的各个小区域,从而得到这些小区域的特征值。在实际训练过程中, 卷积核的值是在学习过程中学到的。

在具体应用中,往往有多个卷积核,可以认为, 每个卷积核代表了一种图像模式 ,如果某个图像块与此卷积核卷积出的值大,则认为此图像块十分接近于此卷积核。如果设计了6个卷积核,可以理解为这个图像上有6种底层纹理模式,也就是用6种基础模式就能描绘出一副图像。以下就是24种不同的卷积核的示例:

池化 的过程如下图所示:

可以看到,原始图片是20x20的,对其进行采样,采样窗口为10x10,最终将其采样成为一个2x2大小的特征图。

之所以这么做,是因为即使做完了卷积,图像仍然很大(因为卷积核比较小),所以为了降低数据维度,就进行采样。

即使减少了许多数据,特征的统计属性仍能够描述图像,而且由于降低了数据维度,有效地避免了过拟合。

在实际应用中,分为最大值采样(Max-Pooling)与平均值采样(Mean-Pooling)。

LeNet网络结构:

注意,上图中S2与C3的连接方式并不是全连接,而是部分连接。最后,通过全连接层C5、F6得到10个输出,对应10个数字的概率。

卷积神经网络的训练过程与传统神经网络类似,也是参照了反向传播算法

第一阶段,向前传播阶段:

a)从样本集中取一个样本(X,Yp),将X输入网络;

b)计算相应的实际输出Op

第二阶段,向后传播阶段

a)计算实际输出Op与相应的理想输出Yp的差;

b)按极小化误差的方法反向传播调整权矩阵。

阅读全文

与情感分析之多层全连接神经网络相关的资料

热点内容
网络共享中心没有网卡 浏览:489
电脑无法检测到网络代理 浏览:1348
笔记本电脑一天会用多少流量 浏览:473
苹果电脑整机转移新机 浏览:1347
突然无法连接工作网络 浏览:958
联通网络怎么设置才好 浏览:1187
小区网络电脑怎么连接路由器 浏览:928
p1108打印机网络共享 浏览:1183
怎么调节台式电脑护眼 浏览:601
深圳天虹苹果电脑 浏览:839
网络总是异常断开 浏览:581
中级配置台式电脑 浏览:893
中国网络安全的战士 浏览:600
同志网站在哪里 浏览:1377
版观看完整完结免费手机在线 浏览:1429
怎样切换默认数据网络设置 浏览:1076
肯德基无线网无法访问网络 浏览:1251
光纤猫怎么连接不上网络 浏览:1373
神武3手游网络连接 浏览:935
局网打印机网络共享 浏览:972