Ⅰ 人工智能时代,神经网络的原理及使用方法 | 微课堂
人工智能时代已经悄然来临,在计算机技术高速发展的未来,机器是否能代替人脑?也许有些读者会说,永远不可能,因为散盯扮人脑的思考包含感性逻辑。事实上,神经网络算法正是在模仿人脑的思考方式。想不想知道神经网络是如何“思考”的呢?下面我向大家简单介绍一下神经网络的原理及使用方法。
所谓人工智能,就是让机器具备人的思维和意识。人工智能主要有三个学派——行为主义、符号主义和连接主义。
行为主义是基于控制论,是在构建感知动作的控制系统。理解行为主义有个很好的例子,就是让机器人单脚站立,通过感知要摔倒的方向控制两只手的动作,保持身体的平衡,这就构建了一个感知动作控制系统。
符号主义是基于算数逻辑和表达式。求解问题时,先把问题描述为表达式,再求解表达式。如果你在求解某个问题时,可以用if case这样的条件语句,和若干计算公式描述出来,这就使用了符号主义的方法,比如“专家系统”。符号主义可以认为是用公式描述的人工智能,它让计算机具备了理性思维。但是人类不仅具备理性思维,还具备无法用公式描述的感性思维。比如,如果你看过这篇推送,下回再见到“符号主义”几个字,你会觉得眼熟,会想到这是人工智能相关的知识,这是人的直觉,是感性的。
连接主义就是在模拟人的这种感性思维,是在仿造人脑内的神经元连接关系。这张图给出了人脑中的一根神经元,左侧是神经元的输入,“轴突”部分是神经元的输出。人脑就是由860亿个这样的神经元首尾相接组成的网络。
神经网络可以让计算机具备感性思维。我们首先理解一下基于连接主义的神经网络设计过程。这张图给出了人类从出生到24个月神经网络的变化:
随着我们的成长,大量的数据通过视觉、听觉涌入大脑,使我们的神经网络连接,也就是这些神经元连线上的权重发生了变化,有些线上的权重增强了,有些线上的权重减弱了。
我们要用计算机仿出这些神经网络连接关系,让计算机具备感性思维。
首先需要准备数据,数据量越大越好,以构成特征和标签对。如果想识别猫,就要有大量猫的图片和这张图片是猫的标签构成特征标签对,然后搭建神经网络的网络结构,再通过反向传播优化连接的权重,直到模型的识别准确率达到要求,得到最优的连线权重,把这个模型保存起来。最后用保存的模型输入从未见过的新数据,它会通过前向传播输出概率值,概率值最大的一个就是分类和预测的结果。
我们举个例子来感受一下神经网络的设计过程。鸢尾花可以分为三类:狗尾鸢尾、杂色鸢尾和佛吉尼亚鸢尾。我们拿出一张图,需要让计算机判断这是哪类鸢尾花。人们通过经验总结出了规律:通过测量花的花萼长、花萼宽、花瓣长、花瓣宽分辨出鸢尾花的类别,比如花萼长>花萼宽,并且花瓣长/花瓣宽>2,则可以判定为这是第一种,杂色鸢尾。看到这里,也许有些读者已经想到用if、case这样的条件语句来实现鸢尾花的分类。没错,条件语句根据这些信息可以判断鸢尾花分类,这是一个非常典型的专家系统,这个过程是理性计算。只要有了这些数据,就可以通过条件判定公式计算出是哪类鸢尾花。但是我们发现鸢尾花的种植者在识别鸢尾花的时候并不需要这么理性的计算,因为他们见识了太多的鸢尾花,一看就知道是哪种,而且随着经验的增加,识别的准确率会提高。这就是直觉,是感性思维,也是我们这篇文章想要和大家分享的神经网络方法。
这种神经网络设计过程首先需要采集大量的花萼长、花萼宽、花瓣长、花瓣宽,和它们所对应的是哪种鸢尾花。花萼长、花萼宽、花瓣长、花瓣宽叫做输入特征,它们对应的分类叫做标签。大量的输入特征和标签对构建出数据集,再把这个数据集喂入搭建好的神经网络结构,网络通过反向传播优化参数,得到模型。当有新的、从未见过的输入特征,送入神经网络时,神经网络会输出识别的结果。
展望21世纪初,在近十年神经网络理论研究趋向的背景下,神经网络理论的主要前沿领域包括:
一、对智能和机器关系问题的认识进一步增长。
研究人类智力一直是科学发展中最有意义,也是空前困难的挑冲灶战性问题。人脑是我们所知道的唯一则带智能系统,具有感知识别、学习、联想、记忆、推理等智能。我们通过不断 探索 人类智能的本质以及联结机制,并用人工系统复现或部分复现,制造各种智能机器,这样可使人类有更多的时间和机会从事更为复杂、更富创造性的工作。
神经网络是由大量处理单元组成的非线性、自适应、自组织系统,是在现代神经科学研究成果的基础上提出的,试图模拟神经网络加工、记忆信息的方式,设计一种新的机器,使之具有人脑风格的信息处理能力。智能理论所面对的课题来自“环境——问题——目的”,有极大的诱惑力与压力,它的发展方向将是把基于连接主义的神经网络理论、基于符号主义的人工智能专家系统理论和基于进化论的人工生命这三大研究领域,在共同追求的总目标下,自发而有机地结合起来。
二、神经计算和进化计算的重大发展。
计算和算法是人类自古以来十分重视的研究领域,本世纪30年代,符号逻辑方面的研究非常活跃。近年来,神经计算和进化计算领域很活跃,有新的发展动向,在从系统层次向细胞层次转化里,正在建立数学理论基础。随着人们不断 探索 新的计算和算法,将推动计算理论向计算智能化方向发展,在21世纪人类将全面进入信息 社会 ,对信息的获取、处理和传输问题,对网络路由优化问题,对数据安全和保密问题等等将有新的要求,这些将成为 社会 运行的首要任务。因此,神经计算和进化计算与高速信息网络理论联系将更加密切,并在计算机网络领域中发挥巨大的作用,例如大范围计算机网络的自组织功能实现就要进行进化计算。
人类的思维方式正在转变,从线性思维转到非线性思维神经元,神经网络都有非线性、非局域性、非定常性、非凸性和混沌等特性。我们在计算智能的层次上研究非线性动力系统、混沌神经网络以及对神经网络的数理研究,进一步研究自适应性子波、非线性神经场的兴奋模式、神经集团的宏观力学等。因为,非线性问题的研究是神经网络理论发展的一个最大动力,也是它面临的最大挑战。
以上就是有关神经网络的相关内容,希望能为读者带来帮助。
以上内容由苏州空天信息研究院谢雨宏提供。
Ⅱ 人工神经网络可以解决什么行业问题,怎么解决,有什么效果
人工神经网络可以应用在许多行业,解决各种问题,主要包括:
1. 图像识别:人工神经网络可以用于图像分类、目标检测、语义分割等,广泛应用于自动驾驶、医疗图像举明分析、人脸识别等领域。利用深度学习算法可以实现高精度的图像闷宴识别。
2. 自然语言处理:人工神经网络可用于机器翻译、文本分类、情感分析、语义理解等,应用于聊天机器人、搜索引擎等。采用深度学习方法可以实现上下文理解和词义消歧。
3.预测与决策:人工神经网络可以用于股票预测、商品销量预测、疾病预测、推荐系统等,帮助企业进行数据分析与决策。
4.异常检测:人工神经网络可用于欺诈检测、网络入侵检测、工业质量检测等,通过模型学习大量样本,可以高效识别异常数据。
5.控制与优化:人工神经网络可用于无人车控制、工厂自动化控制、能源供需预测与优化等,实现复杂问题的控制与优化。
人工神经网络主要通过深度学习算法来训练神经网络模型,可以自动学习特征和模式,对样本进行分类或预测。相比传统算法,人工神经网络可以实现更高精度的识别与决策,广泛应用于各行业,获取很好的效果。许多企业已经在关键业务流程中集成人工神经网络,提高生产力与产品体验。
总的来说,人工正罩告神经网络是一个强大的机器学习工具,可以帮助企业利用海量数据进行自动化分类、预测与决策,从而优化运营效率,提高产品智能,取得竞争优势。人工神经网络正在改变许多行业的未来,带来巨大的技术和商业影响。
希望以上解释可以概括人工神经网络在各行业的应用与效果。
Ⅲ 神经网络:卷积神经网络(CNN)
神经网络 最早是由心理学家和神经学家提出的,旨在寻求开发和测试神经的计算模拟。
粗略地说, 神经网络 是一组连接的 输入/输出单元 ,其中每个连接都与一个 权 相关联。在学习阶段,通过调整权值,使得神经网络的预测准确性逐步提高。由于单元之间的连接,神经网络学习又称 连接者学习。
神经网络是以模拟人脑神经元的数学模型为基础而建立的,它由一系列神经元组成,单元之间彼此连接。从信息处理角度看,神经元可以看作是一个多输入单输出的信息处理单元,根据神经元的特性和功能,可以把神经元抽象成一个简单的数学模型。
神经网络有三个要素: 拓扑结构、连接方式、学习规则
神经网络的拓扑结构 :神经网络的单元通常按照层次排列,根据网络的层次数,可以将神经网络分为单层神经网络、两层神经网络、三层神经网络等。结构简单的神经网络,在学习时收敛的速度快,但准确度低。
神经网络的层数和每层的单元数由问题的复杂程度而定。问题越复杂,神经网络的层数就越多。例如,两层神经网络常用来解决线性问题,而多层网络就可以解决多元非线性问题
神经网络的连接 :包括层次之间的连接和每一层内部的连接,连接的强度用权来表示。
根据层次之间的连接方式,分为:
1)前馈式网络:连接是单向的,上层单元的输出是下层单元的输入,如反向传播网络,Kohonen网络
2)反馈式网络:除了单项的连接外,还把最后一层单元的输出作为第一层单元的输入,如Hopfield网络
根据连接的范围,分为:
1)全连接神经网络:每个单元和相邻层上的所有单元相连
2)局部连接网络:每个单元只和相邻层上的部分单元相连
神经网络的学习
根据学习方法分:
感知器:有监督的学习方法,训练样本的类别是已知的,并在学习的过程中指导模型的训练
认知器:无监督的学习方法,训练样本类别未知,各单元通过竞争学习。
根据学习时间分:
离线网络:学习过程和使用过程是独立的
在线网络:学习过程和使用过程是同时进行的
根据学习规则分:
相关学习网络:根据连接间的激活水平改变权系数
纠错学习网络:根据输出单元的外部反馈改变权系数
自组织学习网络:对输入进行自适应地学习
摘自《数学之美》对人工神经网络的通俗理解:
神经网络种类很多,常用的有如下四种:
1)Hopfield网络,典型的反馈网络,结构单层,有相同的单元组成
2)反向传播网络,前馈网络,结构多层,采用最小均方差的纠错学习规则,常用于语言识别和分类等问题
3)Kohonen网络:典型的自组织网络,由输入层和输出层构成,全连接
4)ART网络:自组织网络
深度神经网络:
Convolutional Neural Networks(CNN)卷积神经网络
Recurrent neural Network(RNN)循环神经网络
Deep Belief Networks(DBN)深度信念网络
深度学习是指多层神经网络上运用各种机器学习算法解决图像,文本等各种问题的算法集合。深度学习从大类上可以归入神经网络,不过在具体实现上有许多变化。
深度学习的核心是特征学习,旨在通过分层网络获取分层次的特征信息,从而解决以往需要人工设计特征的重要难题。
Machine Learning vs. Deep Learning
神经网络(主要是感知器)经常用于 分类
神经网络的分类知识体现在网络连接上,被隐式地存储在连接的权值中。
神经网络的学习就是通过迭代算法,对权值逐步修改的优化过程,学习的目标就是通过改变权值使训练集的样本都能被正确分类。
神经网络特别适用于下列情况的分类问题:
1) 数据量比较小,缺少足够的样本建立模型
2) 数据的结构难以用传统的统计方法来描述
3) 分类模型难以表示为传统的统计模型
缺点:
1) 需要很长的训练时间,因而对于有足够长训练时间的应用更合适。
2) 需要大量的参数,这些通常主要靠经验确定,如网络拓扑或“结构”。
3) 可解释性差 。该特点使得神经网络在数据挖掘的初期并不看好。
优点:
1) 分类的准确度高
2)并行分布处理能力强
3)分布存储及学习能力高
4)对噪音数据有很强的鲁棒性和容错能力
最流行的基于神经网络的分类算法是80年代提出的 后向传播算法 。后向传播算法在多路前馈神经网络上学习。
定义网络拓扑
在开始训练之前,用户必须说明输入层的单元数、隐藏层数(如果多于一层)、每一隐藏层的单元数和输出层的单元数,以确定网络拓扑。
对训练样本中每个属性的值进行规格化将有助于加快学习过程。通常,对输入值规格化,使得它们落入0.0和1.0之间。
离散值属性可以重新编码,使得每个域值一个输入单元。例如,如果属性A的定义域为(a0,a1,a2),则可以分配三个输入单元表示A。即,我们可以用I0 ,I1 ,I2作为输入单元。每个单元初始化为0。如果A = a0,则I0置为1;如果A = a1,I1置1;如此下去。
一个输出单元可以用来表示两个类(值1代表一个类,而值0代表另一个)。如果多于两个类,则每个类使用一个输出单元。
隐藏层单元数设多少个“最好” ,没有明确的规则。
网络设计是一个实验过程,并可能影响准确性。权的初值也可能影响准确性。如果某个经过训练的网络的准确率太低,则通常需要采用不同的网络拓扑或使用不同的初始权值,重复进行训练。
后向传播算法学习过程:
迭代地处理一组训练样本,将每个样本的网络预测与实际的类标号比较。
每次迭代后,修改权值,使得网络预测和实际类之间的均方差最小。
这种修改“后向”进行。即,由输出层,经由每个隐藏层,到第一个隐藏层(因此称作后向传播)。尽管不能保证,一般地,权将最终收敛,学习过程停止。
算法终止条件:训练集中被正确分类的样本达到一定的比例,或者权系数趋近稳定。
后向传播算法分为如下几步:
1) 初始化权
网络的权通常被初始化为很小的随机数(例如,范围从-1.0到1.0,或从-0.5到0.5)。
每个单元都设有一个偏置(bias),偏置也被初始化为小随机数。
2) 向前传播输入
对于每一个样本X,重复下面两步:
向前传播输入,向后传播误差
计算各层每个单元的输入和输出。输入层:输出=输入=样本X的属性;即,对于单元j,Oj = Ij = Xj。隐藏层和输出层:输入=前一层的输出的线性组合,即,对于单元j, Ij =wij Oi + θj,输出=
3) 向后传播误差
计算各层每个单元的误差。
输出层单元j,误差:
Oj是单元j的实际输出,而Tj是j的真正输出。
隐藏层单元j,误差:
wjk是由j到下一层中单元k的连接的权,Errk是单元k的误差
更新 权 和 偏差 ,以反映传播的误差。
权由下式更新:
其中,△wij是权wij的改变。l是学习率,通常取0和1之间的值。
偏置由下式更新:
其中,△θj是偏置θj的改变。
Example
人类视觉原理:
深度学习的许多研究成果,离不开对大脑认知原理的研究,尤其是视觉原理的研究。1981 年的诺贝尔医学奖,颁发给了 David Hubel(出生于加拿大的美国神经生物学家) 和Torsten Wiesel,以及Roger Sperry。前两位的主要贡献,是“发现了视觉系统的信息处理”, 可视皮层是分级的 。
人类的视觉原理如下:从原始信号摄入开始(瞳孔摄入像素Pixels),接着做初步处理(大脑皮层某些细胞发现边缘和方向),然后抽象(大脑判定,眼前的物体的形状,是圆形的),然后进一步抽象(大脑进一步判定该物体是只气球)。
对于不同的物体,人类视觉也是通过这样逐层分级,来进行认知的:
在最底层特征基本上是类似的,就是各种边缘,越往上,越能提取出此类物体的一些特征(轮子、眼睛、躯干等),到最上层,不同的高级特征最终组合成相应的图像,从而能够让人类准确的区分不同的物体。
可以很自然的想到:可以不可以模仿人类大脑的这个特点,构造多层的神经网络,较低层的识别初级的图像特征,若干底层特征组成更上一层特征,最终通过多个层级的组合,最终在顶层做出分类呢?答案是肯定的,这也是许多深度学习算法(包括CNN)的灵感来源。
卷积神经网络是一种多层神经网络,擅长处理图像特别是大图像的相关机器学习问题。卷积网络通过一系列方法,成功将数据量庞大的图像识别问题不断降维,最终使其能够被训练。
CNN最早由Yann LeCun提出并应用在手写字体识别上。LeCun提出的网络称为LeNet,其网络结构如下:
这是一个最典型的卷积网络,由 卷积层、池化层、全连接层 组成。其中卷积层与池化层配合,组成多个卷积组,逐层提取特征,最终通过若干个全连接层完成分类。
CNN通过卷积来模拟特征区分,并且通过卷积的权值共享及池化,来降低网络参数的数量级,最后通过传统神经网络完成分类等任务。
降低参数量级:如果使用传统神经网络方式,对一张图片进行分类,那么,把图片的每个像素都连接到隐藏层节点上,对于一张1000x1000像素的图片,如果有1M隐藏层单元,一共有10^12个参数,这显然是不能接受的。
但是在CNN里,可以大大减少参数个数,基于以下两个假设:
1)最底层特征都是局部性的,也就是说,用10x10这样大小的过滤器就能表示边缘等底层特征
2)图像上不同小片段,以及不同图像上的小片段的特征是类似的,也就是说,能用同样的一组分类器来描述各种各样不同的图像
基于以上两个假设,就能把第一层网络结构简化
用100个10x10的小过滤器,就能够描述整幅图片上的底层特征。
卷积运算的定义如下图所示:
如上图所示,一个5x5的图像,用一个3x3的 卷积核 :
101
010
101
来对图像进行卷积操作(可以理解为有一个滑动窗口,把卷积核与对应的图像像素做乘积然后求和),得到了3x3的卷积结果。
这个过程可以理解为使用一个过滤器(卷积核)来过滤图像的各个小区域,从而得到这些小区域的特征值。在实际训练过程中, 卷积核的值是在学习过程中学到的。
在具体应用中,往往有多个卷积核,可以认为, 每个卷积核代表了一种图像模式 ,如果某个图像块与此卷积核卷积出的值大,则认为此图像块十分接近于此卷积核。如果设计了6个卷积核,可以理解为这个图像上有6种底层纹理模式,也就是用6种基础模式就能描绘出一副图像。以下就是24种不同的卷积核的示例:
池化 的过程如下图所示:
可以看到,原始图片是20x20的,对其进行采样,采样窗口为10x10,最终将其采样成为一个2x2大小的特征图。
之所以这么做,是因为即使做完了卷积,图像仍然很大(因为卷积核比较小),所以为了降低数据维度,就进行采样。
即使减少了许多数据,特征的统计属性仍能够描述图像,而且由于降低了数据维度,有效地避免了过拟合。
在实际应用中,分为最大值采样(Max-Pooling)与平均值采样(Mean-Pooling)。
LeNet网络结构:
注意,上图中S2与C3的连接方式并不是全连接,而是部分连接。最后,通过全连接层C5、F6得到10个输出,对应10个数字的概率。
卷积神经网络的训练过程与传统神经网络类似,也是参照了反向传播算法
第一阶段,向前传播阶段:
a)从样本集中取一个样本(X,Yp),将X输入网络;
b)计算相应的实际输出Op
第二阶段,向后传播阶段
a)计算实际输出Op与相应的理想输出Yp的差;
b)按极小化误差的方法反向传播调整权矩阵。
Ⅳ 神经网络的全连接层
全连接层(fully connected layers,FC)在整个神经网络中起到“分类器”的作用。
如果说卷积层、池化层和激活函数层等操作是将原始数据映射到隐层特征空间的话,全连接层将学到的“分布式特征表示”映射到“样本标记空间”。
在实际使用中,全连接层可由卷积操作实现:对前层是全连接的全连接层可以转化为卷积核为1x1的卷积;而前层是卷积层的全连接层可以转化为卷积核为h*w的全局卷积,h和w分别为前层卷积结果的高和宽。
由于全连接层的参数冗余(仅全连接层参数就可占整个网络参数80%左右),有些性能优异的网络模型如ResNet和GoogLeNet等均用全局平均池化(global average pooling,GAP)取代全连接层,来融合学到的深度特征,最后仍用softmax等损失函数作为网络目标函数来指导学习过程。
Ⅳ 什么是全连接神经网络怎么理解“全连接”
1、全连接神经网络解析:对n-1层和n层而言,n-1层的任意一个节点,都和第n层所有节点有连接。即第n层的每个节点在进行计算的时候,激活函数的输入是n-1层所有节点的加权。
2、全连接的神经网络示意图:
3、“全连接”是一种不错的模式,但是网络很大的时候,训练速度回很慢。部分连接就是认为的切断某两个节点直接的连接,这样训练时计算量大大减小。
Ⅵ 【神经网络原理】神经网络结构 & 符号约定
神经元模型的符号约定:输入: ,权重(weight): ,偏置(bias): ,未激活值: ,激活输出值:
神经元可用于解决部分二分类问题 ——当有一个类别未知的 输入感知机,若 输出值a = 1时,感知机被激活 ,代表 x 属于第一类;若 输出值a = 0时,感知机未激活 ,则代表 x 属于第二类。而对于sigmoid神经元,若输出值a ≥ 0.5时,代表 x 属于第一类,否则为第二类。
不难看出,感知机可以轻松实现“与非”逻辑,而与非逻辑可以组合成其他任意的逻辑,但对于一些过于复杂的问题,我们难以写出其背后地逻辑结构。 这时候神经网络就能大显身手 :它可以自适应的学习规律,调节网络地权重和偏置等参数,我们只需要用大量的数据对其正确地训练,即可得到我们想要的效果!
那有一个很有意思的问题:相比于阶跃函数,为什么我们在神经网络中更愿意采用sigmoid函数作为激活函数呢?
首先,由于感知机的激活函数为阶跃函数(在0处突变),权重的一个小的变化就可能导致输出值的突变,而如果将激活函数替换为sigmoid函数,输出值的变化就能发生相应的小的变化,有利于网络学习;另外,由于采用二次代价函数作为损失函数时,利用BP算法求梯度值需要对冲激函数求导,sigmoid函数正好时连续可导的,而且导数很好求。
为了便于理解,先画一个三层的全连接神经网络示意图,激活函数都选用sigmoid函数。 全连接神经网络 指除输出层外,每一个神经元都与下一层中的各神经元相连接。网络的第一层为 输入层 ,最后一层为 输出层 ,中间的所有层统称为 隐藏层 。其中,输入层的神经元比较特殊,不含偏置 ,也没有激活函数 。
神经网络结构的符号约定 : 代表第 层的第 个神经元与第 层的第 个神经元连线上的权重; 代表第 层与第 层之间的所有权重 构成的权重矩阵。 分别代表第 层的第 个神经元对应的偏置、未激活值、激活值; 则分别代表第 层的所有偏置组成的列向量、所有未激活值组成的列向量以及所有激活值组成的列向量。
下面展示了一个手写体识别的三层全连接神经网络结构:
隐藏层的功能可以看作是各种特征检测器的组合:检测到相应特征时,相应的隐藏层神经元就会被激活,从而使输出层相应的神经元也被激活。